Circuit breaker mechanism for a rotary contact system

Information

  • Patent Grant
  • 6087913
  • Patent Number
    6,087,913
  • Date Filed
    Friday, November 20, 1998
    25 years ago
  • Date Issued
    Tuesday, July 11, 2000
    24 years ago
Abstract
A rotary contact circuit breaker employs a crank to couple a switching mechanism to the rotary contact pole structure. The use of a crank allows for the mechanism and pole structure the individually optimized without effecting the performance of the other. In particular the crank allows for a mechanism that is able to achieve maximum torque delivery to the pole structure.
Description

FIELD OF INVENTION
The present invention is directed to mechanism for a molded case circuit breaker capable of switching a rotary contact structure between on, off and tripped positions.
BACKGROUND OF THE INVENTION
The present invention is directed to a molded case circuit breaker having a mechanism for switching a rotary contact system between on, off and tripped positions.
U.S. Pat. No. 5,281,776 ('776) describes a molded case circuit breaker having a toggle type mechanism for switching a rotary contact system. This mechanism utilizes a lower linkage that directly attaches to a drive shaft which extends through and rotates the contact system, as is shown in FIG. 1. A crank attached to the same drive pin is used to drive another pin that also extends through the contact system. Since the drive shaft passes through the contact system, optimum positioning of this shaft may not be possible which may cause geometric constraints on how much force can be transferred from the switching mechanism to the rotor. This often limits the performance level that a circuit breaker which uses the '776 switching mechanism is able to achieve.
Therefore, it is desirable to optimize the switching mechanism to transmit an increased amount of force to a rotary contact system.
It is also considered desirable in conjunction with the improved switching mechanism to describe an interface between the mechanism and the contact system that allows for flexibility in the placement and design of the mechanism.
SUMMARY OF INVENTION
In accordance with the present invention a circuit breaker mechanism is provided that comprises a side frame having a cradle attached thereto. A toggle linkage consisting an upper link having a first and second end attaches to the cradle and a lower link attached to the upper link second end by a spring spindle. A crank member attached to the side frame attaches to the lower link. The crank provides the output torque generated by the mechanism.
Also in accordance with the present invention, a circuit breaker is provided which utilizes the switching mechanism if the present invention having a base, cover and handle operatively connected to a crank. This the preferred embodiment, a pair of opposing side frame attaches to the base and each provides for amounting of a cradle which is movable between a latch and tripped position. A toggle linkage consisting of an upper link having a first and second end attaches to said cradle proximate to the upper link first end. The upper link second end attaches to a lower link first end. The lower link has a second end which attaches to the crank. The crank is pivotally attached to the opposing side frames and has a first end attached to the lower link and a second end coupled with the drive pin. The drive pin extends through a rotor assembly. The rotor assembly is movable between a closed and open position.





BRIEF DESCRIPTION OF THE DRAWINGS
Other advantages and features will become more clearly apparent from the following description of an illustrative embodiment of the invention, given as a non-restrictive example only and represented in the accompanying drawings, in which:
FIG. 1 is a cross-sectional view of a prior art mechanism in the closed position.
FIG. 2 is a top perspective view of a circuit breaker in accordance with the present invention.
FIG. 3 is a front plan view of the elements of the present invention as illustrated in FIG. 2 in the CLOSED position.
FIG. 4 is a front plan view of the elements of the present invention as illustrated in FIG. 2 in the OPEN position.
FIG. 5 is a front plan view of the elements of the present invention as illustrated in FIG. 2 in the TRIPPED position.





DESCRIPTION OF PREFERRED EMBODIMENT
Referring now to FIG. 2,the circuit breaker 10 in accordance with the present invention is comprised of a base 22 and a cover 24. Enclosed within the base 22 and cover 24 are three poles 14C, 14L, 14R each corresponding to a respective phase in an electrical circuit. Each pole 14C, 14L, 14R contains a rotary contact assembly 16C, 16L and 16R respectively, capable of carrying and interrupting electrical current. A drive shaft 18 connects the three poles 14C, 14L, 14R.
