Circuit breaker rotary contact arrangement

Information

  • Patent Grant
  • 6184761
  • Patent Number
    6,184,761
  • Date Filed
    Monday, December 20, 1999
    25 years ago
  • Date Issued
    Tuesday, February 6, 2001
    23 years ago
Abstract
A circuit breaker rotary contact arrangement is disclosed in which the ends of the line and load straps supporting the fixed contacts are hook-shaped to control the angle of the repulsive force exhibited between the fixed contacts and the movable contacts arranged at the opposing ends of the rotary contact arm. The fixed contacts face outwardly away from the central pivot of the contact arm such that a horizontal component of the popping force acts away from the center of rotation keeping the contact arm in tension for avoiding a buckling effect allowing contact arms with smaller cross sectional area to be used to increase contact arm mobility and reduce the cost.
Description




BACKGROUND OF THE INVENTION




This invention relates to circuit breakers, and, more particularly, to circuit breakers having a rotary contact arm arrangement.




U.S. Pat. No. 4,616,198 entitled “Contact Arrangement for a Current Limiting Circuit Breaker” describes the early use of a first and second pair of circuit breaker contacts arranged in series to substantially reduce the amount of current let-through upon the occurrence of an overcurrent condition.




When the contact pairs are arranged upon one movable contact arm such as described within U.S. Pat. No. 4,910,485 entitled “Multiple Circuit Breaker with Double Break Rotary Contact”, some means must be provided to insure that the opposing contact pairs exhibit the same contact pressure to reduce contact wear and erosion.




One arrangement for providing uniform contact wear is described within U.S. Pat. 4,649,247 entitled “Contact Assembly for Low-voltage Circuit Breakers with a Two-Arm Contact Lever”. This arrangement includes an elongate slot formed perpendicular to the contact travel to provide uniform contact closure force on both pairs of contacts.




State of the art circuit breakers employing a rotary contact arrangement employ a rotor assembly and pair of powerful expansion springs to maintain contact between the rotor assembly and the rotary contact arm as well as to maintain good electrical connection between the contacts. The added compression forces provided by the powerful expansion springs must be overcome when the contacts become separated by the so-called “popping force” of magnetic repulsion that occurs upon over-current conditions to momentarily separate the circuit breaker contacts within the protected circuit before the circuit breaker operating mechanism has time to respond. The thickness of the moveable contact arm as well as the size of the contact springs has heretofore been increased to proportionately increase the overcurrent level at which the popping force causes the contacts to become separated. However, increased thickness and size decreases contact arm mobility and increases the cost.




SUMMARY OF THE INVENTION




In an exemplary embodiment of the invention, a movable contact arm arrangement for rotary contact circuit breakers comprises a movable contact arm having a central pivot point adapted to be pivotally connected within a circuit breaker interior. A first movable contact is arranged at first end of the contact arm and a second movable contact is arranged at a second end of the contact arm. A line strap arranged at the first end of the contact arm has first end portion with a first fixed contact connected thereto and arranged opposite the first movable contact. A second end portion of the line strap is adapted for connection within an electric circuit. The line strap has a hook-shaped configuration so that an outer face of the first fixed contact faces away from the central pivot point of the contact arm and is further arranged at a non-zero degree angle relative to the second end portion of the line strap.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a front perspective view of a circuit breaker interior depicting a rotary contact arrangement;





FIG. 2

is an enlarged front plan view of the prior art rotary contact arrangement within the rotary contact arrangement of

FIG. 1

;





FIG. 3

is an enlarged front plan view of another prior art rotary contact arrangement;





FIG. 4

is an enlarged front plan view of a rotary contact arrangement of the present invention; and,





FIGS. 5A and 5B

compare the contact gaps created in the arrangements for FIG.


3


and

FIG. 4

, respectively, upon rotation of the contact arm.











