The present specification relates generally to endoscopes, and more specifically, to a circuit board assembly for the tip section of a multiple viewing element endoscope that uses CMOS image sensors for capturing images.
Endoscopes have attained great acceptance within the medical community, since they provide a means for performing procedures, while enabling the physician to view the internal anatomy of the patient. Over the years, numerous endoscopes have been developed and categorized according to use in specific applications, such as cystoscopy, colonoscopy, laparoscopy, upper GI endoscopy among others. Endoscopes may be inserted into the body's natural orifices or through an incision in the skin.
An endoscope typically comprises an elongated tubular shaft, rigid or flexible, having a video camera or a fiber optic lens assembly at its distal end. The shaft is connected to a handle, which sometimes includes an ocular for direct viewing. Viewing is also usually possible via an external screen. Various surgical tools may be inserted through a working channel in the endoscope for performing different surgical procedures.
One disadvantage of existing endoscopes is their limited field of view. A limited field of view may not allow a physician to analyze an area under inspection in full detail. This in turn affects the rate of detection of pathological objects that exist in the body cavity in which the endoscope operates. For example, clinical literature shows that the average adenoma miss rate is over 24%. That is, detection of cancer is missed in more than 24 of every 100 patients. Further, from a medical industry viewpoint, unless a physician is correctly identifying cancer in at least 20% of cancer patients, the average miss rate is considered higher than industry. Therefore, there is a need in the art for endoscopes that allow a broader field of view. One approach to achieving this purpose is described in U.S. Patent Application No. 2011/0263938, which describes the use of multiple cameras or viewing elements in a single endoscope and is incorporated herein by reference.
In most embodiments of multi-camera endoscopes, CCD sensors are used as imagers in the circuit board assembly of the endoscope tip. As known in the art, CCD sensors generate analog signals while CMOS sensors generate digital signals. In a CCD sensor, every pixel's charge is transferred through a limited number of output nodes, often just one, to be converted to voltage, buffered, and sent off-chip as an analog signal. In a CMOS sensor on the other hand, each pixel has its own charge-to-voltage conversion, and the sensor often also includes amplifiers, noise-correction, and digitization circuits, so that the chip outputs digital signals. With each pixel doing its own conversion, each pixel can be accessed concurrently, thereby allowing high total bandwidth and high speed. Thus, while a CCD interface is analog and requires synchronization signals and more circuitry at the end point, CMOS is only driven by power input and generates high speed digital video interface. The use of CCD sensors requires electronics for digitizing pixels and for image processing, while CMOS sensors already contain the main blocks for digitization in the chip and require only software based processing for the images. CMOS sensor technology in recent years has leapfrogged CCDs owing to better performance, and the cost of CMOS sensors has become much lower due to a more advanced production process.
Therefore, there is a need in the art to simplify the electrical interface of the circuit board assembly used in the tip of multi viewing element endoscopes, such that it can employ CMOS sensors and support a digital interface. Such endoscopes would allow for easy control of the imagers as well as the image processing technique, while also providing a broader field of view compared to conventional single imager endoscopes. There is also need for a method of assembling CMOS sensors in the tip of multiple viewing element endoscopes so as to occupy minimum space in the limited space environment of the tip section.
The present specification describes a circuit board design that uses CMOS sensors within the tip section of a multiple viewing elements endoscope. In one embodiment, sensors and optical assemblies, associated with at least one side viewing element, are assembled on a common base board. In another embodiment, a dedicated base board is provided for each of the front and side sensors and their corresponding optical assemblies. The individual base boards are connected to the main base board by means of flexible circuit boards.
The present specification discloses a circuit board assembly for use in a tip section of a multi-viewing element endoscope, said tip comprising a front pointing viewing element and at least one side pointing viewing element, wherein each viewing element comprises an image sensor and a lens assembly, said circuit board assembly comprising: a first base board to which the front pointing viewing element is connected; a second base board, wherein the at least one side pointing viewing element is connected to a first side of the second base board; and a third base board to which said first and said second base boards are connected, wherein said first and said second base boards are placed perpendicular to said third base board.
Optionally, the tip section comprises a second side pointing viewing element facing a direction opposite to the at least one side pointing viewing element, wherein the second side pointing viewing element is connected to a second side of the second base board and wherein the first side of the second base board is opposite the second side of the second base board.
Optionally, each image sensor is a CMOS sensor comprising a first optics portion coupled with a second chip portion having a plurality of connector pins.
Optionally, the second chip portion of the CMOS sensor is connected to the first side of the second base board or the second side of the second base board by said plurality of connector pins.
Optionally, said first and said second base boards are positioned perpendicular to each other.
Optionally, said first base board is coupled to a metal frame which is configured to hold the lens assembly of the front pointing viewing element.
Optionally, said second base board is coupled to at least one metal frame, wherein the metal frame is configured to hold the at least one side lens assembly. Optionally, said metal frame is configured as heat sinks.
Optionally, each of the front and side pointing viewing elements is associated with at least one illuminator, and wherein said circuit board assembly comprises a separate circuit board to hold each of the at least one illuminators.
Optionally, said third base board comprises grooves adapted to receive said first base board and said second base board.
The present specification also discloses a circuit board assembly for the tip of a multi-viewing element endoscope, said tip comprising a front pointing viewing element, a first side pointing viewing element, and a second side pointing viewing element, wherein each viewing element comprises an image sensor and a lens assembly, said circuit board assembly comprising: a first base board to which the front pointing viewing element is connected; a second base board to which a first side pointing viewing element is connected; a third base board to which a second side pointing viewing element is connected; and, a fourth base board having three grooves, wherein each of said three grooves are adapted to receive one of said first, second and third base boards and wherein each of said first, second and third base boards are placed perpendicular to said fourth base board.
Optionally, each image sensor is a CMOS sensor.
Optionally, each of said first, second and third base boards is further connected to said fourth base board by a flexible circuit board.
Optionally, said second and said third base boards are positioned parallel to each other.
Optionally, said second and said third base boards are positioned perpendicular to the first base board.
Optionally, the circuit board assembly further comprises a front illuminator circuit board.
Optionally, said front illuminator circuit board is shaped as a “U” and is configured to hold three illuminators associated with the front pointing viewing element.
Optionally, the circuit board assembly further comprises two side illuminator circuit boards.
Optionally, each of the two side illuminator circuit boards is shaped as a “U” and is configured to hold two illuminators associated with the first side pointing viewing element and the second side pointing viewing element.
Optionally, the length of the front illuminator circuit board ranges from 5.5 mm to 11.5 mm and the height of the front illuminator circuit board ranges from 2.0 mm to 8.5 mm.
Optionally, the length of each of the side illuminator circuit boards ranges from 5.5 mm to 11.5 mm and the height of each of the side illuminator circuit boards ranges from 1.0 mm to 7.5 mm.
The aforementioned and other embodiments of the present shall be described in greater depth in the drawings and detailed description provided below.