In addition, the center pole 14C is straddled by a mechanism assembly 12. The mechanism 12 connects to the poles 14C, 14L, 14R by the drive shaft 18. The poles 14C, 14L, 14R are operable to move between three positions open, closed, or tripped in response to operation of the mechanism 12.
As is seen in FIG. 3, each pole 14 is made up of a rotor 60 housing a contact arm 26, and a pair of movable contacts are 28, 28'. The movable contacts 28,28' mate with the pair of stationary contacts 30, 30' when the mechanism is in the CLOSED position shown. The stationary contacts 30, 30' are brazed or welded to a load strap 32 and line strap 34 respectively. The crank 62 connects the mechanism 12 to the rotor assembly 16C. The crank 62 pivots about the pin 61 which is assembled on the side frames 13. It should be appreciated that the rotor assemblies 16R, 16L may be identical to rotor assembly 16C. The operation of the rotor assembly 16C operates substantially the same as that described in co-pending U.S. patent application Ser. No. 09/087,038 filed May 29, 1998 which is incorporated herein by reference.
Mechanism 12 consists of a lower link 38 connected to the crank 62 by connector pin 39. The opposite end of the lower link 38 from the crank is connected to an upper link 40 by a spring spindle 48. The upper link 40 in turn is connected to cradle 42 by pin 56, to which is attached to a latch mechanism (not shown). The mechanism spring 50 is connected between the spring spindle 48 and a pin 52 in handle 46. The mechanism 12 is prevented from further counter-clockwise rotation when the pin 58 attached to the upper link 40 comes into contact with the cradle 42.
The amount of torque that can be generated by the mechanism 12 is determined by the amount force F transferred from mechanism spring 50 through the lower link 38 and the moment arm. The moment arm is shown in FIG. 3 as the perpendicular distance d. The perpendicular distance d is the length of a perpendicular line from the crank pivot 61 to the line of action of the force F. Since torque is the product of the force F times the distance d, it should be apparent that for a given mechanism, the greater the distance d the more torque is generated. This distance d and thus the torque will be maximized when the distance d is coincident with the connecting pin 39. In the present invention, the pin 39 only connects the lower link 38 to the crank 62. It should be noted that in prior art mechanisms, the pin 39 was also the drive pin that extended through and connected all the rotors.
The components of the rotor assembly 16C often do not allow the drive pin to be placed in this optimal position. For example, as seen in FIG. 3, if the pin 39 is used as the drive shaft to connect all the rotor assemblies, then it would need to pass directly through the contact arm 26. Thus, if an optimized mechanism arrangement is desired, the lower link 38 needs to be decoupled from the drive shaft and the rotor assembly 16C. The present invention accomplishes this by attaching the lower link 38 to a crank 62 which in turn transmits the force to the drive shaft 18. The drive shaft 18 can then be positioned anywhere on the rotor without effecting the amount of torque the mechanism can create. By using the crank 62, either the rotor assembly 16C, or the mechanism assembly 12 may be optimized without compromising the performance of the other, thus allowing for the maximum amount of flexibility in the design of the circuit breaker while still maintaining optimized subassemblies.
Referring to FIG. 4, under normal switching operation, the handle 46, is rotated counter-clockwise to switch the circuit breaker 10 from ON to OFF. As the handle 46 is rotated, the line-of-action of the spring 50 will move from the right side to the left side of the pivot 56. This movement "over-centers" the mechanism 12 and the force stored in the spring causes the mechanism 12 to open the rotor assemblies 16C, 16R, 16L. This opening movement separates the movable contacts 28, 28' from the stationary contacts 30, 30' thereby preventing any flow of current through the circuit breaker 10.
