This application is the national phase under 35 U.S.C. ยง371 of PCT International Application No. PCT/EP2012/067125 which has an International filing date of Sep. 3, 2012, which designated the United States of America and which claims priority to European patent application number EP11182094.0 filed Sep. 21, 2011, the entire contents of each of which are hereby incorporated herein by reference.
At least one embodiment of the invention generally relates to a circuit breaker comprising a housing, in which a first switchgear region, in which a quenching chamber apparatus and a contact slide apparatus with moving contact pieces which are positioned opposite fixed contact pieces are arranged, and a second switchgear region, in which a current release group comprising a short-circuit release and an overload release is arranged, are arranged.
Circuit breakers, in particular low-voltage circuit breakers, are electromagnetic automatic switches in the event of a short circuit. Their manner of operation corresponds, in principle, to the manner of operation of miniature circuit breakers. They are usually equipped with a thermal release and a magnetic release and therefore have the same design elements as miniature circuit breakers. However, they are designed for relatively high rated currents, and the releases of circuit breakers, in contrast to miniature circuit breakers, can furthermore be adjusted partially separately. The switches are also used as motor protection switches in the low-voltage range.
The task of the circuit breaker is to protect downstream installations and, in particular, three-phase motors against damage due to overloading or short-circuiting. In this case, the aim is for the circuit breaker to interrupt these currents in conjunction with the devices of the mains contactor. If gas is present between the two poles, it is ionized by the flashover when there is a correspondingly high voltage difference between the poles, and a self-maintained gas discharge, which is also called an arc, is formed. This plasma not only continues to conduct current but also reduces the service life of the component and may even destroy the switch given heavy currents. In contrast to disconnection devices, circuit breakers are designed such that the arc which is produced when the switching contacts are opened is quenched rapidly and without damaging the switch and, as a result, the current flow is interrupted.
Circuit breakers are developed in various installation sizes. In this case, an installation size is made up of device variants with a series of rated currents which expediently build on one another, wherein the power loss is approximately proportional to the square of the rated current. The device variant with the highest rated current at a given installation size is determined by, even for this current, the power loss conversion given a corresponding housing volume being maintained for the requirements of the switching device over its service life without disadvantageous consequences. If even higher rated currents are desired, a larger design is developed. However, from a customer's point of view, it is desirable to drive the maximum rated current within an installation size even higher. In order to achieve this, measures can be taken in order to make the dissipation of heat from the housing volume technically more efficient.
In principle, there are two options for dealing with high temperatures within a protective housing on account of unavoidable electrical power loss. From amongst said options, one option makes provision for all materials to be optimized to such an extent that they meet their functional requirements even at a high temperature level. However, this is a very costly solution.
The other option is to force the generated heat to be dissipated from the housing by technical measures. For electronic products, active cooling measures by way of housing fans, a heat pipe arrangement or even coolant circuits are known from the prior art. In order to be able to also dissipate large quantities of locally generated heat in this way, the quantities of heat are distributed over large areas by use of heat sinks.
Heat sinks of this kind are unsuitable for electromechanical switchgears. In this case, in addition to the connection lines, the heat is mainly dissipated via the freely accessible surfaces of the device, essentially the top side, feed side and device output side. In practice, this often leads to a high device temperature level and to disadvantageous, relatively concentrated heat pockets on account of the long heat path.
At least one embodiment of the present invention is directed to a circuit breaker which allows efficient heat dissipation without additional heat sinks.
Advantageous embodiments and developments which can be used individually or in combination with one another are the subject matter of the dependent claims.
According to at least one embodiment of the invention, a circuit breaker includes a first switchgear region, in which a quenching chamber apparatus and a contact slide apparatus with moving contact pieces which are positioned opposite fixed contact pieces are arranged, and a second switchgear region, in which a current release group comprising a short-circuit release and an overload release is arranged, are arranged. At least one embodiment of the invention is distinguished in that a continuous ventilation channel is formed within opposite housing walls along the fixed contact pieces as a first convective air flow through the circuit breaker for heat dissipation.
According to at least one embodiment of the invention, the heat is additionally dissipated to the surfaces of the device via a continuous ventilation channel which runs from the feed side, through the device, to the output side and has a large cross section. In the preferred installation position, that is to say when mounted on a vertical wall, feeding is performed at the top and output is performed at the bottom, air which flows into provided openings from below can absorb lost heat directly from some of the main power loss generators, that is to say from contact transition points and current paths, and transport it in the direction of the feed side and there emit it out into the air.