These and other features and advantages of the present invention will be appreciated, as they become better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
In one embodiment, the present specification discloses a circuit board design for the tip of an endoscope system that uses CMOS sensors as imagers. The circuit board design not only makes more efficient use of the space inside the distal tip, which is crowded with components, but also reduces the cost of the assembly and makes the design easier to scale compared to existing circuit board designs for multiple viewing element endoscopes. With the use of CMOS sensors, digital signals are obtained directly from the sensors and the endoscope system is not limited to the signal processing method directed by the sensor chipset, as is the case where CCD sensors are used. Thus, with the use of CMOS sensors, any image processing technique may be employed that is suitable for the specific clinical environment in which the endoscope is used. Further, the attributes of imagers, such as exposure time, integration time, frame rate and multi-camera synchronization can be more readily controlled along with the image processing. As CMOS sensors support high bandwidth, high resolution images can be generated during endoscopic procedures.
In an embodiment, the present specification provides a circuit board assembly to be fitted within a tip section of a multi-viewing endoscope, wherein the circuit board assembly is capable of accommodating both CCD and CMOS sensors. The use of CMOS sensors within endoscopes allows for easier control of the imagers as well as the image processing technique.
In another embodiment of the present specification, a circuit board assembly comprising one or more front and side facing CMOS sensors is provided for fitting into a tip section of a multi-viewing endoscope, providing a broader field of view compared to conventional single imager endoscopes. The circuit board assembly comprises two CMOS sensors connected to a single base board for conserving space in the tip section (as shown in
In another embodiment, the present specification provides a circuit assembly comprising three CMOS sensors, each being connected to a separate base board, and each base board being connected to a main base board by means of a dedicated flexible circuit board or flex board (as shown in
The present specification is directed towards multiple embodiments. The following disclosure is provided in order to enable a person having ordinary skill in the art to practice the invention. Language used in this specification should not be interpreted as a general disavowal of any one specific embodiment or used to limit the claims beyond the meaning of the terms used therein. The general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the invention. Also, the terminology and phraseology used is for the purpose of describing exemplary embodiments and should not be considered limiting. Thus, the present invention is to be accorded the widest scope encompassing numerous alternatives, modifications and equivalents consistent with the principles and features disclosed. For purpose of clarity, details relating to technical material that is known in the technical fields related to the invention have not been described in detail so as not to unnecessarily obscure the present invention.
In the description and claims of the application, each of the words “comprise” “include” and “have”, and forms thereof, are not necessarily limited to members in a list with which the words may be associated. It should be noted herein that any feature or component described in association with a specific embodiment may be used and implemented with any other embodiment unless clearly indicated otherwise.
Reference is now made to
A utility cable 114, also referred to as an umbilical tube, may connect between handle 104 and a Main Control Unit 199. Utility cable 114 may include therein one or more fluid channels and one or more electrical channels. The electrical channel(s) may include at least one data cable for receiving video signals from the front and side-pointing viewing elements, as well as at least one power cable for providing electrical power to the viewing elements and to the discrete illuminators.
The main control unit 199 contains the controls required for displaying the images of internal organs captured by the endoscope 102. The main control unit 199 may govern power transmission to the endoscope's 102 tip section 108, such as for the tip section's viewing elements and illuminators. The main control unit 199 may further control one or more fluid, liquid and/or suction pump(s) which supply corresponding functionalities to the endoscope 102. One or more input devices 118, such as a keyboard, a touch screen, a voice controller and the like may be connected to the main control unit 199 for the purpose of user interaction with the main control unit 199. In the embodiment shown in
Optionally, the video streams received from the different viewing elements of the multi-viewing element endoscope 102 may be displayed separately on at least one monitor (not seen) by uploading information from the main control unit 199, either side-by-side or interchangeably (namely, the operator may switch between views from the different viewing elements manually). Alternatively, these video streams may be processed by the main control unit 199 to combine them into a single, panoramic video frame, based on an overlap between fields of view of the viewing elements. In an embodiment, two or more displays may be connected to the main control unit 199, each for displaying a video stream from a different viewing element of the multi-viewing element endoscope 102. The main control unit 199 is described in U.S. patent application Ser. No. 14/263,896, entitled “Method and System for Video Processing in a Multi-Viewing Element Endoscope” and filed on Apr. 28, 2014, which is herein incorporated by reference in its entirety.
Reference is now made to
Lens assembly 281 may include a plurality of lenses, static or movable, which may provide a field of view of at least 90 degrees and up to essentially 180 degrees. In one embodiment, lens assembly 281 may provide a length over which an object remains in focus of about 3 to 100 millimeters. It should be appreciated that the term focal length may be used to refer to the distance from a lens to a sensor or may be used to refer to the distance, from the lens, over which an object remains in focus. One of ordinary skill in the art would understand what definition for focal length is being used based on the context and distances discussed.
Front-pointing image sensor 269 and lens assembly 281, with or without integrated circuit board 279, may be jointly referred to as a “front-pointing camera”. One or more discrete front illuminators 283 may be placed next to lens assembly 281, for illuminating its field of view. In an alternate embodiment, discrete front illuminators 283 may also be attached to the same integrated circuit board 279 upon which front-pointing image sensor 269 is mounted.
Tip section 262 may optionally include, in addition to a first side-pointing image sensor 285, a second side-pointing image sensor 264. While
Referring back to
In another embodiment, side-pointing image sensors 285 and 264 receive the necessary electrical power from one integrated circuit board adapted to supply the necessary electrical power to both the sensors.
Side-pointing image sensors 285 and 264 have lens assemblies 268 and 274, respectively, mounted thereto for providing the necessary optics for receiving images. Lens assemblies 268 and 274 may include a plurality of lenses, static or movable, which provide a field of view of at least 90 degrees and up to essentially 180 degrees. Side-pointing image sensors 285 and 264 and lens assemblies 268 and 274, with or without integrated circuit boards 287 and 266, respectively, may be jointly referred to as a “side-pointing cameras”.
Discrete side illuminators 276 and 289 may be placed next to lens assemblies 268 and 274, respectively, for illuminating its field of view. Optionally, in an alternate embodiment, discrete side illuminators 276 and 289 may be attached to the same integrated circuit boards 287 and 266 on which side-pointing image sensors 285 and 264 are mounted.
In another configuration, integrated circuit boards 279, 287, and 266 may be a single integrated circuit board on which front and side-pointing image sensors 269, 285, and 264, respectively, are mounted.
Front and side-pointing image sensors 269, 285, and 264 may be similar, identical or distinct in terms of, for example, field of view, resolution, light sensitivity, pixel size, focal length, focal distance and/or the like.
A front panel 312 is positioned on a front end of the endoscope tip 300. The front panel 312 comprises an optical window 314, transparent surfaces, windows, optical window or openings 316, 318, 320, a working/service channel opening 322, a nozzle opening 324 and a jet opening 326. In one embodiment, the diameter of the front working/service channel ranges from approximately 2.8 to 5.8 millimeters.
It may be noted that a base board, which in one embodiment is an electronic circuit board/printed circuit board, is associated with a fluid channeling component and adapted to support the optical assembly and illuminators of an endoscope. Thus, tip section of the endoscope may include a tip cover, an electronic circuit board assembly and a fluid channeling component. According to some embodiments, fluid channeling component may be configured as a separate component from electronic circuit board assembly. This configuration may be adapted to separate the fluid channels, such as a side service channel, and at least one front working/service channel, which are located in fluid channeling component, from the sensitive electronic and optical parts which may be located in the area of electronic circuit board assembly. Thus, the component structure of the tip section enables effective isolation of the plurality of electronic elements from the plurality of fluid channels.