When an abnormal condition is detected by a circuit breaker trip unit (not shown), the latching mechanism (not shown) is released allowing the cradle 42 to rotate in a clockwise direction. The latch and trip unit are similar to U.S. Pat. No. 4,789,8;48 which is incorporated herein by reference. The resulting movement of the cradle 42 causes the rotor assembly 16C via the upper link 40 and the lower link 38 to rotate separating the movable contacts 28,28' from the stationary contacts 30,30'. The separation of the contacts stops the flow of current through the circuit breaker 10.
Although a preferred embodiment of this invention has been described, many variations and modifications will now be apparent to those skilled in the art, and it is therefore preferred that the instant invention be limited not by the specific disclosure herein but only by the following claims.
Claims
  • 1. A mechanism for a multipole circuit breaker comprising:
  • at least one side frame; cradle attached to said side frame, said cradle movable between a latched and tripped position;
  • a toggle linkage formed by an upper link member having a first and second ends and rotatably attached at said first end to said cradle and a lower linkage having a first and second ends, said lower linkage first end being secured to said upper linkage second end by a spring spindle;
  • a crank member being attached for rotation to said side frame and having a first and second ends, said crank first end being pivotally attached to said lower linkage second end by a pin and is attached to said side frame by a pivot;
  • at least one rotary contact assembly mounted for rotation proximate to said crank, said contact assembly including a rotor movable between closed and open position and having an opposing first and second side faces, a contact arm having a first and second ends, said contact arm mounted for rotation to said rotor and at least one contact mounted to said contact arm on one of said ends;
  • a handle lever attached for rotation to said side frame;
  • a spring attached between said toggle linkage spring spindle and said handle lever;
  • said crank first end is arranged such that a line between the center of said crank pivot and the center of said pin is perpendicular to a line of force created by said spring and transmitted through said lower link when said rotor is in the closed position.
  • 2. The mechanism of claim 1 wherein:
  • said sector assembly has a first orifice extending through said rotor first and second side faces.
  • 3. The mechanism of claim 2 further comprising:
  • a drive shaft extending th rough said rotary contact assembly orifice and coupled to said crank second end.
  • 4. The mechanism of claim 3 wherein:
  • said at least one side frame consists of a first and second parallel side frames, said side frames being positioned on either side of said rotor assembly;
  • said crank is attached to said first side frame.
  • 5. The mechanism of claim 4 further comprising:
  • a second crank connected to said second side frame;
  • a second upper link attached to said cradle;
  • a second lower link having a first and second end with said first end attached to said second upper link, said lower link second end attached to said second crank.
  • 6. The mechanism of claim 5 wherein:
  • said second crank consisting of a first and second end where said first end is attached to said second lower link and said crank second end is coupled with said drive shaft.
  • 7. A multipole circuit breaker comprising:
  • a base;
  • a side frame mounted to said base;
  • a cradle attached for rotation to said side frame, said cradle movable between a latched and tripped positions;
  • a toggle linkage formed by an upper linkage member having a first and second ends and rotatably attached at said first end to said cradle and a lower linkage member having a first and second ends, said first end being secured to said upper linkage second end by a spring spindle;
  • a crank member being attached for rotation to said side frame and having a first and second ends, said crank first end being pivotally attached to said side frame by a pivot, said crank is attached to said lower link second end by a pin;
  • a first rotary contact assembly mounted for rotation within said base proximate to said crank, said contact assembly including a rotor movable between closed and open position and having an opposing first and second side faces, a contact arm having a first and second ends, said contact arm mounted for rotation to said rotor and, at least one contact mounted to said contact arm on one of said ends;
  • a handle lever attached for rotation to said side frame;
  • a spring attached between said toggle linkage spring spindle and said handle lever;
  • said crank first end is arranged such that a line between the center of said crank pivot and the center of said pin is perpendicular to a line of force created by said spring and transmitted through said lower link when said rotor is in the closed position.
