This invention relates to circuit breakers, and, more particularly to a circuit breaker interface mechanism for an auxiliary switch accessory.
It is generally well known in the art of circuit breakers to provide a reset mechanism to reset a tripping device such as an accessory shunt trip or under voltage device. During quiescent operation, (i.e. when the circuit breaker contacts are closed to allow the flow of electrical current) the operating handle of an operating mechanism is in the “ON” position. To stop the current flow manually, the handle may be shifted to the “OFF” position thereby opening the electrical contacts. Upon attainment of a pre-determined condition (trip event), such as ground fault or overload, the operating mechanism of the circuit breaker will release the forces of the mechanism operating springs and release the operating handle to a tripped position between the “ON” position and the “OFF” position. Before the circuit breaker may be turned “ON”, the operating mechanism must be manually reset. This is accomplished by rotating the operating handle beyond the “OFF” position against the bias of the operating mechanism springs, thereby locking the operating mechanism in position.
The same mechanical forces used to direct the operating mechanism from the tripped position to the reset position are used to reset any attached accessories, such as a shunt trip actuator, auxiliary switch accessory, bell alarm or other type of accessory unit. However, as accessories are generally separate components mounted proximate to the operating mechanism, positional variations at the interface of the accessory and the circuit breaker operating mechanism are possible due to manufacturing tolerances. These positional variations can affect the resetting motion translated to the bell alarm switch or its components by not compensating for any over-travel resulting from the possible tolerance variations. Furthermore, a reliable interface mechanism between the circuit breaker and internal accessories is desired that will provide reliable actuation of the accessory switch to change a state thereof when the breaker changes state in either an “on”, “off”, or “trip” operation without robbing energy from the operating mechanism during the “off” to “on” operation, which is common with conventional accessory interface systems. Conventional accessory interface systems between the operating mechanism and accessories presently rely only on limited “take up” provided by the accessory switch. It is further desired that the switch also be field installable by the customer without violating UL requirements.
The above discussed and other drawbacks and deficiencies of the prior art are overcome or alleviated by an assembly for interacting with a circuit breaker operating mechanism of a circuit breaker including a housing and a pair of contacts within the housing, the operating mechanism arranged to separate the pair of contacts upon the occurrence of a trip event. The assembly includes a plurality of linkages arranged to transmit mechanical energy from the operating mechanism to a plunger of an accessory device for changing a state thereof. The system of linkages is configured to compensate for any over-travel resulting from possible tolerance variations.
In an exemplary embodiment of the invention, an assembly for interacting with a circuit breaker operating mechanism of a circuit breaker, the assembly includes an accessory device disposed in the housing including a plunger configured for movement between a retracted position and a protruded position. A crank link having operable communication with the operating mechanism is in further mechanical cooperation with a first link that in turn is in mechanical cooperation with a second link. The second link is in further mechanical cooperation with the plunger. When the operating mechanism applies a force to the crank link, the force changes a state of the accessory device by being transmitted from the operating mechanism to the crank link, from the crank link to the first link, from the first link to the second link, and from the second link to the plunger for changing a position of the plunger from either the protruded position or the retracted position.
Referring now to the drawings wherein like elements are numbered alike in the several FIGURES:
Referring to
Referring now to
Circuit breaker cassettes 32, 34, 36 are seated approximately upstanding within base 18, and the cassette 34 includes operating mechanism 38 positioned thereon. The individual phases of current are divided into three phases, wherein each phase passes through one of the circuit breaker cassettes 32, 34, 36. Each of cassettes 32, 34, 36 includes one or more contact pairs therein for passage of current when the contacts are closed and for preventing passage of current when the contact pairs are opened. It is contemplated that the number of phases, or specific type of cassette utilized, can vary according to factors including, but not limited to, the type of load circuit being protected and the type of line input being provided to the circuit breaker 10.
Still referring to
Referring to
The cavity 50 is formed integral with the mid cover 20 and comprises a front mounting surface 54, a rear mounting surface 60 and a bottom surface connecting the rear and front mounting surfaces 60 and 54, respectively. The bottom surface of the cavity 50 is perpendicular to the front and rear mounting surfaces 54, 60. Located intermediate the rear mounting surface 60 and the front mounting surface 54 is a shelf 80. The shelf 71 and shelf 80 are integrally molded within the cavity 50.
The accessory 26 (e.g., an auxiliary switch accessory) is mounted within cavity 50 located within the mid cover 20. The switch 26 comprises a front surface 254 and a rear surface 256 and a connecting bottom surface 264. The front surface 254 having a tab 258 disposed thereon. Extending upward from the rear surface 256 is a mounting prong 260. A first end 262 of the mounting prong 260 is attached to the accessory 26 at a point just above the bottom surface 264. The mounting prong 260 is thin and flexible in comparison with the switch 26. The mounting prong 260 extends upward from the first end 262, it angles slightly away from the rear surface 256 of the switch 26. A second end 259 of the mounting prong 260 is separated a distance from the rear surface 256 of the accessory 26.
The accessory 26 also includes a push button plunger (plunger) 266 that is spring mounted from the bottom surface 264 of the accessory 26. The plunger 266 is spring loaded to permit the plunger 266 to be depressed closing contacts within the switch 26 and also to be released back outward opening the contacts within the switch 26. When the switch 26 is installed within the cavity 50 as described herein below, the plunger 266 extends downward and is positioned to align with an arm or compliant member shown generally at 316. The accessory 26 may then be connected with a remote bell alarm, for example, by means of a pair of wires 268 that extend from the accessory 26.
