Circuit breaker with adjustable magnetic trip unit

Information

  • Patent Grant
  • 6218920
  • Patent Number
    6,218,920
  • Date Filed
    Tuesday, February 1, 2000
    24 years ago
  • Date Issued
    Tuesday, April 17, 2001
    23 years ago
Abstract
An adjustable magnetic trip unit for a circuit breaker (1) is equipped with a magnet yoke (16), an armature element (18) that works therewith to actuate a trip shaft (14), and an adjusting bar (23) that can be tilted about the axis (15) of the trip shaft (14) for adjusting the distance (L) between the magnet yoke (16) and the armature element (18). This magnetic trip unit can be used in a circuit breaker (1) having a plurality of breaker cassettes (30) arranged adjacent to one another wherein the adjusting bar (23) extends parallel to the axis (15) of the tripping shaft (14) and on which are arranged a plurality of adjusting arms (24) corresponding to the number of breaker cassettes (30).
Description




BACKGROUND OF THE INVENTION




The invention relates to circuit breakers with a magnetic trip unit, and, more particularly, to circuit breakers with an adjustable magnetic trip unit.




Circuit breakers typically provide protection against the very high currents produced by short circuits. This type of protection is provided in many circuit breakers by a magnetic trip unit, which trips the circuit breaker's operating mechanism to open the circuit breaker's main current-carrying contacts upon a short circuit condition.




Modern magnetic trip units include a magnet yoke (anvil) disposed about a current carrying strap, an armature (lever) pivotally disposed near the anvil, and a spring arranged to bias the armature away from the magnet yoke. Upon the occurrence of a short circuit condition, very high currents pass through the strap. The increased current causes an increase in the magnetic field about the magnet yoke. The magnetic field acts to rapidly draw the armature towards the magnet yoke, against the bias of the spring. As the armature moves towards the yoke, the end of the armature contacts a trip lever, which is mechanically linked to the circuit breaker operating mechanism. Movement of the trip lever trips the operating mechanism, causing the main current-carrying contacts to open and stop the flow of electrical current to a protected circuit.




It is necessary for such magnetic trip units to be reliable. In addition, it is desired that magnetic trip units be adjustable, so that the breaker can be adjusted to trip at different levels of overcurrent. It is also desired that the magnetic trip units be compact.




BRIEF SUMMARY OF THE INVENTION




In an exemplary embodiment of the invention, a circuit breaker with adjustable magnetic trip unit includes a magnet yoke disposed proximate to an electrically conductive strap, and an armature pivotally disposed proximate to the magnet yoke. A trip shaft is configured to interact with a latching mechanism of the circuit breaker. The trip shaft has a cam extending therefrom, with the cam being arranged proximate to the armature. An adjusting bar is arranged to pivot around the trip shaft. The adjusting bar includes an adjusting arm extending therefrom. The adjusting arm contacts the armature for adjusting the distance between the magnet yoke and the armature.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is an elevation view of a circuit breaker with a magnetic trip unit of the present invention;





FIG. 2

is an elevation view of the magnetic trip unit from the circuit breaker of

FIG. 1

; and





FIG. 3

is a perspective view of a multi-pole circuit breaker including the magnetic trip unit of FIG.


2


.











DETAILED DESCRIPTION OF THE INVENTION




A circuit breaker


1


equipped with the adjustable magnetic trip unit of the present invention is shown in FIG.


1


. The circuit breaker


1


has a rotary contact arm


2


, which is mounted on the axis


3


of a rotor


4


such that it can rotate. The rotor


4


itself is mounted in a terminal housing or cassette (not shown) and has two diametrically opposed satellite axes


5


and


6


, which are also rotated about the axis


3


when the rotor


4


rotates. The axis


5


is the point of engagement for a linkage


7


, which is connected to a latch


8


. The latch


8


is mounted, such that it can pivot, on an axis


10


positioned on the circuit breaker housing


9


. In the event of an overcurrent or short circuit condition, the latch


8


is released by a latching mechanism


11


, moving the contact arm


2


to the open position shown in FIG.


1


.




The latching mechanism


11


can be actuated by a trip lever


13


that pivots about an axis of rotation


12


. The other end of the trip lever


13


contacts a trip shaft


14


, which is mounted on an axis


15


supported by the circuit breaker housing


9


. Disposed on the trip shaft


14


is a cam


14




a


, which can be pivoted clockwise in opposition to the force of a torsional spring


14




b


wound about the axis


15


.