  • 8. The circuit breaker of claim 7 wherein:
  • said rotor assembly has a first orifice extending through said rotor first and second side faces.
  • 9. The circuit breaker of claim 8 further comprising:
  • a drive shaft extending through said rotary contact assembly orifice and coupled to said crank second end.
  • 10. The circuit breaker of claim 9 further comprising:
  • a second rotary contact assembly adjacent to and spaced apart from said first contact assembly within said base, said second rotary contact assembly having a first orifice extending therethrough;
  • said secondary contact assembly arranged such that said drive shaft extends through said second contact assembly first orifice.
  • 11. The circuit breaker of claim 10 further comprising:
  • a third rotary contact assembly adjacent to and spaced apart from said first contact assembly opposite said second contact assembly within said base, said third contact assembly having a first orifice extending therethrough,
  • said third contact assembly arranged such that said drive shaft extends through said third contact assembly first orifice.
  • 12. The circuit breaker of claim 11 wherein:
  • said first contact assembly further comprises a rotor having a first and second opposite side faces, said first contact assembly first orifice extending through said first contact assembly first and second side faces.
  • 13. The circuit breaker of claim 10 wherein:
  • said second contact assembly further comprises a rotor having an opposing first and second side faces, said second contact assembly first orifice extending through said second contact assembly first and second side faces.
  • 14. The circuit breaker of claim 12 wherein:
  • said third contact assembly further comprises a rotor having an opposing first and second side faces, said third contact assembly first orifice extending through said third contact assembly first and second side faces.
US Referenced Citations (170)
Number Name Date Kind
D367265 Yamagata et al. Feb 1996
2340682 Powell Feb 1944
2719203 Gelzheiser et al. Sep 1955
2937254 Ericson May 1960
3158717 Jencks et al. Nov 1964
3162739 Klein et al. Dec 1964
3197582 Norden Jul 1965
3307002 Cooper Feb 1967
3517356 Hanafusa Jun 1970
3631369 Menocal Dec 1971
3803455 Willard Apr 1974
3883781 Cotton May 1975
4129762 Bruchet Dec 1978
4144513 Shafer et al. Mar 1979
4158119 Krakik Jun 1979
4165453 Hennemann Aug 1979
4166988 Ciarcia et al. Sep 1979
4220934 Wafer et al. Sep 1980
4255732 Wafer et al. Mar 1981
4259651 Yamat Mar 1981
4263492 Maier et al. Apr 1981
4276527 Gerbert-Gaillard et al. Jun 1981
4297663 Seymour et al. Oct 1981
4301342 Castonguay et al. Nov 1981
4360852 Gilmore Nov 1982
4368444 Preuss et al. Jan 1983
4375021 Pardini et al. Feb 1983
4375022 Daussin et al. Feb 1983
4376270 Staffen Mar 1983
4383146 Bur May 1983