According to at least one embodiment of the invention, a first convective air flow is provided along the fixed contact pieces. The convective air flow along the fixed contact pieces is ensured by structural reshaping of the fixed contact pieces, the contact slide apparatus and the covers on the fixed contact pieces. The principle here is to obtain an appreciable continuous flow cross section. All the elements which are sealed off from the outside are removed or reshaped. At the same time, the open cross section between the continuous flow cross section and the switching chamber is kept as small as possible by corresponding structural reshaping.
The fixed contact pieces are structurally of U-shape design and have two limbs and a transition region which connects the two limbs. In this case, the transition region is formed in such a way that two horned contours are situated parallel and opposite to one another and are spaced apart by a recess. In this case, the horned contours of the fixed contact pieces engage in mating contours of the switch inner housing and therefore contribute to stabilizing the entire circuit breaker in the event of a short circuit. A limb extension in the form of a lug is formed in the recess of the transition region of the fixed contact piece, said lug increasing the size of the contact area for the contact which is arranged at the bottom of the limb. In particular, this limb extension of the fixed contact piece leads to the open cross section between the continuous ventilation channel and the switching chamber being kept as low as possible.
In addition, the contact slide also has a recess which is in the form of a through-hole or an aperture or which is simply open at the top in the manner of a U, the recess being arranged level with the recess in the fixed contact pieces and thereby forming a complete continuous ventilation channel across the fixed contact pieces and the contact slide, said continuous ventilation channel being completed across covers on the fixed contact pieces and finally across openings in the housing. Overall, this provides a first convective air flow along the fixed contact pieces through recesses on the contact slide apparatus, on the fixed contact pieces and on the covers which are arranged on the fixed contact pieces, said recesses together forming a continuous ventilation channel which allows heat to be dissipated through openings in the housing.
According to at least one embodiment of the invention, a second convective air flow is preferably formed in the L-side connection region which branches off from the first convective air flow along the fixed contact pieces into the second switchgear region and allows heat to be dissipated via a terminal connection and openings in the housing. In this case, heat is also absorbed by way of the terminal as it flows past.
In addition, a third convective air flow is preferably formed in the T-side connection region which is formed at the terminal connection by means of a channel and allows heat to be dissipated via openings in the housing. This convective air flow in the T-side connection region flows into the switch and through a channel past the hot terminal. The air flow absorbs heat in the process and then leaves the switch through openings in the housing.
In a particularly advantageous embodiment, provision is made for elements which receive dirt to be arranged in the continuous ventilation channel, the elements being formed in such a way that they protect the circuit breaker against soiling, without preventing air from flowing through. This element which receives dirt is preferably in the form of a grating or in the form of areas arranged one behind the other and appear to be closed when viewed in projection, and therefore prevent dirt from falling in but allow air to circulate.
An embodiment of the present invention is distinguished in that a continuous ventilation channel is formed within opposite housing walls along the fixed contact pieces as a first convective air flow through the circuit breaker for heat dissipation. Two further convective air flows are preferably provided in the L-side connection region and also in the T-side connection region. Relatively large heat losses can be dissipated through these convective air flows according to an embodiment of the invention, so that relatively high rated current densities of the circuit breakers are allowed with the same installation volume. By virtue of the design according to an embodiment of the invention, heat-emitting areas or openings are prevented from being covered given a design of circuit breakers which are arranged next to one another. The heat derivation concept presented here leads to a considerable reduction in the temperature level given the same device installation size.
Further advantages and embodiments of the invention will be explained below with reference to example embodiments and with reference to the drawing.
In the drawing:
A short-circuit release 17 is arranged above the contact slide apparatus 7 in the second switchgear region 3. The short-circuit release 17 has a support part 18, preferably composed of plastic, in which an armature 19 with a tappet 20, arranged within a pole 21 and projects into the contact slide apparatus 7, is located. A coil 22 is wound around the support part 18. The coil 22 is surrounded by a yoke 23 and a magnetic plate 24. A latch 25 is arranged above the short-circuit release 17.
An overload release 26, including a bimetallic strip 27 around which a heating conductor 28 is wound, is located next to the short-circuit release 17. Terminal connections 29, 30 are located laterally above each of the quenching plate stacks in the housing upper part 4.
The circuit breaker according to an embodiment of the invention is now distinguished in that the convective air flow through the circuit breaker for heat dissipation is composed of preferably three individual flows. According to an embodiment of the invention, a first convective air flow is provided along the fixed contact pieces 10. The convective air flow along the fixed contact pieces 10 is achieved by structural reshaping of the fixed contact pieces 10, the contact slide apparatus 7 and a cover 31 which is positioned on the fixed contact pieces 10. In this case, the principle is to obtain an appreciable continuous flow cross section. All the elements which are sealed off from the outside are removed or reshaped. At the same time, the open cross section between the continuous flow cross section and the switching chamber is kept as small as possible by corresponding structural reshaping.