Mounted to the circuit breaker housing


9


in the bottom region of the circuit breaker is a magnet yoke


16


, which encircles a current carrying strap


17


electrically connected to one of the contacts of the circuit breaker


1


. Arranged facing the magnet yoke is an armature element


18


in the form of a metallic lever, which is hinge-mounted by means of hinge pin sections


19


(see

FIG. 3

) to hinge knuckles (not shown) formed on the circuit breaker housing


9


. The armature


18


is also connected to strap


17


by a spring


20


, which biases the armature


18


in the clockwise direction, away from the magnet yoke


16


. In its upper region, armature


18


is equipped with a clip


21


rigidly mounted thereon, which can be brought into contact with the cam


14




a


by pivoting of the armature in a counter-clockwise direction. Movement of cam


14




a


by the armature


18


causes the trip shaft


14


to rotate about axis


15


and thereby actuate the latching mechanism


11


by means of the trip lever


13


. Once actuated, latching mechanism


11


releases latch


8


to initiate the tripping process in circuit breaker


1


. While the clip


21


is described herein as being mounted to armature


18


, the clip


21


can also be formed as one piece with the armature


18


, preferably of metal.




Referring now to FIG.


2


and

FIG. 3

, an adjusting bar


23


extends parallel to the axis


15


and is mounted on the axis


15


, by means of support arms


22


. The adjusting bar


23


has an adjusting arm


24


which is threadably engaged to an adjusting screw


25


for calibrating the trip unit. Adjusting bar


23


also includes a lever arm


26


which extends to a side of the adjusting bar


23


diametrically opposite adjusting arm


24


. The end of the lever arm


26


is in contact with a cam pin


27


of a rotary knob


28


, which is mounted in a hole in the upper wall of the circuit breaker housing


9


(FIG.


1


). The surface of the rotary knob


28


is equipped with a slot


29


to make it possible to adjust the rotary knob


28


with the aid of a suitable tool, such as a screwdriver.




In the unactuated state of the magnet yoke


16


, which is to say when the contact arm


2


(

FIG. 1

) is closed and an overcurrent is not present, the adjusting screw


25


is in constant contact with an angled surface of the clip


21


. Contact between adjusting screw


25


and the angled surface of the clip


21


is ensured by a tensile force exerted by the spring


20


on the armature


18


. The force of the angled surface of the clip


21


on adjusting screw


25


biases the adjusting bar


23


in a clockwise direction about axis


15


, thus forcing lever arm


26


away from yoke


16


and against pin


27


. In this state, it is possible to change the tilt setting of the armature


18


either by extending (or retracting) adjusting screw


25


downward from (upward to) adjusting arm


24


, or by rotating the adjusting bar


23


about axis


15


by adjusting the rotary knob


28


. Thus, the distance L shown in

FIG. 2

between the flap


18


and the magnet yoke


16


is adjusted, thereby setting the current at which the trip unit responds.




One advantage of the present invention is that an extremely reliable adjustment mechanism is guaranteed by the interaction of the adjusting bar


23


, which rotates around the axis


15


of the trip shaft


14


, and the rotary knob


28


that interacts therewith via cam pin


27


. Moreover, this mechanism is easy to produce and is compact in design. The tripping device of the present invention has only a few elements, which can be accommodated, in a space-saving manner, laterally in the switch.




The circuit breaker with adjustable magnetic trip unit shown in

FIGS. 1

,


2


, and


3


operates as follows. First, a person adjusting the circuit breaker I by turning rotary knob


28


sets the position of the adjusting bar


23


on the axis


15


and thus the distance between the armature


18


and the magnet yoke


16


, as shown in detail in FIG.


2


. Because of the relatively greater length of the lever arm


26


as compared to the adjustable arm


24


, the adjustment made by rotary knob


28


is fine. It must be noted here that a coarser adjustment of the distance L between the magnet yoke


16


and the flap


18


can be accomplished by turning the adjusting screw


25


during installation of the trip unit in the circuit breaker housing


9


.




In the case of a short circuit, an overcurrent naturally occurs, which flows through the current carrying strap


17


. This activates the magnet yoke


16


to the extent that when a specific current is exceeded, the magnetic force generated by the magnet yoke is sufficient to attract the armature


18


in opposition to the tensile force exerted by the spring


20


. Armature


18


pivots towards yoke


16


, and the cam


14




a


is pivoted clockwise in

FIG. 1

(counter-clockwise in

FIG. 2

) by the clip


21


until the trip lever


13


is actuated. Actuation of the trip lever


13


then tilts the latching mechanism


11


such that it in turn can release the latch


8


for a pivoting motion, upward in

FIG. 1

, about the axis


10


. This motion is caused by a spring, which is not shown in detail in FIG.


1


. The motion of the linkage


7


that is coupled with the pivoting motion of the latch


8


brings about a rotation of the rotor


4


by means of the axis


5


, and thus finally a disconnection of the contact arm


2


from the current carrying straps.




As shown in

FIG. 3

, the trip unit can be arranged for use in a circuit breaker


1


having a plurality of breaker cassettes


30


, with each cassette


10


having its own contact arm


2


and rotor


4


arrangements. While only one cassette


30


is shown, it will be understood that one cassette


30


is used for each phase in the electrical distribution circuit. Adjusting bar


23


extends along the row of circuit breaker cassettes


30


, parallel to the axis


15


of the trip shaft


14


. Extending from adjusting bar


23


are several adjusting arms


24


corresponding to the number of circuit breaker cassettes


30


. Also formed on the adjusting bar


23


is one lever arm


26


, which is sufficient to rotate the adjusting bar


23


about axis


15


and, thus, pivot the armatures


18


. The tripping sensitivity in each circuit breaker cassette


30


can be adjusted separately by means of the screws


25


carried by each adjusting arm


24


. As a result, individual calibration of each circuit breaker cassette


30


can be undertaken independently of the adjustment of rotary knob


28


.