DESCRIPTION OF THE PREFERRED EMBODIMENT




The rotor assembly


10


in the circuit breaker interior assembly is depicted in

FIG. 1

intermediate the line strap


12


and load strap


16


and the associated arc chutes


26


A,


26


B. Although a single rotor assembly is shown, it is understood that a separate rotor assembly is employed within each pole of a multi-pole circuit breaker and operates in a similar manner. Electrical transport through the circuit breaker interior proceeds from the line strap


12


to the associated fixed contact


20


B to the movable contact


22


B connected to one end of the movable contact arm


24


. The current transfers then to the opposite movable and fixed contacts


22


A,


20


A to the associated load strap


16


. The movable contact arm


24


moves a central pivot


30


in unison with the rotor


28


which connects with the circuit breaker operating mechanism (not shown) by means of the levers


32


A,


32


B to move the movable contacts


22


A,


22


B between OPEN, CLOSED and TRIPPED positions. The central pivot


30


responds to the rotational movement of the rotor


28


to effect the contact closing and opening function. The extended pin


34


provides attachment of the rotor


28


with the circuit breaker operating handle (not shown) to allow manual intervention for opening and closing the circuit breaker contacts.




The contact arm


24


is shown in

FIG. 2

intermediate the line and load straps


12


,


16


to depict the positional relationship between the fixed and movable contacts


20


A,


20


B,


22


A,


22


B. The popping force, which is proportional to the square of the current, is normal to the surface of the contacts


20


A,


20


B. The contacts can pop (separate) when the moment due to popping force can overcome the contact pressure induced by the rotor spring force. The line of force B acting through the contacts


20


A,


22


A is shown in phantom. Plane A, also shown in phantom, passes through the pivot


30


and is parallel to end portions


14


and


18


of line and load straps


12


and


16


, respectively. It is further noted that the contacts are positioned parallel to the plane A and that the line and load straps each define a pair of adjacent 90 degree angles


38


and


40


.




The popping force, defined earlier, is a factor of the moment defined by the length of the movable contact arm


24


from the axis of rotation, defined by pivot


30


, multiplied by the sine of the angle


36


defined between the reference lines A and B. With the angle


36


equal to 90 degrees, as is shown in

FIG. 2

, the sine of the angle is equal to one resulting in a maximum popping force that must be overcome to prevent contact popping at correspondingly low over-current values.




Turning now to

FIG. 3

, an alternate contact arm arrangement of the prior art is shown. The movable contact arm


52


intermediate the line and load straps


42


,


48


depict the positional relationship between the fixed and movable contacts


20


A,


20


B,


22


A,


22


B. The line of force C acting through the contacts


20


A,


22


A is shown in phantom. The plane A, also shown in phantom, passes through the pivot


30


and is parallel to end portions


44


and


50


of the line and load straps


42


and


48


. The line and load straps


42


and


48


each define a single acute angle


46


to angle the fixed contacts


20


B and


20


A towards the contact arm


52


. Thus, an angle


56


is defined between the line of force C and the plane A. With the angle


56


equal to 45 degrees, for example, the sine of the angle is less than one (approximately 0.707), resulting in almost a third less the value of the popping force associated with the Prior Art arrangement shown earlier in FIG.


1


. However, as further shown in

FIG. 3

, the popping force F, when broken down into horizontal and vertical components Fsin φ and Fcos φ, respectively, demonstrates a horizontal component Fsin φ which acts towards the center of rotation


30


of the arm


52


(where the angle φ is defined as the angle between the popping force F, along the line of force C, and the vertical component of the popping force F, i.e. Fcos φ, along a line perpendicular to plane A). A buckling effect is thus created, due to the Fsin φ component of repulsion forces acting towards the center of rotation


30


. Therefore, contact arm


52


must be designed with increased cross-sectional area to withstand this buckling effect which in turn results in decreased contact arm mobility and increased cost.




According to an embodiment of the present invention,

FIG. 4

shows a contact arm


60


having a first end


62


and a second end


64


. The contact arm


60


further includes a central section


59


, a first connecting arm


61


extending angularly from one comer of the central section


59


, and a second connecting arm


63


extending angularly from a diagonally opposite corner fo the central section


59


. Again, the positional relationship between the fixed and movable contacts


20


A,


20


B,


22


A,


22


B is shown. The present invention reduces the moment created by the popping force by inclining the contacts at an angle. The line of force D acting through the contacts


20


A,


22


A is shown in phantom. The plane A, also shown in phantom, passes through the pivot


30


and is parallel to second end portions


76


and


88


of the line and load straps


66


and


82


.