A particular challenge arises when attempting to package the tip cover, electronic circuit board assembly and fluid channeling component such that they fit within the minimalistic space available inside the tip section, while still providing the required results. Thus, a significant problem exists in the art when attempts are made to pack all necessary components into the small inner volume of the endoscope. This problem dramatically increases when two or more viewing elements and respective illumination sources (such as LEDs) are packed in the tip of the endoscope.
As shown in
In order to make more efficient use of the limited space available within the tip, in embodiments of the present specification, a CMOS sensor is employed in a novel circuit board design that eliminates the need of having two base boards (the upper base board 402 and lower base board 404) as described above. By reducing the number of base boards required from two to one, the present specification offers a more efficient design for the tight architecture of the distal tip of an endoscope.
In various embodiments, the base board 501 is provided with grooves/holes 550 for the front illuminators 522, 532, 542 and for the first set of side illuminators 523, 533 and the second set of side illuminators (not shown) to be placed within. In one embodiment grooves 550 are identical for all illuminators, while in another embodiment each of the grooves may be adapted for different sizes of illuminators. For example, different types of illuminators may comprise LEDs (Light Emitting Diode) adapted to emit white light, infrared light, ultraviolet light, near-infrared light and other wavelengths of light and each type of illuminator may have a different size.
In one embodiment, a separate circuit board, such as circuit board 520 (described in greater detail with respect to
As mentioned above, the front sensor and the side sensors in the present embodiment comprise CMOS sensors, which can be connected to an electronic board with ease and simplicity.
In an alternate embodiment, the front sensor base board 702 carries the front sensor and the front lens assembly 712, while the side sensor base board 703 carries only one side sensor and its associated side lens assembly 713 or 723.
In one embodiment, both the front and the side base boards are coupled to metal frames 705, 706, 707 which are positioned to support and hold the front and side lens assemblies 712, 713 and 723, respectively. In an embodiment, metal frames 705, 706, 707 also serve as heat sinks to the sensors incorporated in the endoscope. In one embodiment, as mentioned with respect to
It may be noted that in alternate, optional designs of the base board, such as the one shown and explained with reference to
It may be noted that use of a flex board is advantageous in a multi-viewing element endoscope, owing to shortage of space in the tip exacerbated by the presence of multiple viewing elements. The flex board provides additional freedom of movement to the assembly process in a space constrained environment, and allows the two side sensor boards 911, 912 to be aligned in parallel and as close as possible one to each other. In one embodiment, side sensor base boards 911 and 912 are placed parallel to each other, while being placed perpendicular to the main base board 910. The front base board 913 is placed perpendicular to the side base boards 911 and 912, and also perpendicular to the main base board 910.
In one embodiment, the circuit board assembly of the present specification can also be adapted for use with CCD sensors. That is, the same circuit board is designed as a common platform that can support either of the two technologies—CCD or CMOS, depending upon the application and requirement.
The above examples are merely illustrative of the many applications of the system of present invention. Although only a few embodiments of the present invention have been described herein, it should be understood that the present invention might be embodied in many other specific forms without departing from the spirit or scope of the invention. Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive, and the invention may be modified within the scope of the appended claims.
This application is a continuation of U.S. Nonprovisional patent application Ser. No. 15/435,580, filed Feb. 17, 2017, which claims the benefit of U.S. Provisional Patent Application No. 62/299,332, filed on Feb. 24, 2016. The present application relates to U.S. patent application Ser. No. 14/469,481, filed on Aug. 26, 2014, which relies on U.S. Provisional Patent No. 61/987,984, filed on May 2, 2014; U.S. Provisional Patent No. 61/935,647, filed on Feb. 4, 2014, and U.S. Provisional Patent No. 61/881,661, filed on Sep. 24, 2013, for priority. The present application also relates to U.S. patent application Ser. No. 13/882,004, filed on May 23, 2013, which is a 371 National Stage Entry of PCT Application No. PCT/IL2011/000832, filed on Oct. 27, 2011, which, relies upon U.S. Provisional Patent Application No. 61/407,495, filed on Oct. 28, 2010, for priority. The present specification also relates to U.S. patent application Ser. No. 13/992,014, filed on Jun. 6, 2013, which is a 371 National Stage Entry of PCT Application No. PCT/IL2011/050049, filed on Dec. 8, 2011, which relies upon U.S. Provisional Patent