It will be understood that a person skilled in the art may make modifications to the preferred embodiment shown herein within the scope and intent of the claims. While the present invention has been described as carried out in a specific embodiment thereof, it is not intended to be limited thereby but is intended to cover the invention broadly within the scope and spirit of the claims.



Claims
  • 1. A magnetic trip unit for actuating a latching mechanism to trip a circuit breaker upon an overcurrent condition, the magnetic trip unit including:a first electrically conductive strap; a first magnet yoke disposed proximate to said first electrically conductive strap; a first armature pivotally disposed proximate to said fist magnet yoke, said first armature and said first magnet yoke being separated by a first gap; a trip shaft extending along an axis and configured to rotate about said axis and interact with the latching mechanism, said trip shaft having a first cam extending therefrom, said first cam being arranged proximate to said first armature; and an adjusting bar extending substantially parallel to said axis, said adjusting bar configured to rotate about said axis independently of said trip shaft, said adjusting bar including a first adjusting arm extending therefrom, said first adjusting arm contacting said first armature for adjusting said first gap between said first magnet yoke and said first armature.
  • 2. The magnetic trip unit of claim 1, further including:a rotary knob; and a cam pin extending from said rotary knob, said cam pin contacting a lever arm extending from said adjusting bar.
  • 3. The magnetic trip unit of claim 1, wherein said first adjusting arm includes an adjusting screw threadably engaged thereto, said adjusting screw contacting said first armature.
  • 4. The magnetic trip unit of claim 1, further including:a second electrically conductive strap; a second magnet yoke disposed proximate to said second electrically conductive strap; a second armature pivotally disposed proximate to said second magnet yoke, said second armature and said second magnet yoke being separated by a second gap; and wherein said trip shaft includes a second cam extending therefrom, said second cam being arranged proximate to said second armature, and said adjusting bar includes a second adjusting arm extending therefrom, said second adjusting arm contacting said second armature for adjusting said second gap between said second magnet yoke and said second armature.
  • 5. The magnetic trip unit of claim 2, wherein said lever arm is arranged diametrically opposite said first adjusting arm and offset therefrom.
  • 6. The magnetic trip unit of claim 3, wherein said armature includes a clip disposed on a free end of said armature, said clip having an angled surface formed thereon for contacting said adjusting screw.
  • 7. A circuit breaker including:a first contact arm arranged between first and second electrically conductive straps; a latching mechanism operatively connected to said first contact arm a first magnet yoke disposed proximate to said first electrically conductive strap; a first armature pivotally disposed proximate to said fist magnet yoke, said first armature and said first magnet yoke being separated by a fist gap; a trip shaft extending along an axis and configured to rotate about said axis and interact with the latching mechanism, said trip shaft having a first cam extending therefrom, said first cam being arranged proximate to said first armature; and an adjusting bar extending substantially parallel to said axis, said adjusting bar configured to rotate about said axis independently of said trip shaft, said adjusting bar including a first adjusting arm extending therefrom, said first adjusting arm contacting said first armature for adjusting said first gap between said first magnet yoke and said first armature.
  • 8. The circuit breaker of claim 7, further including:a rotary knob; and a cam pin extending from said rotary knob, said cam pin contacting a lever arm extending from said adjusting bar.
  • 9. The circuit breaker of claim 7, wherein said first adjusting arm includes an adjusting screw threadably engaged thereto, said adjusting screw contacting said first armature.
  • 10. The circuit breaker of claim 7, further including:a second contact arm arranged between third and fourth electrically conductive straps; a second magnet yoke disposed proximate to said third electrically conductive strap; a second armature pivotally disposed proximate to said second magnet yoke, said second armature and said second magnet yoke being separated by a second gap; and wherein said trip shaft includes a second cam extending therefrom, said second cam being arranged proximate to said second armature, and said adjusting bar includes a second adjusting arm extending therefrom, said second adjusting arm contacting said second armature for adjusting said second gap between said second magnet yoke and said second armature.
Priority Claims (1)
Number Date Country Kind
199 03 911 Feb 1999 DE
US Referenced Citations (9)
Number Name Date Kind
3421123 Johnson et al. Jan 1969
3575679 Ellsworth et al. Apr 1971
3593234 Charbonneau Jul 1971
3855557 Gryotko Dec 1974
3936780 Hennemann Feb 1976
4983939 Shea et al. Jan 1991
5467069 Payet-burin et al. Nov 1995
5508670 Mantzouridis et al. Apr 1996
5608367 Zoller et al. Mar 1997
Foreign Referenced Citations (1)
Number Date Country
1 588 732 Jun 1967 DE