As shown, the line and load straps


66


and


82


each define a pair of adjacent acute angles


78


and


80


to angle an outer face of the fixed contacts


20


B and


20


A away from the center of the contact arm


60


. That is, an acute angle


78


is formed between first end portion


68


and portion


70


, and another acute angle


80


is formed between portion


70


and portion


84


of line strap


66


. Likewise, an acute angle


78


is formed between first end portion


84


and portion


86


, and another acute angle


80


is formed between portion


86


and second end portion


88


of load strap


82


. Thus, an angle


90


is defined between the line of force D and the plane A. With the angle


90


equal to 135 degrees, for example, the sine of the angle is less than one (approximately 0.707), resulting in almost a third less the value of the popping force associated with the Prior Art arrangement shown earlier in FIG.


1


. Reduction of the moment due to popping force indicates increased popping level at which the contacts pop. The present invention increases the amount of overcurrent that can pass through the contact arm before contact popping occurs, which causes contact erosion. If the moment of the force required to pop the contact is less, then popping of the contacts can be minimized thus reducing the erosion of the contact. The angle


90


can be altered for optimal results in each application. Although the line and load straps


66


and


82


are shown with acute angles


78


and


80


, it should be noted that the line and load straps could be formed in a continuous curve such that the fixed contacts


20


B and


20


A still face in the same direction as shown.




Advantageously, the popping force F of this embodiment, when broken down into horizontal and vertical components Fsin φ and Fcos φ, respectively, demonstrates a horizontal component Fsin φ which acts away from the center of rotation


30


of the arm


60


, keeping the contact arm


60


in tension. By using this design, the buckling effect created in the embodiment shown in

FIG. 3

can be avoided. Therefore, contact arms with smaller cross sectional area can be used to increase contact arm mobility, and also reduce the cost. Lighter contact springs (not shown) can also be employed.




A further advantage to the embodiment of

FIG. 4

is demonstrated by a comparison of

FIGS. 5A and 5B

.

FIGS. 5A and 5B

show contact arms


52


and


60


, respectively, each rotated counterclockwise an equal number of degrees. As can be seen, however, the distance d


1


between movable contact


22


A and fixed contact


20


A of

FIG. 5A

is less than the distance d


2


between movable contact


22


A and fixed contact


20


A of FIG.


5


B. Thus, the contact gap d


2


of

FIG. 5B

is greater than the contact gap d


1


of

FIG. 5A

per degree rotation, thereby enabling interruption at higher voltage stresses in the embodiment of FIG.


4


.




A simple and effective arrangement has herein been described for controlling the popping force within rotary contact circuit breakers for improved overall circuit breaker performance and lower costs.




While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.