Application No. 61/421,238, filed on Dec. 9, 2010, for priority. The present specification also relates to U.S. patent application Ser. No. 13/992,021, filed on Jun. 6, 2013, which is a 371 National Stage Entry of PCT Application No. PCT/IL2011/050050, filed on Dec. 8, 2011, which relies upon U.S. Provisional Patent Application No. 61/421,240, filed on Dec. 9, 2010, for priority. The present application also relates to the following U.S. Patent Applications: U.S. patent application Ser. No. 13/655,120, filed on Oct. 18, 2012; U.S. patent application Ser. No. 13/212,627, filed on Aug. 18, 2011; and U.S. patent application Ser. No. 14/746,986, filed on Jan. 21, 2016, which is a continuation of U.S. Pat. No. 9,101,268, issued on Aug. 11, 2015, all of which are continuation-in-part applications of U.S. patent application Ser. No. 13/119,032, filed on Jul. 15, 2011, which is a 371 National Stage Entry of PCT Application No. PCT/IL2010/000476, filed on Jun. 16, 2010, which relies upon U.S. Provisional Patent Application No. 61/218,085, for priority. All of the above-mentioned applications are herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3639714 | Fujimoto | Feb 1972 | A |
3955064 | Demetrio | May 1976 | A |
4027697 | Bonney | Jun 1977 | A |
4037588 | Heckele | Jul 1977 | A |
4084401 | Belardi | Apr 1978 | A |
4402313 | Yabe | Sep 1983 | A |
4461282 | Ouchi | Jul 1984 | A |
4494549 | Namba | Jan 1985 | A |
4532918 | Wheeler | Aug 1985 | A |
4588294 | Siegmund | May 1986 | A |
4641635 | Yabe | Feb 1987 | A |
4727859 | Lia | Mar 1988 | A |
4764001 | Yokota | Aug 1988 | A |
4801792 | Yamasita | Jan 1989 | A |
4825850 | Opie | May 1989 | A |
4877314 | Kanamori | Oct 1989 | A |
4902115 | Takahashi | Feb 1990 | A |
4976522 | Igarashi | Dec 1990 | A |
4984878 | Miyano | Jan 1991 | A |
5007406 | Takahashi | Apr 1991 | A |
5014685 | Takahashi | May 1991 | A |
5193525 | Silverstein | Mar 1993 | A |
5200818 | Neta | Apr 1993 | A |
5224929 | Remiszewski | Jul 1993 | A |
5296971 | Mori | Mar 1994 | A |
5359456 | Kikuchi | Oct 1994 | A |
5395329 | Fleischhacker | Mar 1995 | A |
5447148 | Oneda | Sep 1995 | A |
5460167 | Yabe | Oct 1995 | A |
5464007 | Krauter | Nov 1995 | A |
5468156 | Flinchbaugh | Nov 1995 | A |
5475420 | Buchin | Dec 1995 | A |
5489256 | Adair | Feb 1996 | A |
5518501 | Oneda | May 1996 | A |
5518502 | Kaplan | May 1996 | A |
5547455 | McKenna | Aug 1996 | A |
5547457 | Tsuyuki | Aug 1996 | A |
5575755 | Krauter | Nov 1996 | A |
5587839 | Miyano | Dec 1996 | A |
5630782 | Adair | May 1997 | A |
5630798 | Beiser | May 1997 | A |
5662588 | Iida | Sep 1997 | A |
5674182 | Suzuki | Oct 1997 | A |
5685821 | Pike | Nov 1997 | A |
5685823 | Ito | Nov 1997 | A |
5702347 | Yabe | Dec 1997 | A |
5707344 | Nakazawa | Jan 1998 | A |
5725474 | Yasui | Mar 1998 | A |
5725476 | Yasui | Mar 1998 | A |
5725477 | Yasui | Mar 1998 | A |
5725478 | Saad | Mar 1998 | A |
5777797 | Miyano | Jul 1998 | A |
5782751 | Matsuno | Jul 1998 | A |
5800341 | McKenna | Sep 1998 | A |
5810715 | Moriyama | Sep 1998 | A |
5810717 | Maeda | Sep 1998 | A |
5810770 | Chin | Sep 1998 | A |
5812893 | Hikita | Sep 1998 | A |
5830121 | Enomoto | Nov 1998 | A |
5836894 | Sarvazyan | Nov 1998 | A |
5860913 | Yamaya | Jan 1999 | A |
5870234 | EbbesmeierneeSchitthof | Feb 1999 | A |
5916148 | Tsuyuki | Jun 1999 | A |
5940126 | Kimura | Aug 1999 | A |
6058109 | Lechleider | May 2000 | A |
6095970 | Hidaka | Aug 2000 | A |
6095971 | Takahashi | Aug 2000 | A |
6117068 | Gourley | Sep 2000 | A |
6181481 | Yamamoto | Jan 2001 | B1 |
6196967 | Lim | Mar 2001 | B1 |
6261226 | McKenna | Jul 2001 | B1 |
6277064 | Yoon | Aug 2001 | B1 |
6359674 | Horiuchi | Mar 2002 | B1 |
6375610 | Verschuur | Apr 2002 | B2 |
6402738 | Ouchi | Jun 2002 | B1 |
6419626 | Yoon | Jul 2002 | B1 |
6450950 | Irion | Sep 2002 | B2 |
6476851 | Nakamura | Nov 2002 | B1 |
6520908 | Ikeda | Feb 2003 | B1 |
6636254 | Onishi | Oct 2003 | B1 |
6638214 | Akiba | Oct 2003 | B2 |
6673012 | Fujii | Jan 2004 | B2 |
6690337 | Mayer, III | Feb 2004 | B1 |
6712760 | Sano | Mar 2004 | B2 |
6764345 | Duesterhoeft | Jul 2004 | B1 |
6814583 | Young | Nov 2004 | B1 |
6832984 | Stelzer | Dec 2004 | B2 |
6888119 | Iizuka | May 2005 | B2 |
6997871 | Sonnenschein | Feb 2006 | B2 |
7154378 | Ertas | Dec 2006 | B1 |
7268805 | Yoshikawa | Sep 2007 | B2 |
7435218 | Krattiger | Oct 2008 | B2 |
7621869 | Ratnakar | Nov 2009 | B2 |
7630148 | Yang | Dec 2009 | B1 |
7701650 | Lin | Apr 2010 | B2 |
7713246 | Shia | May 2010 | B2 |
7746572 | Asami | Jun 2010 | B2 |
7796870 | Wang | Sep 2010 | B2 |
7813047 | Wang | Oct 2010 | B2 |
7828725 | Maruyama | Nov 2010 | B2 |
7918788 | Lin | Apr 2011 | B2 |
7927272 | Bayer | Apr 2011 | B2 |
7967745 | Gilad | Jun 2011 | B2 |
7976462 | Wright | Jul 2011 | B2 |
8064666 | Bayer | Nov 2011 | B2 |
8182422 | Bayer | May 2012 | B2 |
8197399 | Bayer | Jun 2012 | B2 |
8235887 | Bayer | Aug 2012 | B2 |
8262558 | Sato | Sep 2012 | B2 |
8287446 | Bayer | Oct 2012 | B2 |
8289381 | Bayer | Oct 2012 | B2 |
8300325 | Katahira | Oct 2012 | B2 |
8310530 | Bayer | Nov 2012 | B2 |
8353860 | Boulais | Jan 2013 | B2 |
8447132 | Galil | May 2013 | B1 |
8449457 | Aizenfeld | May 2013 | B2 |
8460182 | Ouyang | Jun 2013 | B2 |
8585584 | Ratnakar | Nov 2013 | B2 |
8587645 | Bayer | Nov 2013 | B2 |
8672836 | Higgins | Mar 2014 | B2 |
8715168 | Ratnakar | May 2014 | B2 |
