1. Field of the Invention
The present invention relates generally to wireless communications, and more particularly to a circuit board having a peripheral antenna apparatus with selectable antenna elements and selectable phase shifting.
2. Description of the Prior Art
In communications systems, there is an ever-increasing demand for higher data throughput and a corresponding drive to reduce interference that can disrupt data communications. For example, in an IEEE 802.11 network, an access point (i.e., base station) communicates data with one or more remote receiving nodes (e.g., a network interface card) over a wireless link. The wireless link may be susceptible to interference from other access points, other radio transmitting devices, changes or disturbances in the wireless link environment between the access point and the remote receiving node, and so on. The interference may be such to degrade the wireless link, for example by forcing communication at a lower data rate, or may be sufficiently strong to completely disrupt the wireless link.
One solution for reducing interference in the wireless link between the access point and the remote receiving node is to provide several omnidirectional antennas for the access point, in a “diversity” scheme. For example, a common configuration for the access point comprises a data source coupled via a switching network to two or more physically separated omnidirectional antennas. The access point may select one of the omnidirectional antennas by which to maintain the wireless link. Because of the separation between the omnidirectional antennas, each antenna experiences a different signal environment, and each antenna contributes a different interference level to the wireless link. The switching network couples the data source to whichever of the omnidirectional antennas experiences the least interference in the wireless link.
However, one limitation with using two or more omnidirectional antennas for the access point is that each omnidirectional antenna comprises a separate unit of manufacture with respect to the access point, thus requiring extra manufacturing steps to include the omnidirectional antennas in the access point. A further limitation is that the omnidirectional antenna typically comprises an upright wand attached to a housing of the access point. The wand typically comprises a rod exposed outside of the housing, and may be subject to breakage or damage.
Another limitation is that typical omnidirectional antennas are vertically polarized. Vertically polarized radio frequency (RF) energy does not travel as efficiently as horizontally polarized RF energy inside a typical office or dwelling space, additionally, most laptop computer network interface cards have horizontally polarized antennas. Typical solutions for creating horizontally polarized RF antennas to date have been expensive to manufacture, or do not provide adequate RF performance to be commercially successful.
A still further limitation with the two or more omnidirectional antennas is that because the physically separated antennas may still be relatively close to each other, each of the several antennas may experience similar levels of interference and only a relatively small reduction in interference may be gained by switching from one omnidirectional antenna to another omnidirectional antenna.
In one aspect, a system for selective phase shifting comprises an input port, a straight-through path coupled to the input port and including a first RF switch, a long path of predetermined length coupled to the input port and including a second RF switch coupled to a ground, and an output port coupled to the straight-through path and the long path. The predetermined length may comprise a 90 degree phase shift between the input port and the output port. The long path may comprise a first trace line of ¼-wavelength and a second trace line of ¼-wavelength, the first trace line and the second trace line selectively coupled to ground by the second RF switch.
In one aspect, a method for phase shifting an RF signal comprises receiving an RF signal at an input port, disabling a straight-through path coupled to the input port by applying a zero or reverse bias to a first RF switch included in the straight-through path, phase shifting the RF signal by enabling a long path of a predetermined length coupled to the input port by applying a zero or reverse bias to a second RF switch included in the long path, the second RF switch coupled to a ground, and transmitting the phase shifted RF signal to an output port coupled to the straight-through path and the long path.
In one aspect, an antenna apparatus having selectable antenna elements and selectable phase shifting comprises communication circuitry, a first antenna element, and a phase shifter. The communication circuitry is located in a first area of a circuit board and is configured to generate an RF signal into an antenna feed port of the circuit board. The first antenna element is located near a first periphery of the circuit board and is configured to produce a first directional radiation pattern when coupled to the antenna feed port. The phase shifter includes a straight-through path configured to selectively couple the antenna feed port to the first antenna element with a first RF switch, and further includes a long path of predetermined length configured to selectively couple the antenna feed port to the first antenna element with a second RF switch coupled to a ground. The phase shifter may be configured to selectively provide, between the antenna feed port and the first antenna element, a zero degree phase shift, a 180 degree phase shift, and/or isolation (high impedance) between the antenna feed port and the first antenna element.