The fixed contact pieces 10 are structurally of U-shaped design and have the two limbs 11, 12 and the transition region 13 which connects the two limbs 11, 12. In this case, the transition region 13 has the horned contours 14 which are arranged parallel and opposite the recess 15.
The contact slide apparatus 7 also has a recess 32 which is in the form of a through-hole which is arranged level with the recess 15 in the fixed contact pieces 10, and thereby forms a complete continuous ventilation channel 33 across the fixed contact pieces 10 and the contact slide apparatus 7, the continuous ventilation channel being completed across the covers 31 on the fixed contact pieces 10 and finally across openings 34 in the housing.
Overall, this provides a first convective air flow along the fixed contact pieces 10 through recesses 15, 32 on the contact slide apparatus, on the fixed contact pieces and on the covers 31 which are arranged on the fixed contact pieces, said recesses together forming a continuous ventilation channel 33 which allows heat to be dissipated through the opening 34 in the housing.
According to an embodiment of the invention, a second convective air flow 35 is formed in the L-side connection region which branches off from the first convective air flow along the fixed contact pieces 10 into the second switchgear region 3 and allows heat to be dissipated via a terminal connection 29 and openings 36 in the housing. In this case, heat is also absorbed by means of the terminal as it flows past.
In addition, a third convective air flow 37 is formed in the T-side connection region which is formed at the terminal connection 30 by means of a channel 38 and allows heat to be dissipated via openings 39 in the housing. This convective air flow in the T-side connection region flows into the switch and through a channel past the hot terminal. Said air flow absorbs heat in the process and then leaves the switch through openings 39 in the housing.
The cover 31 on the fixed contact pieces 10 is also provided with recesses 40, so that complete continuous ventilation is possible. In addition, the recess 32 on the contact slide apparatus 7 is level with the recess 15 on the fixed contact pieces 10 in
An embodiment of the present invention is distinguished in that a continuous ventilation channel is formed within opposite housing walls along the fixed contact pieces as a first convective air flow through the circuit breaker for heat dissipation. Two further convective air flows are preferably provided in the L-side connection region and also in the T-side connection region. Relatively large heat losses can be dissipated by these convective air flows according to an embodiment of the invention, so that relatively high rated current densities of the circuit breakers are allowed with the same installation volume. By virtue of the design according to the invention, heat-emitting areas or openings are prevented from being covered given a design of circuit breakers which are arranged next to one another. The heat derivation concept presented here leads to a considerable reduction in the temperature level given the same device installation size.
Number | Date | Country | Kind |
---|---|---|---|
11182094 | Sep 2011 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/067125 | 9/3/2012 | WO | 00 | 11/13/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/041358 | 3/28/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2871322 | Immel | Jan 1959 | A |
3943473 | Khalid | Mar 1976 | A |
3953812 | Heft et al. | Apr 1976 | A |
4417222 | Schmitt et al. | Nov 1983 | A |
4430631 | Forsell et al. | Feb 1984 | A |
4650937 | Belbel et al. | Mar 1987 | A |
5245302 | Brune et al. | Sep 1993 | A |
5483211 | Carrodus et al. | Jan 1996 | A |
5608198 | Clark et al. | Mar 1997 | A |
7009132 | Shea et al. | Mar 2006 | B1 |
20030048586 | Faber | Mar 2003 | A1 |
20150008106 | Spies | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
1494727 | Jul 2003 | CN |
1744252 | Mar 2006 | CN |
19935661 | Feb 2001 | DE |
20030048586 | Apr 2003 | DE |
1073084 | Feb 2001 | EP |
1073084 | Aug 2003 | EP |
1471553 | Oct 2004 | EP |
1632972 | Mar 2006 | EP |
2573784 | Mar 2013 | EP |
100552413 | Feb 2006 | KR |
WO03065396 | Jul 2003 | WO |
Entry |
---|
International Search Report PCT/ISA/210 for PCT/EP2012/067125 dated Dec. 7, 2012. |
Written Opinion PCT/ISA/237 for PCT/EP2012/067125 dated Dec. 7, 2012. |
Korean Office Action dated Jun. 19, 2015. |
Chinese Office Action and English translation thereof dated Jun. 3, 2015. |
Number | Date | Country | |
---|---|---|---|
20140332502 A1 | Nov 2014 | US |