8797392 | Bayer | Aug 2014 | B2 |
8872906 | Bayer | Oct 2014 | B2 |
8926502 | Levy | Jan 2015 | B2 |
9044185 | Bayer | Jun 2015 | B2 |
9101266 | Levi | Aug 2015 | B2 |
9101268 | Levy | Aug 2015 | B2 |
9101287 | Levy | Aug 2015 | B2 |
9144664 | Jacobsen | Sep 2015 | B2 |
9185391 | Prechtl | Nov 2015 | B1 |
9289110 | Woolford | Mar 2016 | B2 |
9314147 | Levy | Apr 2016 | B2 |
9320419 | Kirma | Apr 2016 | B2 |
9407819 | Guissin | Aug 2016 | B2 |
9615011 | Fleming | Apr 2017 | B1 |
9690172 | Donaldson | Jun 2017 | B2 |
9838599 | Tam | Dec 2017 | B1 |
10186301 | Van Hoff | Jan 2019 | B1 |
10488648 | Krivopisk | Nov 2019 | B2 |
20010036322 | Bloomfield | Nov 2001 | A1 |
20020017515 | Obata | Feb 2002 | A1 |
20020047897 | Sugimoto | Apr 2002 | A1 |
20020087047 | Remijan | Jul 2002 | A1 |
20020109771 | Ledbetter | Aug 2002 | A1 |
20020109774 | Meron | Aug 2002 | A1 |
20020161279 | Luloh | Oct 2002 | A1 |
20020161281 | Jaffe | Oct 2002 | A1 |
20020172498 | Esenyan | Nov 2002 | A1 |
20020183591 | Matsuura | Dec 2002 | A1 |
20030030918 | Murayama | Feb 2003 | A1 |
20030063398 | Abe | Apr 2003 | A1 |
20030076411 | Iida | Apr 2003 | A1 |
20030083552 | Remijan | May 2003 | A1 |
20030128893 | Castorina | Jul 2003 | A1 |
20030139650 | Homma | Jul 2003 | A1 |
20030153897 | Russo | Aug 2003 | A1 |
20030158503 | Matsumoto | Aug 2003 | A1 |
20030163029 | Sonnenschein | Aug 2003 | A1 |
20040015054 | Hino | Jan 2004 | A1 |
20040046865 | Ueno | Mar 2004 | A1 |
20040061780 | Huffman | Apr 2004 | A1 |
20040064019 | Chang | Apr 2004 | A1 |
20040077927 | Ouchi | Apr 2004 | A1 |
20040106850 | Yamaya | Jun 2004 | A1 |
20040133072 | Kennedy | Jul 2004 | A1 |
20040138532 | Glukhovsky | Jul 2004 | A1 |
20040158129 | Okada | Aug 2004 | A1 |
20040160682 | Miyano | Aug 2004 | A1 |
20040190159 | Hasegawa | Sep 2004 | A1 |
20040249247 | Iddan | Dec 2004 | A1 |
20040260151 | Akiba | Dec 2004 | A1 |
20050018042 | Rovegno | Jan 2005 | A1 |
20050020876 | Shioda | Jan 2005 | A1 |
20050038317 | Ratnakar | Feb 2005 | A1 |
20050047134 | Mueller | Mar 2005 | A1 |
20050057687 | Irani | Mar 2005 | A1 |
20050090709 | Okada | Apr 2005 | A1 |
20050096501 | Stelzer | May 2005 | A1 |
20050114622 | Bungo | May 2005 | A1 |
20050119527 | Banik | Jun 2005 | A1 |
20050124858 | Matsuzawa | Jun 2005 | A1 |
20050222499 | Banik | Oct 2005 | A1 |
20050234296 | Saadat | Oct 2005 | A1 |
20050234347 | Yamataka | Oct 2005 | A1 |
20050251127 | Brosch | Nov 2005 | A1 |
20050267328 | Blumzvig | Dec 2005 | A1 |
20050272975 | McWeeney | Dec 2005 | A1 |
20050277808 | Sonnenschein | Dec 2005 | A1 |
20050283048 | Gill | Dec 2005 | A1 |
20060004257 | Gilad | Jan 2006 | A1 |
20060047184 | Banik | Mar 2006 | A1 |
20060063976 | Aizenfeld | Mar 2006 | A1 |
20060069314 | Farr | Mar 2006 | A1 |
20060111613 | Boutillette | May 2006 | A1 |
20060114986 | Knapp | Jun 2006 | A1 |
20060149129 | Watts | Jul 2006 | A1 |
20060171693 | Todd | Aug 2006 | A1 |
20060173245 | Todd | Aug 2006 | A1 |
20060183975 | Saadat | Aug 2006 | A1 |
20060184037 | Ince | Aug 2006 | A1 |
20060189845 | Maahs | Aug 2006 | A1 |
20060215406 | Thrailkill | Sep 2006 | A1 |
20060235306 | Cotter | Oct 2006 | A1 |
20060252994 | Ratnakar | Nov 2006 | A1 |
20060264704 | Fujimori | Nov 2006 | A1 |
20060293556 | Garner | Dec 2006 | A1 |
20070015989 | Desai | Jan 2007 | A1 |
20070049803 | Moriyama | Mar 2007 | A1 |
20070055100 | Kato | Mar 2007 | A1 |
20070079029 | Carlson | Apr 2007 | A1 |
20070088193 | Omori | Apr 2007 | A1 |
20070100206 | Lin | May 2007 | A1 |
20070106119 | Hirata | May 2007 | A1 |
20070118015 | Wendlandt | May 2007 | A1 |
20070142711 | Bayer | Jun 2007 | A1 |
20070162095 | Kimmel | Jul 2007 | A1 |
20070167681 | Gill | Jul 2007 | A1 |
20070177008 | Bayer | Aug 2007 | A1 |
20070177009 | Bayer | Aug 2007 | A1 |
20070185384 | Bayer | Aug 2007 | A1 |
20070188427 | Lys | Aug 2007 | A1 |
20070197875 | Osaka | Aug 2007 | A1 |
20070203396 | McCutcheon | Aug 2007 | A1 |
20070206945 | Delorme | Sep 2007 | A1 |
20070213591 | Aizenfeld | Sep 2007 | A1 |
20070229656 | Khait | Oct 2007 | A1 |
20070241895 | Morgan | Oct 2007 | A1 |
20070244353 | Larsen | Oct 2007 | A1 |
20070244354 | Bayer | Oct 2007 | A1 |
20070247867 | Hunter | Oct 2007 | A1 |
20070249907 | Boulais | Oct 2007 | A1 |
20070265492 | Sonnenschein | Nov 2007 | A1 |
20070270642 | Bayer | Nov 2007 | A1 |
20070279486 | Bayer | Dec 2007 | A1 |
20070286764 | Noguchi | Dec 2007 | A1 |
20070293720 | Bayer | Dec 2007 | A1 |
20080009673 | Khachi | Jan 2008 | A1 |
20080021270 | Suzushima | Jan 2008 | A1 |
20080021274 | Bayer | Jan 2008 | A1 |
20080025413 | Apostolopoulos | Jan 2008 | A1 |
20080036864 | McCubbrey | Feb 2008 | A1 |
20080045797 | Yasushi | Feb 2008 | A1 |
20080058601 | Fujimori | Mar 2008 | A1 |
20080071290 | Larkin | Mar 2008 | A1 |
20080091065 | Oshima | Apr 2008 | A1 |
20080130108 | Bayer | Jun 2008 | A1 |
20080151070 | Shiozawa | Jun 2008 | A1 |
20080161646 | Gomez | Jul 2008 | A1 |
20080163652 | Shatskin | Jul 2008 | A1 |
20080167529 | Otawara | Jul 2008 | A1 |
20080177139 | Courtney | Jul 2008 | A1 |
20080183034 | Henkin | Jul 2008 | A1 |
20080183043 | Spinnler | Jul 2008 | A1 |
20080221388 | Courtney | Jul 2008 | A1 |
20080246771 | ONeal | Oct 2008 | A1 |
20080253686 | Bayer | Oct 2008 | A1 |
20080262312 | Carroll | Oct 2008 | A1 |
20080275298 | Ratnakar | Nov 2008 | A1 |
20080298674 | Baker | Dec 2008 | A1 |