The present invention will now be described with reference to drawings that represent a preferred embodiment of the invention. In the drawings, like components have the same reference numerals and may not be described in detail in all drawing figures in which they appear. The illustrated embodiment is intended to illustrate, but not to limit the invention. The drawings include the following figures:
A system for a wireless (i.e., radio frequency or RF) link to a remote receiving device includes a circuit board comprising communication circuitry for generating an RF signal and an antenna apparatus for transmitting and/or receiving the RF signal. The antenna apparatus includes two or more antenna elements arranged near the periphery of the circuit board. Each of the antenna elements provides a directional radiation pattern. In some embodiments, the antenna elements may be electrically selected (e.g., switched on or off) so that the antenna apparatus may form configurable radiation patterns. If multiple antenna elements are switched on, the antenna apparatus may form an omnidirectional radiation pattern.
Advantageously, the circuit board interconnects the communication circuitry and provides the antenna apparatus in one easily manufacturable printed circuit board. Including the antenna apparatus in the printed circuit board reduces the cost to manufacture the unit and simplifies interconnection with the communication circuitry. Further, including the antenna apparatus in the circuit board provides more consistent RF matching between the communication circuitry and the antenna elements. A further advantage is that the antenna apparatus radiates directional radiation patterns substantially in the plane of the antenna elements. When mounted horizontally, the radiation patterns are horizontally polarized, so that RF signal transmission indoors is enhanced as compared to a vertically polarized antenna.
The system 100 comprises a circuit board 105 including a radio modulator/demodulator (modem) 120 and a peripheral antenna apparatus 110. The modem 120 may include a digital to analog converter (D/A), an oscillator (OSC), mixers (X), and other signal processing circuitry (reverse-∫). The radio modem 120 may receive data from a router connected to the Internet (not shown), convert the data into a modulated RF signal, and the antenna apparatus 110 may transmit the modulated RF signal wirelessly to one or more remote receiving nodes (not shown). The system 100 may also form a part of a wireless local area network by enabling communications among several remote receiving nodes. Although the disclosure will focus on a specific embodiment for the system 100 including the circuit board 105, aspects of the invention are applicable to a wide variety of appliances, and are not intended to be limited to the disclosed embodiment. For example, although the system 100 may be described as transmitting to a remote receiving node via the antenna apparatus 110, the system 100 may also receive RF-modulated data from the remote receiving node via the antenna apparatus 110.
The circuit board 105 includes an area 210 for interconnecting circuitry including for example a power supply 215, an antenna selector 220, a data processor 225, and a radio modulator/demodulator (modem) 230. In some embodiments, the data processor 225 comprises well-known circuitry for receiving data packets from a router connected to the Internet (e.g., via a local area network). The radio modem 230 comprises communication circuitry including virtually any device for converting the data packets processed by the data processor 225 into a modulated RF signal for transmission to one or more of the remote receiving nodes, and for reception therefrom. In some embodiments, the radio modem 230 comprises circuitry for converting the data packets into an 802.11 compliant modulated RF signal.
From the radio modem 230, the circuit board 105 also includes a microstrip RF line 234 for routing the modulated RF signal to an antenna feed port 235. Although not shown, in some embodiments, an antenna feed port 235 is configured to distribute the modulated RF signal directly to antenna elements 240A, 240B, 240C, 240D, 240E, 240F, 240G of the peripheral antenna apparatus 110 (not labeled) by way of antenna feed lines. In the embodiment depicted in
The antenna feed port 235, the switching network 237, and the feed lines 239A-239G comprise switching and routing components on the circuit board 105 for routing the modulated RF signal to the antenna elements 240A-240G. As described further herein, the antenna feed port 235, the switching network 237, and the feed lines 239A-239G include structures for impedance matching between the radio modem 230 and the antenna elements 240A-240G. The antenna feed port 235, the switching network 237, and the feed lines 239A-239G are further described with respect to
As described further herein, the peripheral antenna apparatus comprises a plurality of antenna elements 240A-240G located near peripheral areas of the circuit board 105. Each of the antenna elements 240A-240G produces a directional radiation pattern with gain (as compared to an omnidirectional antenna) and with polarization substantially in the plane of the circuit board 105. Each of the antenna elements may be arranged in an offset direction from the other antenna elements 240A-240G so that the directional radiation pattern produced by one antenna element (e.g., the antenna element 240A) is offset in direction from the directional radiation pattern produced by another antenna element (e.g., the antenna element 240C). Certain antenna elements may also be arranged in substantially the same direction, such as the antenna elements 240D and 240E. Arranging two or more of the antenna elements 240A-240G in the same direction provides spatial diversity between the antenna elements 240A-240G so arranged.
