The subject matter disclosed herein relates to circuit breakers and, more particularly, to a support assembly for a crossbar assembly of a circuit breaker.
Circuit breakers are used to protect equipment from overcurrent situations caused, for example, by short circuits or ground faults in or near such equipment. A circuit breaker may be manually switched from an “ON” condition to an “OFF” condition and vice versa. Additionally, the circuit breaker includes a mechanism that is configured to automatically switch the circuit breaker to an “OFF” (e.g., “TRIP”) condition in response to an undesirable operating situation, such as a short circuit, for example. Various components are employed to convert the manual input or the automatic initiation of condition switching to rotation of moveable contact arm assemblies that determine a condition of the circuit breaker. One component that may rotate the moveable contact arm assemblies is a crossbar operatively coupled to the moveable contact arm assemblies.
Some crossbar assemblies are formed of multiple segments that are joined together with the entire assembly simply coupled at ends to brackets or the like, thereby leaving little to no support along intermediate locations of the crossbar assembly. Therefore, the crossbar assembly is prone to bending during rotation, which may lead to wear of the components at a rate that is less than desirable.
According to one aspect of the disclosure, a circuit breaker crossbar assembly includes a crossbar having a first segment and a second segment, the first segment and the second segment each operatively coupled to a respective moveable contact arm assembly. Also included is a coupling segment disposed between the first segment and the second segment, the crossbar and the coupling segment rotatable about an axis. Further included is at least one support assembly operatively coupled to the coupling segment. The support assembly includes a bushing coupled to the coupling segment and rotatable with the crossbar and the coupling segment. The support assembly also includes a support bracket configured for affixation to a stationary structure and disposed adjacent to the bushing, the bushing rotatable relative to the support bracket. The support assembly further includes a fixing bracket engaged with the support bracket and disposed adjacent to the bushing, the bushing rotatable relative to the fixing bracket, the support bracket and the fixing bracket together at least partially surrounding the bushing.
According to another aspect of the disclosure, a circuit breaker crossbar assembly includes a crossbar having a first segment, a second segment and a third segment, each segment operatively coupled to a respective moveable contact arm assembly. Also included is a first coupling segment disposed between the first segment and the second segment. Further included is a second coupling segment disposed between the second segment and the third segment, the crossbar, the first coupling segment and the second coupling segment rotatable about an axis. Yet further included is a first support assembly operatively coupled to the first coupling segment. The first support assembly includes a first bushing coupled to the first coupling segment, the first bushing having a protrusion extending therefrom into a first coupling segment recess, the first bushing including a first circumferentially extending groove. The first support assembly also includes a first support bracket configured for affixation to a stationary structure and disposed in the first circumferentially extending groove of the first bushing to be disposed adjacent to the first bushing, the first bushing rotatable relative to the first support bracket. The first support assembly further includes a first fixing bracket engaged with the first support bracket and disposed in the first circumferentially extending groove to be disposed adjacent to the first bushing, the first bushing rotatable relative to the first fixing bracket, the first support bracket and the first fixing bracket together at least partially surrounding the first bushing. The crossbar assembly also includes a second support assembly operatively coupled to the second coupling segment. The second support assembly includes a second bushing coupled to the second coupling segment, the second bushing having a protrusion extending therefrom into a second coupling segment recess, the second bushing including a second circumferentially extending groove. The second support assembly also includes a second support bracket configured for affixation to the stationary structure and disposed in the second circumferentially extending groove of the second bushing to be disposed adjacent to the second bushing, the second bushing rotatable relative to the second support bracket. The second support assembly further includes a second fixing bracket engaged with the second support bracket and disposed in the second circumferentially extending groove to be disposed adjacent to the second bushing, the second bushing rotatable relative to the second fixing bracket, the second support bracket and the second fixing bracket together at least partially surrounding the second bushing.
According to yet another aspect of the disclosure, a circuit breaker includes at least one moveable contact arm assembly configured to conduct current through the circuit breaker. Also included is a mechanism configured to actuate movement of the at least one moveable contact arm assembly. Further included is a crossbar having at least one segment, the crossbar rotatable between a first rotational position and a second rotational position and operatively coupled to the mechanism and to the at least one moveable contact arm assembly to rotate the at least one moveable contact arm assembly. Yet further included is a coupling segment disposed adjacent to the at least one segment, the crossbar and the coupling segment rotatable about an axis. Also included is at least one support assembly operatively coupled to the coupling segment. The support assembly includes a bushing coupled to the coupling segment and rotatable with the crossbar and the coupling segment. The support assembly also includes a support bracket configured for affixation to a stationary structure and disposed adjacent to the bushing, the bushing rotatable relative to the support bracket. The support assembly further includes a fixing bracket engaged with the support bracket and disposed adjacent to the bushing, the bushing rotatable relative to the fixing bracket, the support bracket and the fixing bracket together at least partially surrounding the bushing.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter, which is regarded as the disclosure, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the disclosure are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the disclosure, together with advantages and features, by way of example with reference to the drawings.