20080303898 | Nishimura | Dec 2008 | A1 |
20090005643 | Smith | Jan 2009 | A1 |
20090023998 | Ratnakar | Jan 2009 | A1 |
20090030275 | Nicolaou | Jan 2009 | A1 |
20090054790 | Czaniera | Feb 2009 | A1 |
20090062615 | Yamaya | Mar 2009 | A1 |
20090076327 | Ohki | Mar 2009 | A1 |
20090082624 | Joko | Mar 2009 | A1 |
20090086017 | Miyano | Apr 2009 | A1 |
20090135245 | Luo | May 2009 | A1 |
20090137875 | Kitagawa | May 2009 | A1 |
20090143647 | Banju | Jun 2009 | A1 |
20090147076 | Ertas | Jun 2009 | A1 |
20090182917 | Kim | Jul 2009 | A1 |
20090213211 | Bayer | Aug 2009 | A1 |
20090216084 | Yamane | Aug 2009 | A1 |
20090225159 | Schneider | Sep 2009 | A1 |
20090231419 | Bayer | Sep 2009 | A1 |
20090234183 | Abe | Sep 2009 | A1 |
20090253966 | Ichimura | Oct 2009 | A1 |
20090287188 | Golden | Nov 2009 | A1 |
20090287192 | Vivenzio | Nov 2009 | A1 |
20090299144 | Shigemori | Dec 2009 | A1 |
20100010309 | Kitagawa | Jan 2010 | A1 |
20100016673 | Bandy | Jan 2010 | A1 |
20100053312 | Watanabe | Mar 2010 | A1 |
20100069713 | Endo | Mar 2010 | A1 |
20100073470 | Takasaki | Mar 2010 | A1 |
20100073948 | Stein | Mar 2010 | A1 |
20100076268 | Takasugi | Mar 2010 | A1 |
20100123950 | Fujiwara | May 2010 | A1 |
20100130822 | Katayama | May 2010 | A1 |
20100141763 | Itoh | Jun 2010 | A1 |
20100160729 | Smith | Jun 2010 | A1 |
20100174144 | Hsu | Jul 2010 | A1 |
20100231702 | Tsujimura | Sep 2010 | A1 |
20100245539 | Lin | Sep 2010 | A1 |
20100245653 | Bodor | Sep 2010 | A1 |
20100249513 | Tydlaska | Sep 2010 | A1 |
20100280322 | Mizuyoshi | Nov 2010 | A1 |
20100296178 | Genet | Nov 2010 | A1 |
20100326703 | Gilad | Dec 2010 | A1 |
20110004058 | Oneda | Jan 2011 | A1 |
20110004059 | Arneson | Jan 2011 | A1 |
20110034769 | Adair | Feb 2011 | A1 |
20110063427 | Fengler | Mar 2011 | A1 |
20110084835 | Whitehouse | Apr 2011 | A1 |
20110128393 | Tavi | Jun 2011 | A1 |
20110140003 | Beck | Jun 2011 | A1 |
20110160530 | Ratnakar | Jun 2011 | A1 |
20110160535 | Bayer | Jun 2011 | A1 |
20110169931 | Pascal | Jul 2011 | A1 |
20110184243 | Wright | Jul 2011 | A1 |
20110211267 | Takato | Sep 2011 | A1 |
20110254937 | Yoshino | Oct 2011 | A1 |
20110263938 | Levy | Oct 2011 | A1 |
20110282144 | Gettman | Nov 2011 | A1 |
20110292258 | Adler | Dec 2011 | A1 |
20120040305 | Karazivan | Feb 2012 | A1 |
20120050606 | Debevec | Mar 2012 | A1 |
20120053407 | Levy | Mar 2012 | A1 |
20120057251 | Takato | Mar 2012 | A1 |
20120065468 | Levy | Mar 2012 | A1 |
20120076425 | Brandt | Mar 2012 | A1 |
20120162402 | Amano | Jun 2012 | A1 |
20120200683 | Oshima | Aug 2012 | A1 |
20120209071 | Bayer | Aug 2012 | A1 |
20120209289 | Duque | Aug 2012 | A1 |
20120212630 | Pryor | Aug 2012 | A1 |
20120220832 | Nakade | Aug 2012 | A1 |
20120224026 | Bayer | Sep 2012 | A1 |
20120229615 | Kirma | Sep 2012 | A1 |
20120232340 | Levy | Sep 2012 | A1 |
20120232343 | Levy | Sep 2012 | A1 |
20120253121 | Kitano | Oct 2012 | A1 |
20120277535 | Hoshino | Nov 2012 | A1 |
20120281536 | Gell | Nov 2012 | A1 |
20120289858 | Ouyang | Nov 2012 | A1 |
20120300999 | Bayer | Nov 2012 | A1 |
20130053646 | Yamamoto | Feb 2013 | A1 |
20130057724 | Miyahara | Mar 2013 | A1 |
20130060086 | Talbert | Mar 2013 | A1 |
20130066297 | Shtul | Mar 2013 | A1 |
20130077257 | Tsai | Mar 2013 | A1 |
20130085329 | Morrissette | Apr 2013 | A1 |
20130109916 | Levy | May 2013 | A1 |
20130116506 | Bayer | May 2013 | A1 |
20130131447 | Benning | May 2013 | A1 |
20130137930 | Menabde | May 2013 | A1 |
20130141557 | Kawata | Jun 2013 | A1 |
20130150671 | Levy | Jun 2013 | A1 |
20130158344 | Taniguchi | Jun 2013 | A1 |
20130169843 | Ono | Jul 2013 | A1 |
20130172670 | Levy | Jul 2013 | A1 |
20130172676 | Levy | Jul 2013 | A1 |
20130197309 | Sakata | Aug 2013 | A1 |
20130197556 | Shelton | Aug 2013 | A1 |
20130222640 | Baek | Aug 2013 | A1 |
20130253268 | Okada | Sep 2013 | A1 |
20130264465 | Dai | Oct 2013 | A1 |
20130267778 | Rehe | Oct 2013 | A1 |
20130271588 | Kirma | Oct 2013 | A1 |
20130274551 | Kirma | Oct 2013 | A1 |
20130281925 | Benscoter | Oct 2013 | A1 |
20130296649 | Kirma | Nov 2013 | A1 |
20130303979 | Stieglitz | Nov 2013 | A1 |
20130317295 | Morse | Nov 2013 | A1 |
20140018624 | Bayer | Jan 2014 | A1 |
20140031627 | Jacobs | Jan 2014 | A1 |
20140046136 | Bayer | Feb 2014 | A1 |
20140107418 | Ratnakar | Apr 2014 | A1 |
20140142381 | Bae | May 2014 | A1 |
20140148644 | Levi | May 2014 | A1 |
20140173140 | Bates | Jun 2014 | A1 |
20140184768 | Amling | Jul 2014 | A1 |
20140213850 | Levy | Jul 2014 | A1 |
20140225998 | Dai | Aug 2014 | A1 |
20140253678 | Tocher | Sep 2014 | A1 |
20140276207 | Ouyang | Sep 2014 | A1 |
20140296628 | Kirma | Oct 2014 | A1 |
20140296643 | Levy | Oct 2014 | A1 |
20140296866 | Salman | Oct 2014 | A1 |
20140298932 | Okamoto | Oct 2014 | A1 |
20140309495 | Kirma | Oct 2014 | A1 |
20140316198 | Krivopisk | Oct 2014 | A1 |
20140316204 | Ofir | Oct 2014 | A1 |
20140320617 | Parks | Oct 2014 | A1 |
20140333742 | Salman | Nov 2014 | A1 |
20140333743 | Gilreath | Nov 2014 | A1 |
20140336459 | Bayer | Nov 2014 | A1 |
20140343358 | Hameed | Nov 2014 | A1 |
20140343361 | Salman | Nov 2014 | A1 |
20140343489 | Lang | Nov 2014 | A1 |
20140364691 | Krivopisk | Dec 2014 | A1 |
20140364692 | Salman | Dec 2014 | A1 |
20140364694 | Avron | Dec 2014 | A1 |
20150005581 | Salman | Jan 2015 | A1 |
20150045614 | Krivopisk | Feb 2015 | A1 |
20150057500 | Salman | Feb 2015 | A1 |