In embodiments with the switching network 237, selecting various combinations of the antenna elements 240A-240G produces various radiation patterns ranging from highly directional to omnidirectional. Generally, enabling adjacent antenna elements 240A-240G results in higher directionality in azimuth as compared to selecting either of the antenna elements 240A-240G alone. For example, selecting the adjacent antenna elements 240A and 240B may provide higher directionality than selecting either of the antenna elements 240A or 240B alone. Alternatively, selecting every other antenna element (e.g., the antenna elements 240A, 240C, 240E, and 240G) or all of the antenna elements 240A-240G may produce an omnidirectional radiation pattern.
The operating principle of the selectable antenna elements 240A-240G may be further understood by review of U.S. patent application Ser. No. 11/010,076, titled “System and Method for an Omnidirectional Planar Antenna Apparatus with Selectable Elements,” filed Dec 9, 2004, now U.S. Pat. No. 7,292,198, incorporated by reference herein.
In some embodiments, such as the antenna elements 240B and 240C of
The antenna element 240A may optionally include one or more reflectors (e.g., the reflector 312). The reflector 312 comprises elements that may be configured to concentrate the directional radiation pattern formed by the first dipole component 310 and the second dipole component 311. The reflector 312 may also be configured to broaden the frequency response of the antenna component 240A. In some embodiments, the reflector 312 broadens the frequency response of each modified dipole to about 300 MHz to 500 MHz. In some embodiments, the combined operational bandwidth of the antenna apparatus resulting from coupling more than one of the antenna elements 240A-240G to the antenna feed port 235 is less than the bandwidth resulting from coupling only one of the antenna elements 240A-240G to the antenna feed port 235. For example, with four antenna elements 240A-240G (e.g., the antenna elements 240A, 240C, 240E, and 240G) selected to result in an omnidirectional radiation pattern, the combined frequency response of the antenna apparatus is about 90 MHz. In some embodiments, coupling more than one of the antenna elements 240A-240G to the antenna feed port 235 maintains a match with less than 10 dB return loss over 802.11 wireless LAN frequencies, regardless of the number of antenna elements 240A-240G that are switched on.
It will be appreciated that the dimensions of the individual components of the antenna elements 240A-240G (e.g., the first dipole component 310, the second dipole component 311, and the reflector 312) depend upon a desired operating frequency of the antenna apparatus. Furthermore, it will be appreciated that the dimensions of wavelength depend upon conductive and dielectric materials comprising the circuit board 105, because speed of electron propagation depends upon the properties of the circuit board 105 material. Therefore, dimensions of wavelength referred to herein are intended specifically to incorporate properties of the circuit board, including considerations such as the conductive and dielectric properties of the circuit board 105. The dimensions of the individual components may be established by use of RF simulation software, such as IE3D from Zeland Software of Fremont, Calif.
The first dipole component 310 and portions 412A of the reflector 312 is formed on the first (exterior) surface layer A. In the second metallization layer B, which includes a connection to the ground layer (depicted as an open trace), corresponding portions 412B of the reflector 312 are formed. On the third metallization layer C, corresponding portions 412C of the reflector 312 are formed. The second dipole component 411D is formed along with corresponding portions of the reflector 412D on the fourth (exterior) surface metallization layer D. The reflectors 412A-412D and the second dipole component 411B-411D on the different layers are interconnected to the ground layer B by an array of metalized vias 415 (only one via 415 shown, for clarity) spaced less than 1/20th of a wavelength apart, as determined by an operating RF frequency range of 2.4-2.5 GHz for an 802.11 configuration. It will be apparent to a person or ordinary skill that the reflector 312 comprises four layers, depicted as 412A-412D.