Claims
  • 1. A movable contact arm arrangement for rotary contact circuit breakers comprising:a movable contact arm having a central section with a longitudinal axis, a first connecting arm extending from one comer of the central section, a second connecting arm extending from a diagonally opposite comer of the central section, a first end connected to the first connecting arm, a second end connected to the second connecting arm, the movable contact arm pivotable about a central pivot point within the central section; a first movable contact arranged at the first end of said contact arm and a second movable contact arranged at the second end of said contact arm; and a line strap adjacent the first end of said contact arm, said line strap having a first end portion having a first fixed contact; wherein the movable contact arm is pivotable about the central pivot point between a closed position where the first movable contact abuts an outer face of the first fixed contact and an open position where the first movable contact becomes separated from the first fixed contact, the outer face of the first fixed contact facing away from the longitudinal axis of the central section of the movable contact arm when the movable contact arm is in the closed position.
  • 2. The arrangement of claim 1 including a load strap adjacent the second end of said contact arm, said load strap having a first end portion having a second fixed contact, wherein the second movable contact abuts the outer face of the second fixed contact in the closed position and the second movable contact becomes separated from the second fixed contact in the open position, the outer face of the second fixed contact facing away from the longitudinal axis of the central section of the movable contact arm when the movable contact arm is in the closed position.
  • 3. The arrangement of claim 2 wherein a first vector having a starting point on the outer face of the first fixed contact and protruding perpendicularly from the first fixed contact away from the first end portion of the line strap includes a first horizontal vector component, pointing away from the central pivot point, and a first vertical vector component.
  • 4. The arrangement of claim 3 wherein a second vector having a starting point on the outer face of the second fixed contact and protruding perpendicularly from the second fixed contact away from the first end portion of the load strap includes a second horizontal vector component, pointing away from the central pivot point, and a second vertical vector component, wherein the first and second horizontal vector components are parallel to each other and point in opposite directions.
  • 5. The arrangement of claim 1 wherein the line strap further includes a second end portion, a third portion adjacent the first end portion and a fourth portion adjacent the third portion, a first acute angle being formed between the first end portion and the third portion, and a second acute angle being formed between the third portion and the fourth portion.
  • 6. The arrangement of claim 2 wherein the load strap further includes a second end portion, a third portion, intermediate the first end portion and the second end portion of the load strap, a first acute angle formed between the first end portion and the third portion of the load strap, and a second acute angle formed between the third portion and the second end portion of the load strap.
  • 7. The arrangement of claim 1 wherein, when the movable contact arm is in the closed position, a line passing perpendicularly through both the first fixed contact and the first movable contact is generally parallel to the longitudinal axis of the central section.
  • 8. A rotary contact circuit breaker interior comprising:a movable contact arm having a central section having a longitudinal axis and a central pivot point, the movable contact arm further having a first connecting arm projecting angularly from the central section and a second connecting arm projecting from the central section in a direction diagonally opposite the first connecting arm, a first end extending from the first connecting arm and a second end extending from the second connecting arm, the movable contact arm arranged between a pair of arc chutes; a first movable contact arranged at the first end of said contact arm and a second movable contact arranged at the second end of said contact arm; and a line strap adjacent the first end of said contact arm, said line strap having a first end portion having a first fixed contact; wherein the movable contact arm is pivotable about the central pivot point between a closed position where the first movable contact abuts the first fixed contact and an open position where the first movable contact becomes separated from the first fixed contact, an outer face of the first fixed contact facing away from the longitudinal axis of the central section of the movable contact arm when the movable contact arm is in the closed position.