20150094536 | Wieth | Apr 2015 | A1 |
20150099925 | Davidson | Apr 2015 | A1 |
20150099926 | Davidson | Apr 2015 | A1 |
20150105618 | Levy | Apr 2015 | A1 |
20150116453 | Hirata | Apr 2015 | A1 |
20150138311 | Towndrow | May 2015 | A1 |
20150164308 | Ratnakar | Jun 2015 | A1 |
20150182105 | Salman | Jul 2015 | A1 |
20150196190 | Levy | Jul 2015 | A1 |
20150201827 | Sidar | Jul 2015 | A1 |
20150208900 | Vidas | Jul 2015 | A1 |
20150208909 | Davidson | Jul 2015 | A1 |
20150223676 | Bayer | Aug 2015 | A1 |
20150230698 | Cline | Aug 2015 | A1 |
20150264232 | Yang | Sep 2015 | A1 |
20150305601 | Levi | Oct 2015 | A1 |
20150313445 | Davidson | Nov 2015 | A1 |
20150313450 | Wieth | Nov 2015 | A1 |
20150313451 | Salman | Nov 2015 | A1 |
20150320300 | Gershov | Nov 2015 | A1 |
20150342446 | Levy | Dec 2015 | A1 |
20150359415 | Lang | Dec 2015 | A1 |
20150374206 | Shimony | Dec 2015 | A1 |
20160015257 | Levy | Jan 2016 | A1 |
20160015258 | Levin | Jan 2016 | A1 |
20160058268 | Salman | Mar 2016 | A1 |
20160142692 | Kim | May 2016 | A1 |
20160309992 | Stith | Oct 2016 | A1 |
20170023492 | Olsson | Jan 2017 | A1 |
20170325665 | Krivopisk | Nov 2017 | A1 |
20170325669 | Levy | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
2297986 | Mar 1999 | CA |
2765559 | Dec 2010 | CA |
2812097 | Mar 2012 | CA |
2770661 | Sep 2012 | CA |
2798716 | Jun 2013 | CA |
2798729 | Jun 2013 | CA |
103070660 | May 2013 | CN |
103348470 | Oct 2013 | CN |
103403605 | Nov 2013 | CN |
103491854 | Jan 2014 | CN |
103702604 | Apr 2014 | CN |
103732120 | Apr 2014 | CN |
104717916 | Jun 2015 | CN |
105246393 | Jan 2016 | CN |
105324065 | Feb 2016 | CN |
105324066 | Feb 2016 | CN |
105338875 | Feb 2016 | CN |
105358042 | Feb 2016 | CN |
105358043 | Feb 2016 | CN |
105377106 | Mar 2016 | CN |
105407788 | Mar 2016 | CN |
202010016900 | May 2011 | DE |
102011115500 | Apr 2013 | DE |
1690497 | Aug 2006 | EP |
1835844 | Sep 2007 | EP |
1968425 | Sep 2008 | EP |
1986541 | Nov 2008 | EP |
2023794 | Feb 2009 | EP |
2023795 | Feb 2009 | EP |
2190341 | Jun 2010 | EP |
2211683 | Aug 2010 | EP |
2457492 | May 2012 | EP |
2457493 | May 2012 | EP |
1988812 | Nov 2012 | EP |
2520218 | Nov 2012 | EP |
2604175 | Jun 2013 | EP |
2618718 | Jul 2013 | EP |
2635932 | Sep 2013 | EP |
2648602 | Oct 2013 | EP |
2649648 | Oct 2013 | EP |
2672878 | Dec 2013 | EP |
2736400 | Jun 2014 | EP |
2744390 | Jun 2014 | EP |
2442706 | Nov 2014 | EP |
2865322 | Apr 2015 | EP |
2908714 | Aug 2015 | EP |
2979123 | Feb 2016 | EP |
2991537 | Mar 2016 | EP |
2994032 | Mar 2016 | EP |
2994033 | Mar 2016 | EP |
2994034 | Mar 2016 | EP |
2996536 | Mar 2016 | EP |
2996541 | Mar 2016 | EP |
2996542 | Mar 2016 | EP |
2996621 | Mar 2016 | EP |
12196628 | Mar 2015 | GB |
04341232 | Nov 1992 | JP |
H1043129 | Feb 1998 | JP |
10179516 | Jul 1998 | JP |
H10239740 | Sep 1998 | JP |
11137512 | May 1999 | JP |
2004134875 | Apr 2004 | JP |
3645055 | May 2005 | JP |
2005253543 | Sep 2005 | JP |
2006025888 | Feb 2006 | JP |
2006068109 | Mar 2006 | JP |
1988813 | Nov 2008 | JP |
2010012079 | Jan 2010 | JP |
2010178766 | Aug 2010 | JP |
2011082215 | Apr 2011 | JP |
2012135432 | Jul 2012 | JP |
2013116277 | Jun 2013 | JP |
2013123647 | Jun 2013 | JP |
2013123648 | Jun 2013 | JP |
2013208459 | Oct 2013 | JP |
2013215582 | Oct 2013 | JP |
2013230383 | Nov 2013 | JP |
2013542467 | Nov 2013 | JP |
2013544617 | Dec 2013 | JP |
2014524303 | Sep 2014 | JP |
2014524819 | Sep 2014 | JP |
2015533300 | Nov 2015 | JP |
2006073676 | Jul 2006 | WO |
2006073725 | Jul 2006 | WO |
2007070644 | Jun 2007 | WO |
2007092533 | Aug 2007 | WO |
2007092636 | Aug 2007 | WO |
2007087421 | Nov 2007 | WO |
2007136859 | Nov 2007 | WO |
2007136879 | Nov 2007 | WO |
2008015164 | Feb 2008 | WO |
2009014895 | Jan 2009 | WO |
2009015396 | Jan 2009 | WO |
2009049322 | Apr 2009 | WO |
2009049324 | Apr 2009 | WO |
2009062179 | May 2009 | WO |
2010146587 | Dec 2010 | WO |
2012038958 | Mar 2012 | WO |
2012056453 | May 2012 | WO |
2012075153 | Jun 2012 | WO |
2012077116 | Jun 2012 | WO |
2012077117 | Jun 2012 | WO |
2012096102 | Jul 2012 | WO |
2012120507 | Sep 2012 | WO |
2013014673 | Jan 2013 | WO |
2013024476 | Feb 2013 | WO |
2014061023 | Apr 2014 | WO |
2014160983 | Oct 2014 | WO |
2014179236 | Nov 2014 | WO |
2014182723 | Nov 2014 | WO |
2014182728 | Nov 2014 | WO |
2014183012 | Nov 2014 | WO |
2014186230 | Nov 2014 | WO |
2014186519 | Nov 2014 | WO |
2014186521 | Nov 2014 | WO |
2014186525 | Nov 2014 | WO |
2014186775 | Nov 2014 | WO |
2014210516 | Dec 2014 | WO |
WO 2014203604 | Dec 2014 | WO |
2015002847 | Jan 2015 | WO |
2015047631 | Apr 2015 | WO |
2015050829 | Apr 2015 | WO |
2015084442 | Jun 2015 | WO |
2015095481 | Jun 2015 | WO |
2015112747 | Jul 2015 | WO |
2015112899 | Jul 2015 | WO |
2015134060 | Sep 2015 | WO |
WO 2015151973 | Oct 2015 | WO |
2015168066 | Nov 2015 | WO |
2015168664 | Nov 2015 | WO |
2015171732 | Nov 2015 | WO |
2015175246 | Nov 2015 | WO |
2016014581 | Jan 2016 | WO |
2016033403 | Mar 2016 | WO |
WO 2018135261 | Jul 2018 | WO |
Entry |
---|
Notice of Allowance dated Apr. 12, 2017 for U.S. Appl. No. 14/603,137. |
Notice of Allowance dated Apr. 16, 2017 for U.S. Appl. No. 13/713,449. |
Office Action dated Apr. 19, 2017 for U.S. Appl. No. 14/988,551. |
Notice of Allowability dated Apr. 21, 2017 for U.S. Appl. No. 14/549,265. |
Office Action dated May 11, 2017 for U.S. Appl. No. 14/278,293. |