An advantage of the antenna element 240A of
Each PIN diode comprises a single-pole single-throw switch to switch each antenna element either on or off (i.e., couple or decouple each of the antenna elements 240A-240G to the antenna feed port 235). In one embodiment, a series of control signals (not shown) is used to bias each PIN diode. With the PIN diode forward biased and conducting a DC current, the PIN diode is switched on, and the corresponding antenna element is selected. With the PIN diode reverse biased, the PIN diode is switched off.
In one embodiment, the RF traces 515A-515G are of length equal to a multiple of one half wavelength from the antenna feed port 235. Although depicted as equal length in
Although the switching network 237 is described as comprising PIN diodes 520, it will be appreciated that the switching network 237 may comprise virtually any RF switching device such as a GaAs FET, as is well known in the art. In some embodiments, the switching network 237 comprises one or more single-pole multiple-throw switches. In some embodiments, one or more light emitting diodes (not shown) are coupled to the switching network 237 or the feed lines 239A-239G as a visual indicator of which of the antenna elements 240A-240G is on or off. In one embodiment, a light emitting diode is placed in circuit with each PIN diode 520 so that the light emitting diode is lit when the corresponding antenna element is selected.
Referring to
An advantage of the system 100 (
A further advantage of the circuit board 105 incorporating the peripheral antenna apparatus with selectable antenna elements 240A-240G is that the antenna elements 240A-240G may be configured to reduce interference in the wireless link between the system 100 and a remote receiving node. For example, the system 100 communicating over the wireless link to the remote receiving node may select a particular configuration of selected antenna elements 240A-240G that minimizes interference over the wireless link. For example, if an interfering signal is received strongly via the antenna element 240C, and the remote receiving node is received strongly via the antenna element 240A, selecting only the antenna element 240A may reduce the interfering signal as opposed to selecting the antenna element 240C. The system 100 may select a configuration of selected antenna elements 240A-240G corresponding to a maximum gain between the system and the remote receiving node. Alternatively, the system 100 may select a configuration of selected antenna elements 240A-240G corresponding to less than maximal gain, but corresponding to reduced interference. Alternatively, the antenna elements 240A-240G may be selected to form a combined omnidirectional radiation pattern.
Another advantage of the circuit board 105 is that the directional radiation pattern of the antenna elements 240A-240G is substantially in the plane of the circuit board 105. When the circuit board 105 is mounted horizontally, the corresponding radiation patterns of the antenna elements 240A-240G are horizontally polarized. Horizontally polarized RF energy tends to propagate better indoors than vertically polarized RF energy. Providing horizontally polarized signals improves interference rejection (potentially, up to 20 dB) from RF sources that use commonly-available vertically polarized antennas.
Selectable Phase Shifting
In some embodiments, selectable phase switching can be included on the circuit board 105 to provide a number of advantages. For example, incorporating selectable phase switching into the circuit board 105 may allow a reduction in the number of antenna elements 240A-240G used on the circuit board 105 while still providing highly configurable radiation patterns. By selecting two or more of the antenna elements 240A-240G and by shifting one or more of the antenna elements 240A-240G by 180 degrees, for example, the resulting radiation pattern may overlap a radiation pattern of another of the antenna elements 240A-240G, rendering some of the antenna elements 240A-240G redundant, or rendering unnecessary the addition of some antenna elements at particular orientations. Therefore, incorporating selectable phase shifting into the circuit board 105 may allow a reduction in the number of antenna elements 240A-240G and a reduction in the overall size of the circuit board 105. Because the cost of the circuit board 105 is dependent upon the amount of area of the PCB included in the circuit board 105, selectable phase shifting allows cost reduction in that fewer antenna elements 240A-240G may be used for a given number of radiation patterns.
The remainder of the disclosure concerns selectable phase shifting in the context of configurable antenna elements 240A-240G as described with respect to the circuit board 105. However, it will be readily apparent that selectable phase shifting has broad applicablity in RF coupling networks and is not limited merely to embodiments for antenna coupling. For example, selectable phase shifting as described further herein has applicability to signal cancellation such as is generally used in band-stop or notch filters.