  • 9. The breaker interior of claim 8 including a load strap adjacent the second end of said movable contact arm, said load strap having a first end portion having a second fixed contact, an outer face of the second fixed contact facing away from the longitudinal axis of the central section of the movable contact arm.
  • 10. The breaker interior of claim 9 wherein a first vector having a starting point on the outer face of the first fixed contact and protruding perpendicularly from the first fixed contact away from the first end portion of the line strap includes a first horizontal vector component, pointing away from the central pivot point and a first vertical vector component.
  • 11. The breaker interior of claim 10 wherein a second vector having a starting point on the outer face of the second fixed contact and protruding perpendicularly from the second fixed contact away from the first end portion of the load strap includes a second horizontal vector component, pointing away from the central pivot point, and a second vertical vector component, wherein the first and second horizontal vector components are parallel to each other and point in opposite directions.
  • 12. The breaker interior of claim 8 wherein the line strap further includes a second end portion, a third portion adjacent the first end portion and a fourth portion adjacent the third portion, a first acute angle being formed between the first end portion and the third portion, and a second acute angle being formed between the third portion and the fourth portion.
  • 13. The breaker interior of claim 9 wherein the load strap further includes a second end portion, a third portion, intermediate the first end portion and the second end portion of the load strap, a first acute angle formed between the first end portion and the third portion of the load strap, and a second acute angle formed between the third portion and the second end portion of the load strap.
  • 14. The breaker interior of claim 8 wherein, when the movable contact arm is in the closed position, a line passing perpendicularly through both the first fixed contact and the first movable contact is generally parallel to the longitudinal axis of the central section.
US Referenced Citations (170)
Number Name Date Kind
D. 367265 Yamagata et al. Feb 1996
2340682 Powell Feb 1944
2719203 Gelzheiser et al. Sep 1955
2937254 Ericson May 1960
3158717 Jencks et al. Nov 1964
3162739 Klein et al. Dec 1964
3197582 Norden Jul 1965
3307002 Cooper Feb 1967
3517356 Hanafusa Jun 1970
3631369 Menocal Dec 1971
3803455 Willard Apr 1974
3883781 Cotton May 1975
4129762 Bruchet Dec 1978
4144513 Shafer et al. Mar 1979
4158119 Krakik Jun 1979
4165453 Hennemann Aug 1979
4166988 Ciarcia et al. Sep 1979
4220934 Wafer et al. Sep 1980
4255732 Wafer et al. Mar 1981
4259651 Yamat Mar 1981
4263492 Maier et al. Apr 1981
4276527 Gerbert-Gaillard et al. Jun 1981
4297663 Seymour et al. Oct 1981
4301342 Castonguay et al. Nov 1981
4360852 Gilmore Nov 1982
4368444 Preuss et al. Jan 1983
4375021 Pardini et al. Feb 1983
4375022 Daussin et al. Feb 1983
4376270 Staffen Mar 1983
4383146 Bur May 1983
4392036 Troebel et al. Jul 1983
4393283 Masuda Jul 1983
4401872 Boichot-Castagne et al. Aug 1983
4409573 DiMarco et al. Oct 1983
4435690 Link et al. Mar 1984
4467297 Boichot-Castagne et al. Aug 1984
4468645 Gerbert-Gaillard et al. Aug 1984
4470027 Link et al. Sep 1984
4479143 Watanabe et al. Oct 1984
4488133 McClellan et al. Dec 1984
4492941 Nagel Jan 1985
4541032 Schwab Sep 1985
4546224 Mostosi Oct 1985
4550360 Dougherty Oct 1985
4562419 Preuss et al. Dec 1985
4589052 Dougherty May 1986
4595812 Tamaru et al. Jun 1986
4611187 Banfi Sep 1986
4612430 Sloan et al. Sep 1986
4616198 Pardini et al. Oct 1986
4622444 Kandatsu et al. Nov 1986
4631625 Alexander et al. Dec 1986
4642431 Tedesco et al. Feb 1987
4644438 Puccinelli et al. Feb 1987
4649247 Preuss et al. Mar 1987
4658322 Rivera Apr 1987
4672501 Bilac et al. Jun 1987
4675481 Markowski et al. Jun 1987
4682264 Demeyer Jul 1987
4689712 Demeyer Aug 1987
4694373 Demeyer Sep 1987
4710845 Demeyer Dec 1987
4717985 Demeyer Jan 1988
4733211 Castonguay et al. Mar 1988