The accessory 26 is installed into the cavity 50 by the end user. When installing the accessory 26 into the cavity 50, the tab 258 of the accessory 26 is arranged so as to be inserted under the shelf 71. Then, the mounting prong 260 is flexed so that a tab 270 on the mounting prong 260 can snap into place under the shelf 80. Thus, the accessory 26 is held in position within the cavity 50 by the interaction of the tab 258 and the mounting prong 260 of the switch 26 with the shelf 71 and shelf 80, respectively. When the accessory 26 is installed in the mid cover 20 of the circuit breaker 10, the plunger 266 aligns with and is located proximate to the arm or compliant member 316.
Referring now to
In the “on” position (
Contact arm 68 is mounted on a rotor structure 76 that houses one or more sets of contact springs (not shown). Contact arm 68 and rotor structure 76 pivot about a common center 78. Cross pin 40 interfaces through an opening 82 within rotor structure 76 generally to cause contact arm 68 to be moved from the “on”, “off” and “tripped” position.
Referring now to
Toggle handle 44 (
Operating mechanism 38 has a pair of cranks 208 each operably connected to a corresponding cradle 210. Examples of rotary contact structures having such cradles that may be operated by operating mechanism 38 are described in more detail in U.S. patent application Ser. No. 09/795,017 Each crank 208 pivots about a center 78. Crank 208 has an opening 212 where cross pin 40 (
Crank 208 includes a crank link 300 extending from crank 208. Crank link 300 is in operable communication with a first link shown generally at 302 that is pivotally mounted to the adjacent cassettes via a first pin 304. In an exemplary embodiment with reference to
Contact member 308 pivots about pin 304 in tandem with first arm 306 at an opposite end thereto. Contact member 308 in turn is in operable communication with a second link shown generally at 312 that is pivotally mounted in a pocket of mid cover 20 via a second pin 314. Second link 312 includes a second arm 316 depending at one end from link 312 and is in operable communication with an end surface of plunger 266 defining plunger 266. Plunger 266 is preferably biased toward first link 302 providing a bias on second arm 316 to bias second link 312 to pivot in a clockwise direction indicated by arrow 320 around pin 314. The bias of second link 312 in the direction indicated by arrow 320 causes first link 302 to be biased in a counter clockwise direction indicated by arrow 321, which causes crank link 300 to rotate clockwise. In this manner, the bias on crank link 300 is in the same clockwise direction that a bias on crank 208 is urging the pair of contacts in the “on” position.
Referring now to
In operation, as the breaker contacts begin to open from the closed position depicted in
Second arm 316 as shown in
Second arm 316 is preferably configured as a compliant member such that it allows flexible motion to “take up” variable gaps to compensate for any over travel resulting from possible tolerance variations of the interface mechanism or variations in actuation stroke of the plunger 266. More specifically, the compliant member is configured to flex providing “take up” for any over-travel as a result of positional variations at an interface of the accessory device and the circuit breaker operating mechanism due to manufacturing tolerances, assembly tolerances, accessory device installation, or extreme variations in actuation stroke of the plunger. The second link 312, and in particular the second arm 316, is employed to provide mechanical cooperation between the interfaced members, (the crank 208 and accessory 26), While adding compliancy to absorb forces in excess of those required to change the state of the accessory 26.
In an exemplary embodiment, second arm 316 is preferably fabricated as a thin strip of stainless steel that is designed to flex when the force to operate the switch or accessory is exceeded, providing the “take-up” for any remaining over-travel as a result of variations due to part and assembly tolerances and accessory installation. However, other suitable materials are contemplated that provide the required “take up” and is not limited to stainless steel.
When the circuit breaker 10 is tripped, for example due to an overcurrent condition or a mechanical trip, toggle handle 44 is between the “ON” position (
In order to reengage the operating mechanism 38 to the “ON” position, so as to return to quiescent condition, both operating mechanism 38 and assembly 274, or more particularly, the switch 26 must be reset.
Before toggle handle 44 may be returned to the quiescent operation position, i.e., “ON”, circuit breaker operating mechanism 38 must be reset. This is accomplished by manually rotating toggle handle 44 in the counter-clockwise direction against the forces of one or more springs (not shown), thereby resetting latch 138 of operating mechanism 38 from the “Tripped” position to the “Latched” position.
A compliant member, and in particular the second arm 316, is employed to provide mechanical cooperation between the interfaced members, (the crank 208 and the accessory 26), while adding compliancy to absorb forces in excess of those required to reset the accessory 26.
It will also be recognized by one skilled in the pertinent art that the first link 302 and the second link 312 are pivotally disposed such that the accessory device 26 uses energy from the operating mechanism in moving the pair of contacts from the “on” to “off” position. In this manner, robbing energy from the operating mechanism during the critical “off” to “on” operation that is typical in conventional systems is avoided.
Thus, interface mechanism 272 disposable between the circuit breaker and internal accessories is provided which easily provides actuation of variably configured auxiliary switches or accessories when the circuit breaker changes state in either an overload “trip” condition or an “on” to “off” manual operation. The interface mechanism stores energy from the operating mechanism when going from the “on” to “off” operation of the circuit breaker, thereby using only the stored energy during the more critical “off” to “on” operation, without robbing the operating mechanism of any energy during this critical “off” to “on” operation. Accessory 26 is easily installed and is contained within the space available within the mid cover 20. The relevant UL requirement allows the customer to remove the top cover 14 (
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4794356 | Yu et al. | Dec 1988 | A |
6114641 | Castonguay et al. | Sep 2000 | A |
6175288 | Castonguay et al. | Jan 2001 | B1 |
6218919 | Ciarcia et al. | Apr 2001 | B1 |
6396369 | Schlitz et al. | May 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20040227601 A1 | Nov 2004 | US |