In
Alternatively, with the first PIN diode 710 zero biased or reverse biased (“biased off”) and the second PIN diode 715 biased off, an RF signal at the input port is directed through the two ¼-wavelength trace lines 705 and 706 and is thereby shifted in phase by 180 degrees at the output port.
Therefore, as compared to a prior art phase shifter 600 that requires four PIN diodes, therefore, selecting between a straight-through path or a 180 degree phase shifted path requires only two PIN diodes 710 and 715. In other examples, one or more RF switches may replace the PIN diodes.
Continuing the truth table, with the first PIN diode 710 biased off and the second PIN diode 715 biased on, the input port “sees” high impedance to the output port due to the first PIN diode 710 and also sees high impedance due to the ¼-wavelength trace lines 705 and 706. Therefore, the output port is isolated from the input port. For an antenna element coupled to the output port, for example, the antenna element would be off with the first PIN diode 710 biased off and the second PIN diode 715 biased on.
A special case occurs with the first PIN diode 710 biased on and the second PIN diode 715 biased off. In this case, RF at the input port sees a low impedance coupling to the output port through the first PIN diode 710. However, the RF also transmits through the ¼-wavelength trace lines 705 and 706. The in-phase RF through the straight-through path is coupled to 180 degree phase shifted RF, and essentially the phase shifter 700 performs as a band-stop filter or a notch filter tuned to the wavelength (inverse of frequency) of the ¼-wavelength trace lines 705 and 706.
In other embodiments, the first PCB trace line is a multiple of ¼ wavelength of phase delay and the second PCB trace line is also a multiple of ¼ wavelength of phase delay. In one example, the first PCB trace line is ¾ wavelength of phase delay and the second PCB trace line is also ¾ wavelength of phase delay. In this example, when the first PIN diode 710 is biased off and the second PIN diode 715 biased off, an RF signal at the input port is directed through the ¾-wavelength trace lines 705 and 706 and is thereby shifted in phase by 540 (i.e. 180) degrees at the output port. In yet another example, the first PCB trace line is ½ wavelength of phase delay and the second PCB trace line is also ½ wavelength of phase delay. In this example, when the first PIN diode 710 is biased off and the second PIN diode 715 biased off, an RF signal is shifted in phase by 360 degrees at the output port.
As compared to the embodiment of
A first PCB trace line 805 is of length ¼-wavelength (i.e., λ/4) of phase delay less the amount of delay presented by the delay element 825 (λ/4-delay). Similarly, a second PCB trace line 806 is of length ¼-wavelength (i.e., λ/4) of phase delay less the amount of delay presented by the delay element 826 (λ/4-delay).
As described above with respect to
In similar fashion to the embodiment of
As described above with respect to
At step 1020, the RF signal is phase shifted by enabling a “long path” of a predetermined length (or delay, as length is related to delay for RF) coupled to the input port by opening (applying a zero or reverse bias to) a second PIN diode included in the long path, the second PIN diode coupled to ground. The long path may comprise the PCB trace lines 705 and 706 of ¼-wavelength, and a second PIN diode 715 at the confluence of the first trace line 705 and the second trace line 706 of
Selectable phase switching as described herein provides a number of advantages and is widely applicable to RF networks, just a few of which are described herein. Incorporating selectable phase switching into the circuit board 105 may allow a reduction in the number of antenna elements 240A-240G used on the circuit board 105 while still providing highly configurable radiation patterns. Further, as compared to a prior art phase shifter, selectable phase shifting as described herein reduces the number of PIN diodes used in selecting non-phase shifted or phase shifted RF paths.
The invention has been described herein in terms of several preferred embodiments. Other embodiments of the invention, including alternatives, modifications, permutations and equivalents of the embodiments described herein, will be apparent to those skilled in the art from consideration of the specification, study of the drawings, and practice of the invention. The embodiments and preferred features described above should be considered exemplary, with the invention being defined by the appended claims, which therefore include all such alternatives, modifications, permutations and equivalents as fall within the true spirit and scope of the present invention.