4733321 Lindeperg Mar 1988
4764650 Bur et al. Aug 1988
4768007 Mertz et al. Aug 1988
4780786 Weynachter et al. Oct 1988
4831221 Yu et al. May 1989
4870531 Danek Sep 1989
4883931 Batteux et al. Nov 1989
4884047 Baginski et al. Nov 1989
4884164 Dziura et al. Nov 1989
4900882 Bernard et al. Feb 1990
4910485 Bolongeat-Mobleu et al. Mar 1990
4914541 Tripodi et al. Apr 1990
4916420 Bartolo et al. Apr 1990
4916421 Pardini et al. Apr 1990
4926282 McGhie May 1990
4935590 Malkin et al. Jun 1990
4937706 Schueller et al. Jun 1990
4939492 Raso et al. Jul 1990
4943691 Mertz et al. Jul 1990
4943888 Jacob et al. Jul 1990
4950855 Bolonegeat-Mobleu et al. Aug 1990
4951019 Gula Aug 1990
4952897 Barnel et al. Aug 1990
4958135 Baginski et al. Sep 1990
4965543 Batteux Oct 1990
4983788 Pardini Jan 1991
5001313 Leclerq et al. Mar 1991
5004878 Seymour et al. Apr 1991
5029301 Nebon et al. Jul 1991
5030804 Abri Jul 1991
5057655 Kersusan et al. Oct 1991
5077627 Fraisse Dec 1991
5083081 Barrault et al. Jan 1992
5095183 Raphard et al. Mar 1992
5103198 Morel et al. Apr 1992
5115371 Tripodi May 1992
5120921 DiMarco et al. Jun 1992
5132865 Mertz et al. Jul 1992
5138121 Streich et al. Aug 1992
5140115 Morris Aug 1992
5153802 Mertz et al. Oct 1992
5155315 Malkin et al. Oct 1992
5166483 Kersusan et al. Nov 1992
5172087 Castonguay et al. Dec 1992
5178504 Falchi Jan 1993
5184717 Chou et al. Feb 1993
5187339 Lissandrin Feb 1993
5198956 Dvorak Mar 1993
5200724 Gula et al. Apr 1993
5210385 Morel et al. May 1993
5239150 Bolongeat-Mobleu et al. Aug 1993
5260533 Livesey et al. Nov 1993
5262744 Arnold et al. Nov 1993
5280144 Bolongeat-Mobleu et al. Jan 1994
5281776 Morel et al. Jan 1994
5296660 Morel et al. Mar 1994
5296664 Crookston et al. Mar 1994
5298874 Morel et al. Mar 1994
5300907 Nereau et al. Apr 1994
5310971 Vial et al. May 1994
5313180 Vial et al. May 1994
5317471 Izoard et al. May 1994
5331500 Corcoles et al. Jul 1994
5334808 Bur et al. Aug 1994
5341191 Crookston et al. Aug 1994
5347096 Bolongeat-Mobleu et al. Sep 1994
5347097 Bolongeat-Mobleu et al. Sep 1994
5350892 Rozier Sep 1994
5357066 Morel et al. Oct 1994
5357068 Rozier Oct 1994
5357394 Piney Oct 1994
5361052 Ferullo et al. Nov 1994
5373130 Barrault et al. Dec 1994
5379013 Coudert Jan 1995
5424701 Castonguary et al. Jun 1995
5438176 Bonnardel et al. Aug 1995
5440088 Coudert et al. Aug 1995
5449871 Batteux et al. Sep 1995
5450048 Leger et al. Sep 1995
5451729 Onderka et al. Sep 1995
5457295 Tanibe et al. Oct 1995
5467069 Payet-Burin et al. Nov 1995
5469121 Payet-Burin Nov 1995
5475558 Barjonnet et al. Dec 1995
5477016 Baginski et al. Dec 1995
5479143 Payet-Burin Dec 1995
5483212 Lankuttis et al. Jan 1996
5485343 Santos et al. Jan 1996
5493083 Olivier Feb 1996
5504284 Lazareth et al. Apr 1996
5504290 Baginski et al. Apr 1996
5510761 Boder et al. Apr 1996
5512720 Coudert et al. Apr 1996
5515018 DiMarco et al. May 1996
5519561 Mrenna et al. May 1996
5534674 Steffens Jul 1996
5534832 Duchemin et al. Jul 1996
5534835 McColloch et al. Jul 1996
5534840 Cuingnet Jul 1996
5539168 Linzenich Jul 1996
5543595 Mader et al. Aug 1996
5552755 Fello et al. Sep 1996
5581219 Nozawa et al. Dec 1996
5604656 Derrick et al. Feb 1997
5608367 Zoller et al. Mar 1997
5784233 Bastard et al. Jul 1998
Foreign Referenced Citations (59)
Number Date Country
12 27 978 Nov 1966 DE
30 47 360 Jun 1982 DE
38 02 184 Aug 1989 DE
38 43 277 Jun 1990 DE
44 19 240 Jan 1995 DE
0 061 092 Sep 1982 EP
0 064 906 Nov 1982 EP
0 066 486 Dec 1982 EP
0 076 719 Apr 1983 EP
0 117 094 Aug 1984 EP
0 140 761 May 1985 EP
0 174 904 Mar 1986 EP
0 196 241 Oct 1986 EP
0 224 396 Jun 1987 EP
0 239 460 Sep 1987 EP
0 235 479 Sep 1987 EP
0 258 090 Mar 1988 EP
0 264 314 Apr 1988 EP
0 264 313 Apr 1988 EP
0 283 358 Sep 1988 EP
0 283 189 Sep 1988 EP
0 291 374 Nov 1988 EP
0 295 158 Dec 1988 EP
0 295 155 Dec 1988 EP
0 313 106 Apr 1989 EP
0 313 422 Apr 1989 EP
0 309 923 Apr 1989 EP
0 314 540 May 1989 EP
0 331 586 Sep 1989 EP
0 337 900 Oct 1989 EP
0 342 133 Nov 1989 EP
0 367 690 May 1990 EP
0 375 568 Jun 1990 EP
0 371 887 Jun 1990 EP
0 394 922 Oct 1990 EP
0 394 144 Oct 1990 EP
0 399 282 Nov 1990 EP
0 407 310 Jan 1991 EP
0 452 230 Oct 1991 EP
0 555 158 Aug 1993 EP
0 560 697 Sep 1993 EP
0 567 416 Oct 1993 EP
0 595 730 May 1994 EP
0 619 591 Oct 1994 EP
0 665 569 Aug 1995 EP
0 700 140 Mar 1996 EP
0 889 498 Jan 1999 EP
2 410 353 Jun 1979 FR
2 512 582 Mar 1983 FR
2 553 943 Apr 1985 FR
2 592 998 Jul 1987 FR
2 682 531 Apr 1993 FR
2 697 670 May 1994 FR
2 699 324 Jun 1994 FR
2 714 771 Jul 1995 FR
2 233 155 Jan 1991 GB
9200598 Jan 1992 WO
9205649 Apr 1992 WO
9400901 Jan 1994 WO