Referring to
The circuit breaker 10 illustrated depicts a three-phase configuration, however, the embodiments disclosed herein are not limited to this configuration, such that alternative phase configurations (e.g., one-phase, two-phase, four-phase, etc.) may be employed. Specifically, three moveable contact arm assemblies 16 are illustrated. The moveable contact arm assemblies 16 are rotating conductors that are disposed, at least partially, within a crossbar assembly 18 that includes a crossbar 19. The crossbar extends from a first end 20 to a second end 22. The first end 20 of the crossbar 19 is operatively coupled to a first bracket 24 located on a first side 26 of the circuit breaker 10. Similarly, the second end 22 of the crossbar 19 is operatively coupled to a second bracket 28 located on a second side 30 of the circuit breaker 10. The first end 20 and the second end 22 are rotatably coupled to the respective brackets 24, 28. The coupling may be made with any suitable coupling that allows rotation of the crossbar 19, such as with pin joint connections.
In operation, the crossbar 19 rotates upon actuation from the mechanism 12 to either drive the moveable contact arm assemblies 16 into a position that either renders the circuit breaker in the “ON” condition, the “OFF” condition, or the “TRIP” condition. Specifically, in the event an operator manually turns the circuit breaker 10 on, the mechanism 12 interacts with the crossbar 19, which drives the moveable contact arm assemblies 16 into a closed position. In the event an operator manually turns the circuit breaker 10 off, or if the mechanism automatically initiates a tripping sequence, the mechanism 12 interacts with the crossbar 19, which pulls the moveable contact arm assemblies into an open position.
The crossbar 19 includes multiple segments that are operatively coupled to the moveable contact arm assemblies 16. In the illustrated embodiment with three moveable contact arm assemblies, a first segment 32, a second segment 34 and a third segment 36 are included to correspond to the number of moveable contact arm assemblies. In such an embodiment, the first segment 32 is associated with a first moveable contact arm assembly 38, a second moveable contact arm assembly 40 and a third moveable contact arm assembly 42. Disposed between each pair of segments is at least one coupling segment of the crossbar 19. In the illustrated embodiment, a first coupling segment 44 is disposed between the first segment 32 and the second segment 34 of the crossbar 19, and therefore between the first moveable contact arm assembly 38 and the second moveable contact arm assembly 40. Similarly, a second coupling segment 46 is disposed between the second segment 34 and the third segment 36 of the crossbar 19, and therefore between the second moveable contact arm assembly 40 and the third moveable contact arm assembly 42. As noted above, the number of segments and moveable contact arm assemblies may vary depending upon the particular circuit breaker and as a result it is to be appreciated that the number of coupling segments may vary as well.
Referring now to
For purposes of discussion a single support assembly associated with the first coupling segment 44 will be described herein; however, as shown and as one can appreciate, more than one support assembly may be operatively coupled to the crossbar 19. By way of example, a first support assembly and a second support assembly are shown in the illustrated embodiment. The first support assembly is operatively coupled to the first coupling segment 44 of the crossbar 19 and the second support assembly is operatively coupled to the second coupling segment 46 of the crossbar 19. As discussed in detail above, the number of segments of the crossbar 19 and therefore the number of coupling segments may vary from that illustrated. There may be as little as one coupling segment or several coupling segments depending upon the particular application. Different embodiments include different numbers of support assemblies as well. For example, all of the coupling segments may include a support assembly operatively coupled thereto. Alternatively, fewer than all of the coupling segments may include a support assembly operatively coupled thereto.
Referring now to
The bushing 52 includes a groove 64 that extends circumferentially around the bushing 52. The groove 64 is sized to receive engagement portions of the support bracket 54 and the fixing bracket 56 therein. The brackets are relatively stationary and the bushing 52 is configured to rotate relative to these components during rotation of the crossbar 19, as the bushing 52 is fixed thereto and rotates with the crossbar 19. In one embodiment, a ball bearing arrangement is disposed between the bushing 52 and one or both of the brackets to reduce friction therebetween during rotation of the bushing 52.
Referring now to
Referring to
Advantageously, the support assembly 50 provides a secure support structure for the crossbar 19 to reduce or eliminate bending of the crossbar 19, thereby reducing wear on the crossbar 19. Additionally, less energy is lost due to friction and bending, which results in more available energy from the mechanism to open and close the circuit breaker.
While the disclosure is provided in detail in connection with only a limited number of embodiments, it should be readily understood that the disclosure is not limited to such disclosed embodiments. Rather, the disclosure can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the disclosure. Additionally, while various embodiments of the disclosure have been described, it is to be understood that the exemplary embodiment(s) may include only some of the described exemplary aspects. Accordingly, the disclosure is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3341791 | Leonard | Sep 1967 | A |
4733211 | Castonguay | Mar 1988 | A |
4736174 | Castonguay | Apr 1988 | A |
4782583 | Castonguay | Nov 1988 | A |
5502428 | McColloch | Mar 1996 | A |
5726614 | Castonguay | Mar 1998 | A |
6791440 | Harmon | Sep 2004 | B2 |
6965292 | Ciarcia | Nov 2005 | B2 |
20090107819 | Samudrikam | Apr 2009 | A1 |
20130075238 | Fischer-Carne | Mar 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20160343528 A1 | Nov 2016 | US |