This application is a continuation-in-part and claims the priority benefit of U.S. patent application Ser. No. 11/022,080, filed Dec. 23, 2004, entitled “Circuit Board Having a Peripheral Antenna Apparatus with Selectable Antenna Elements,” now U.S. Pat. No. 7,193,562, which claims the priority benefit of U.S. Provisional Application No. 60/630,499, entitled “Method and Apparatus for Providing 360 Degree Coverage via Multiple Antenna Elements Co-located with Electronic Circuitry on a Printed Circuit Board Assembly,” filed Nov. 22, 2004, the disclosures of which are hereby incorporated by reference. This application is also related to U.S. patent application Ser. No. 11/010,076, entitled “System and Method for an Omnidirectional Planar Antenna Apparatus with Selectable Elements,” filed Dec. 9, 2004, now U.S. Pat. No. 7,292,198, which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
723188 | Tesla | Mar 1903 | A |
725605 | Tesla | Apr 1903 | A |
1869659 | Broertjes | Aug 1932 | A |
2292387 | Markey et al. | Aug 1942 | A |
3488445 | Chang | Jan 1970 | A |
3568105 | Felsenheld | Mar 1971 | A |
3967067 | Potter | Jun 1976 | A |
3982214 | Burns | Sep 1976 | A |
3991273 | Mathes | Nov 1976 | A |
4001734 | Burns | Jan 1977 | A |
4176356 | Foster et al. | Nov 1979 | A |
4193077 | Greenberg et al. | Mar 1980 | A |
4305052 | Baril et al. | Dec 1981 | A |
4554554 | Olesen et al. | Nov 1985 | A |
4733203 | Ayasli | Mar 1988 | A |
4814777 | Monser | Mar 1989 | A |
5063574 | Moose | Nov 1991 | A |
5173711 | Takeuchi et al. | Dec 1992 | A |
5208564 | Burns et al. | May 1993 | A |
5220340 | Shafai | Jun 1993 | A |
5282222 | Fattouche et al. | Jan 1994 | A |
5291289 | Hulyalkar et al. | Mar 1994 | A |
5311550 | Fouche et al. | May 1994 | A |
5559800 | Mousseau et al. | Sep 1996 | A |
5754145 | Evans | May 1998 | A |
5767809 | Chuang et al. | Jun 1998 | A |
5786793 | Maeda et al. | Jul 1998 | A |
5802312 | Lazaridis et al. | Sep 1998 | A |
5964830 | Durrett | Oct 1999 | A |
5990838 | Burns et al. | Nov 1999 | A |
6034638 | Thiel et al. | Mar 2000 | A |
6091364 | Murakami et al. | Jul 2000 | A |
6094177 | Yamamoto | Jul 2000 | A |
6169523 | Ploussios | Jan 2001 | B1 |
6266528 | Farzaneh | Jul 2001 | B1 |
6292153 | Aiello et al. | Sep 2001 | B1 |
6307524 | Britain | Oct 2001 | B1 |
6317599 | Rappaport et al. | Nov 2001 | B1 |
6326922 | Hegendoerfer | Dec 2001 | B1 |
6337628 | Campana, Jr. | Jan 2002 | B2 |
6337668 | Ito et al. | Jan 2002 | B1 |
6339404 | Johnson et al. | Jan 2002 | B1 |
6345043 | Hsu | Feb 2002 | B1 |
6356242 | Ploussios | Mar 2002 | B1 |
6356243 | Schneider et al. | Mar 2002 | B1 |
6356905 | Gershman et al. | Mar 2002 | B1 |
6377227 | Zhu et al. | Apr 2002 | B1 |
6392610 | Braun et al. | May 2002 | B1 |
6404386 | Proctor, Jr. et al. | Jun 2002 | B1 |
6407719 | Ohira et al. | Jun 2002 | B1 |