4392036 Troebel et al. Jul 1983
4393283 Masuda Jul 1983
4401872 Boichot-Castagne et al. Aug 1983
4409573 DiMarco et al. Oct 1983
4435690 Link et al. Mar 1984
4467297 Boichot-Castagne et al. Aug 1984
4468645 Gerbert-Gaillard et al. Aug 1984
4470027 Link et al. Sep 1984
4479143 Watanabe et al. Oct 1984
4488133 McClellan et al. Dec 1984
4492941 Nagel Jan 1985
4541032 Schwab Sep 1985
4546224 Mostosi Oct 1985
4550360 Dougherty Oct 1985
4562419 Preuss et al. Dec 1985
4589052 Dougherty May 1986
4595812 Tamaru et al. Jun 1986
4611187 Banfi Sep 1986
4612430 Sloan et al. Sep 1986
4616198 Pardini Oct 1986
4622444 Kandatsu et al. Nov 1986
4631625 Alexander et al. Dec 1986
4642431 Tedesco et al. Feb 1987
4644438 Puccinelli et al. Feb 1987
4649247 Preuss et al. Mar 1987
4658322 Rivera Apr 1987
4672501 Bilac et al. Jun 1987
4675481 Markowski et al. Jun 1987
4682264 Demeyer Jul 1987
4689712 Demeyer Aug 1987
4694373 Demeyer Sep 1987
4710845 Demeyer Dec 1987
4717985 Demeyer Jan 1988
4733211 Castonguay et al. Mar 1988
4733321 Lindeperg Mar 1988
4764650 Bur et al. Aug 1988
4768007 Mertz et al. Aug 1988
4780786 Weynachter et al. Oct 1988
4831221 Yu et al. May 1989
4870531 Danek Sep 1989
4883931 Batteux et al. Nov 1989
4884047 Baginski et al. Nov 1989
4884164 Dziura et al. Nov 1989
4900882 Bernard et al. Feb 1990
4910485 Bolongeat-Mobleu et al. Mar 1990
4914541 Tripodi et al. Apr 1990
4916420 Bartolo et al. Apr 1990
4916421 Pardini et al. Apr 1990
4926282 McGhie May 1990
4935590 Malkin et al. Jun 1990
4937706 Schueller et al. Jun 1990
4939492 Raso et al. Jul 1990
4943691 Mertz et al. Jul 1990
4943888 Jacob et al. Jul 1990
4950855 Bolonegeat-Mobleu et al. Aug 1990
4951019 Gula Aug 1990
4952897 Barnel et al. Aug 1990
4958135 Baginski et al. Sep 1990
4965543 Batteux Oct 1990
4983788 Pardini Jan 1991
5001313 Leclerq et al. Mar 1991
5004878 Seymour et al. Apr 1991
5029301 Nebon et al. Jul 1991
5030804 Abri Jul 1991
5057655 Kersusan et al. Oct 1991
5077627 Fraisse Dec 1991
5083081 Barrault et al. Jan 1992
5095183 Raphard et al. Mar 1992
5103198 Morel et al. Apr 1992
5115371 Tripodi May 1992
5120921 DiMarco et al. Jun 1992
5132865 Mertz et al. Jul 1992
5138121 Streich et al. Aug 1992
5140115 Morris Aug 1992
5153802 Mertz et al. Oct 1992
5155315 Malkin et al. Oct 1992
5166483 Kersusan et al. Nov 1992
5172087 Castonguay et al. Dec 1992
5178504 Falchi Jan 1993
5184717 Chou et al. Feb 1993
5187339 Lissandrin Feb 1993
5198956 Dvorak Mar 1993
5200724 Gula et al. Apr 1993
5210385 Morel et al. May 1993
5239150 Bolongeat-Mobleu et al. Aug 1993
5260533 Livesey et al. Nov 1993
5262744 Arnold et al. Nov 1993
5280144 Bolongeat-Mobleu et al. Jan 1994
5281776 Morel et al. Jan 1994
5296660 Morel et al. Mar 1994
5296664 Crookston et al. Mar 1994
5298874 Morel et al. Mar 1994
5300907 Nereau et al. Apr 1994
5310971 Vial et al. May 1994
5313180 Vial et al. May 1994