Office Action dated May 10, 2017 for U.S. Appl. No. 14/988,551. |
Office Action dated May 5, 2017 U.S. Appl. No. 15/077,513. |
Notice of Allowance dated May 15, 2017 for U.S. Appl. No. 14/271,270. |
Office Action dated May 15, 2017 U.S. Appl. No. 14/278,293. |
Office Action dated May 18, 2017 U.S. Appl. No. 14/278,338. |
Notice of Allowance dated May 16, 2017 for U.S. Appl. No. 14/746,986. |
Office Action dated May 23, 2017 fof U.S. Appl. No. 13/655,120. |
Notice of Allowance dated May 25, 2017 for U.S. Appl. No. 14/318,189. |
Office Action dated May 23, 2017 for U.S. Appl. No. 14/500,975. |
International Search Report for PCT/US14/37004, dated Sep. 25, 2014. |
International Search Report for PCT/US14/38094, dated Nov. 6, 2014. |
International Search Report for PCT/US2014/037526 dated Oct. 16, 2014. |
International Search Report for PCT/US2014/071085, dated Mar. 27, 2015. |
International Search Report for PCT/US2014/58143, dated Jan. 21, 2015. |
International Search Report for PCT/US2015/012506, dated Dec. 11, 2015. |
International Search Report for PCT/US2015/012751, dated Jun. 26, 2015. |
International Search Report for PCT/US2015/027902, dated Jul. 23, 2015. |
International Search Report for PCT/US2015/28962, dated Jul. 28, 2015. |
International Search Report for PCT/US2015/29421, dated Aug. 7, 2015. |
International Search Report for PCT/US2015/41396, dated Sep. 29, 2015. |
International Search Report for PCT/US2015/47334, dated Dec. 28, 2015. |
International Search Report for PCT/US2015/6548, dated Feb. 26, 2016. |
International Search Report for PCT/US2015/66486, dated Dec. 17, 2015. |
International Search Report for PCT/US2017/018287, dated May 10, 2017. |
Corrected Notice of Allowance dated Apr. 13, 2016 for U.S. Appl. No. 13/680,646. |
Notice of Allowance dated Mar. 28, 2016 for U.S. Appl. No. 13/413,059. |
Notice of Allowance dated Mar. 29, 2016 for U.S. Appl. No. 13/680,646. |
Office Action dated Feb. 26, 2016 for U.S. Appl. No. 14/274,323. |
Office Action dated Feb. 4, 2016 for U.S. Appl. No. 14/271,234. |
Office Action dated Mar. 23, 2016 for U.S. Appl. No. 13/713,449. |
Office Action dated Mar. 24, 2016 for U.S. Appl. No. 13/212,627. |
Office Action dated Mar. 28, 2016 for U.S. Appl. No. 13/119,032. |
Office Action dated May 25, 2016 for U.S. Appl. No. 14/271,234. |
Office Action dated May 5, 2016 for U.S. Appl. No. 14/278,338. |
Office Action dated May 6, 2016 for U.S. Appl. No. 14/263,896. |
Office Action dated Jun. 30, 2016 for U.S. Appl. No. 13/655,120. |
Office Action dated Jun. 28, 2016 for U.S. Appl. No. 14/278,293. |
Office Action dated Jul. 1, 2016 for U.S. Appl. No. 14/229,699. |
Office Action dated Jul. 15, 2016 for U.S. Appl. No. 14/273,923. |
Notice of Allowance dated Jul. 15, 2016 for U.S. Appl. No. 14/274,323. |
Office Action dated Jul. 22, 2016 for U.S. Appl. No. 14/549,265. |
Sherman L.M., Plastics That Conduct Hear, Plastics Technology, Jun. 2001—article ontained online from http://www.ptonline.com/articles/plastics-that-conduct-heat. |
Office Action dated Aug. 11, 2016 for U.S. Appl. No. 14/318,249. |
Office Action dated Apr. 28, 2016 for U.S. Appl. No. 13/992,014. |
Notice of Allowance dated Aug. 26, 2016 for U.S. Appl. No. 13/212,627. |
Office Action dated Sep. 2, 2016 for U.S. Appl. No. 14/278,338. |
Office Action dated Sep. 16, 2016 for U.S. Appl. No. 13/992,014. |
Notice of Allowance dated Oct. 12, 2016 for U.S. Appl. No. 13/119,032. |
Office Action dated Oct. 7, 2016 for U.S. Appl. No. 13/713,449. |
Office Action dated Oct. 5, 2016 for U.S. Appl. No. 14/271,270. |
Notice of Allowance dated Oct. 13, 2016 for U.S. Appl. No. 14/273,923. |
Notice of Allowance dated Nov. 9, 2016 for U.S. Appl. No. 13/557,114. |
Office Action dated Dec. 1, 2016 for U.S. Appl. No. 14/278,293. |
Office Action dated Dec. 9, 2016 for U.S. Appl. No. 14/549,265. |
Office Action dated Dec. 16, 2016 for U.S. Appl. No. 14/263,896. |
Notice of Allowance dated Dec. 28, 2016 for U.S. Appl. No. 14/229,699. |
Notice of Allowance dated Dec. 27, 2016 for U.S. Appl. No. 14/317,863. |
Office Action dated Dec. 27, 2016 for U.S. Appl. No. 14/603,137. |
Office Action dated Dec. 29, 2016 for U.S. Appl. No. 15/077,513. |
Office Action dated Dec. 30, 2016 for U.S. Appl. No. 14/457,268. |
Office Action dated Jan. 17, 2017 for U.S. Appl. No. 14/318,189. |
Office Action dated Jan. 31, 2017 for U.S. Appl. No. 14/271,234. |
Office Action dated Feb. 2, 2017 for U.S. Appl. No. 14/278,338. |
Office Action dated Feb. 9, 2017 for U.S. Appl. No. 14/746,986. |
Office Action dated Feb. 6, 2017 for U.S. Appl. No. 14/751,835. |
Office Action dated Feb. 14, 2017 for U.S. Appl. No. 14/271,270. |
Office Action dated Feb. 23, 2017 for U.S. Appl. No. 14/318,249. |
Office Action dated Mar. 9, 2011 for U.S. Appl. No. 14/791,316. |
Office Action dated Mar. 21, 2017 for U.S. Appl. No. 13/992,014. |
Office Action dated Mar. 20, 2017 for U.S. Appl. No. 11/278,293. |
Notice of Allowance dated Mar. 21, 2017 for U.S. Appl. No. 14/549,265. |
Office Action dated Mar. 22, 2017 for U.S. Appl. No. 14/705,355. |
Office Action dated Mar. 24, 2017 for U.S. Appl. No. 14/838,509. |
Number | Date | Country | |
---|---|---|---|
20200049971 A1 | Feb 2020 | US |
Number | Date | Country | |
---|---|---|---|
62299332 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15435580 | Feb 2017 | US |
Child | 16654612 | US |