RE37802 | Fattouche et al. | Jul 2002 | E |
6442507 | Skidmore et al. | Aug 2002 | B1 |
6445688 | Garces et al. | Sep 2002 | B1 |
6493679 | Rappaport et al. | Dec 2002 | B1 |
6496083 | Kushitani et al. | Dec 2002 | B1 |
6498589 | Horii | Dec 2002 | B1 |
6499006 | Rappaport et al. | Dec 2002 | B1 |
6507321 | Oberschmidt et al. | Jan 2003 | B2 |
6586786 | Kitazawa et al. | Jul 2003 | B2 |
6611230 | Phelan | Aug 2003 | B2 |
6625454 | Rappaport et al. | Sep 2003 | B1 |
6633206 | Kato | Oct 2003 | B1 |
6642889 | McGrath | Nov 2003 | B1 |
6674459 | Ben-Shachar et al. | Jan 2004 | B2 |
6701522 | Rubin et al. | Mar 2004 | B1 |
6725281 | Zintel et al. | Apr 2004 | B1 |
6753814 | Killen et al. | Jun 2004 | B2 |
6762723 | Nallo et al. | Jul 2004 | B2 |
6779004 | Zintel | Aug 2004 | B1 |
6819287 | Sullivan et al. | Nov 2004 | B2 |
6839038 | Weinstein | Jan 2005 | B2 |
6859176 | Choi | Feb 2005 | B2 |
6859182 | Horii | Feb 2005 | B2 |
6876280 | Nakano | Apr 2005 | B2 |
6888504 | Chiang et al. | May 2005 | B2 |
6888893 | Li et al. | May 2005 | B2 |
6892230 | Gu et al. | May 2005 | B1 |
6903686 | Vance et al. | Jun 2005 | B2 |
6906678 | Chen | Jun 2005 | B2 |
6910068 | Zintel et al. | Jun 2005 | B2 |
6924768 | Wu et al. | Aug 2005 | B2 |
6931429 | Gouge et al. | Aug 2005 | B2 |
6941143 | Mathur | Sep 2005 | B2 |
6950019 | Bellone et al. | Sep 2005 | B2 |
6961028 | Joy et al. | Nov 2005 | B2 |
6965353 | Shirosaka et al. | Nov 2005 | B2 |
6973622 | Rappaport et al. | Dec 2005 | B1 |
6975834 | Forster | Dec 2005 | B1 |
6980782 | Braun et al. | Dec 2005 | B1 |
7023909 | Adams et al. | Apr 2006 | B1 |
7034770 | Yang et al. | Apr 2006 | B2 |
7043277 | Pfister | May 2006 | B1 |
7050809 | Lim | May 2006 | B2 |
7064717 | Kaluzni et al. | Jun 2006 | B2 |
7085814 | Gandhi et al. | Aug 2006 | B1 |
7088299 | Siegler et al. | Aug 2006 | B2 |
7089307 | Zintel et al. | Aug 2006 | B2 |
7130895 | Zintel et al. | Oct 2006 | B2 |
7171475 | Weisman et al. | Jan 2007 | B2 |
7277063 | Shirosaka et al. | Oct 2007 | B2 |
7312762 | Puente Ballarda et al. | Dec 2007 | B2 |
20010046848 | Kenkel | Nov 2001 | A1 |
20020031130 | Tsuchiya et al. | Mar 2002 | A1 |
20020047800 | Proctor, Jr. et al. | Apr 2002 | A1 |
20020080767 | Lee | Jun 2002 | A1 |
20020084942 | Tsai et al. | Jul 2002 | A1 |
20020105471 | Kojima et al. | Aug 2002 | A1 |
20020112058 | Weisman et al. | Aug 2002 | A1 |
20020158798 | Chiang et al. | Oct 2002 | A1 |
20020170064 | Monroe et al. | Nov 2002 | A1 |
20030026240 | Eyuboglu et al. | Feb 2003 | A1 |
20030030588 | Kalis et al. | Feb 2003 | A1 |
20030063591 | Leung et al. | Apr 2003 | A1 |
20030122714 | Wannagot et al. | Jul 2003 | A1 |
20030169330 | Ben-Schachar et al. | Sep 2003 | A1 |
20030184490 | Raiman et al. | Oct 2003 | A1 |
20030189514 | Miyano et al. | Oct 2003 | A1 |
20030189521 | Yamamoto et al. | Oct 2003 | A1 |
20030189523 | Ojantakanen et al. | Oct 2003 | A1 |