5317471 Izoard et al. May 1994
5331500 Corcoles et al. Jul 1994
5334808 Bur et al. Aug 1994
5341191 Crookston et al. Aug 1994
5347096 Bolongeat-Mobleu et al. Sep 1994
5347097 Bolongeat-Mobleu et al. Sep 1994
5350892 Rozier Sep 1994
5357066 Morel et al. Oct 1994
5357068 Rozier Oct 1994
5357394 Piney Oct 1994
5361052 Ferullo et al. Nov 1994
5373130 Barrault et al. Dec 1994
5379013 Coudert Jan 1995
5424701 Castonguary et al. Jun 1995
5438176 Bonnardel et al. Aug 1995
5440088 Coudert et al. Aug 1995
5449871 Batteux et al. Sep 1995
5450048 Leger et al. Sep 1995
5451729 Onderka et al. Sep 1995
5457295 Tanibe et al. Oct 1995
5467069 Payet-Burin et al. Nov 1995
5469121 Payet-Burin Nov 1995
5475558 Barjonnet et al. Dec 1995
5477016 Baginski et al. Dec 1995
5479143 Payet-Burin Dec 1995
5483212 Lankuttis et al. Jan 1996
5485343 Santos et al. Jan 1996
5493083 Olivier Feb 1996
5504284 Lazareth et al. Apr 1996
5504290 Baginski et al. Apr 1996
5510761 Boder et al. Apr 1996
5512720 Coudert et al. Apr 1996
5515018 DiMarco et al. May 1996
5519561 Mrenna et al. May 1996
5534674 Steffens Jul 1996
5534832 Duchemin et al. Jul 1996
5534835 McColloch et al. Jul 1996
5534840 Cuingnet Jul 1996
5539168 Linzenich Jul 1996
5543595 Mader et al. Aug 1996
5552755 Fello et al. Sep 1996
5581219 Nozawa et al. Dec 1996
5604656 Derrick et al. Feb 1997
5608367 Zoller et al. Mar 1997
5784233 Bastard et al. Jul 1998
Foreign Referenced Citations (61)
Number Date Country
819 008 Dec 1974 BEX
897 691 Jan 1984 BEX
0 061 092 Sep 1982 EPX
0 064 906 Nov 1982 EPX
0 066 486 Dec 1982 EPX
0 076 719 Apr 1983 EPX
0 117 094 Aug 1984 EPX
0 140 761 May 1985 EPX
0 174 904 Mar 1986 EPX
0 196 241 Oct 1986 EPX
0 224 396 Jun 1987 EPX
0 239 460 Sep 1987 EPX
0 235 479 Sep 1987 EPX
0 258 090 Mar 1988 EPX
0 264 313 Apr 1988 EPX
0 264 314 Apr 1988 EPX
0 283 358 Sep 1988 EPX
0 283 189 Sep 1988 EPX
0 291 374 Nov 1988 EPX
0 295 158 Dec 1988 EPX
0 295 155 Dec 1988 EPX
0 313 422 Apr 1989 EPX
0 313 106 Apr 1989 EPX
0 309 923 Apr 1989 EPX
0 314 540 May 1989 EPX
0 331 586 Sep 1989 EPX
0 337 900 Oct 1989 EPX
0 342 133 Nov 1989 EPX
0 367 690 May 1990 EPX
0 371 887 Jun 1990 EPX
0 375 568 Jun 1990 EPX
0 394 922 Oct 1990 EPX
0 394 144 Oct 1990 EPX
0 399 282 Nov 1990 EPX
0 407 310 Jan 1991 EPX
0 452 230 Oct 1991 EPX
0 555 158 Aug 1993 EPX
0 567 416 Oct 1993 EPX
0 595 730 May 1994 EPX
0 619 591 Oct 1994 EPX
0 665 569 Aug 1995 EPX
0 700 140 Mar 1996 EPX
2 410 353 Jun 1979 FRX
2 512 582 Mar 1983 FRX
2 553 943 Apr 1985 FRX
2 592 998 Jul 1987 FRX
2 682 531 Apr 1993 FRX
2 697 670 May 1994 FRX
2 699 324 Jun 1994 FRX
2 714 771 Jul 1995 FRX
30 47 360 Jun 1882 DEX
708972 Aug 1941 DEX
12 27 978 Nov 1966 DEX
38 02 184 Aug 1989 DEX
38 43 277 Jun 1990 DEX
44 19 240 Jan 1995 DEX
1 227 978 Apr 1994 RUX
2 233 155 Jan 1991 GBX
9200598 Jan 1992 WOX
9205649 Apr 1992 WOX
9400901 Jan 1994 WOX