20030210207 | Suh et al. | Nov 2003 | A1 |
20030227414 | Saliga et al. | Dec 2003 | A1 |
20040014432 | Boyle | Jan 2004 | A1 |
20040017310 | Runkle et al. | Jan 2004 | A1 |
20040017860 | Liu | Jan 2004 | A1 |
20040027291 | Zhang et al. | Feb 2004 | A1 |
20040027304 | Chiang et al. | Feb 2004 | A1 |
20040032378 | Volman et al. | Feb 2004 | A1 |
20040036651 | Toda | Feb 2004 | A1 |
20040036654 | Hsieh | Feb 2004 | A1 |
20040041732 | Aikawa et al. | Mar 2004 | A1 |
20040048593 | Sano | Mar 2004 | A1 |
20040058690 | Ratzel et al. | Mar 2004 | A1 |
20040061653 | Webb et al. | Apr 2004 | A1 |
20040070543 | Masaki | Apr 2004 | A1 |
20040080455 | Lee | Apr 2004 | A1 |
20040095278 | Kanemoto et al. | May 2004 | A1 |
20040114535 | Hoffmann et al. | Jun 2004 | A1 |
20040125777 | Doyle et al. | Jul 2004 | A1 |
20040190477 | Olson et al. | Sep 2004 | A1 |
20040203347 | Nguyen | Oct 2004 | A1 |
20040260800 | Gu et al. | Dec 2004 | A1 |
20050022210 | Zintel et al. | Jan 2005 | A1 |
20050041739 | Li et al. | Feb 2005 | A1 |
20050042988 | Hoek et al. | Feb 2005 | A1 |
20050074108 | Zintel et al. | Apr 2005 | A1 |
20050097503 | Zintel et al. | May 2005 | A1 |
20050128983 | Kim et al. | Jun 2005 | A1 |
20050135480 | Li et al. | Jun 2005 | A1 |
20050138137 | Encarnacion et al. | Jun 2005 | A1 |
20050138193 | Encarnacion et al. | Jun 2005 | A1 |
20050180381 | Retzer et al. | Aug 2005 | A1 |
20050188193 | Kuehnel et al. | Aug 2005 | A1 |
20050240665 | Gu et al. | Oct 2005 | A1 |
20050267935 | Ghandi et al. | Dec 2005 | A1 |
20060094371 | Nguyen | May 2006 | A1 |
20060098607 | Zeng et al. | May 2006 | A1 |
20060123124 | Weisman et al. | Jun 2006 | A1 |
20060123125 | Weisman et al. | Jun 2006 | A1 |
20060123455 | Pai et al. | Jun 2006 | A1 |
20060168159 | Weisman et al. | Jul 2006 | A1 |
20060184661 | Weisman et al. | Aug 2006 | A1 |
20060184693 | Rao et al. | Aug 2006 | A1 |
20060187660 | Rao et al. | Aug 2006 | A1 |
20060224690 | Falkenburg et al. | Oct 2006 | A1 |
20060225107 | Seetharaman et al. | Oct 2006 | A1 |
20060227761 | Scott, III et al. | Oct 2006 | A1 |
20060239369 | Lee | Oct 2006 | A1 |
20060291434 | Gu et al. | Dec 2006 | A1 |
20070027622 | Cleron et al. | Feb 2007 | A1 |
20070135167 | Liu | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
0 534 612 | Mar 1993 | EP |
1 376 920 | Jun 2002 | EP |
1 315 311 | May 2003 | EP |
1 450 521 | Aug 2004 | EP |
1 608 108 | Dec 2005 | EP |
2008088633 | Feb 1996 | JP |
2001057560 | Feb 2002 | JP |
2005354249 | Dec 2005 | JP |
2006060408 | Mar 2006 | JP |
WO 9004893 | May 1990 | WO |
WO 0225967 | Mar 2002 | WO |
WO 03079484 | Sep 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20060109067 A1 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
60630499 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11022080 | Dec 2004 | US |
Child | 11265751 | US |