Circuit breaker with fluid injection

Abstract
A circuit breaker including an ejection device including an arc-extinction medium for improved extinction of an arc formed during a breaker operation and an exhaust-cooling medium for improved cooling of exhaust gases in the circuit breaker. Thereby, the arc-extinction liquid includes an organofluorine compound having a boiling point Tb at 1 bar higher than −60° C. and being selected from the group of: a fluoroether; a fluoroamine; a fluoroketone; and mixtures thereof.
Description
FIELD OF THE INVENTION

The present invention relates to the field of high-voltage technology, and more specifically to a circuit breaker, to a switchgear, to a method for extinguishing an arc, and to a use of a fluoroketone in such a circuit breaker.


BACKGROUND OF THE INVENTION

In conventional circuit breakers, the arc formed during a breaking operation is normally extinguished using compressed gas. The arc extinction or interruption performance is thereby mostly defined by the blow pressure and the physical properties of the medium, e.g. the dielectric strength, the heat capacity as a function of temperature, the electronegativity and the thermal conductivity. For large ratings, compressed sulphur hexafluoride (SF6) is generally used.


Typically, the arc interruption performance is improved by increasing the blow pressure of the gas using the self-blast or puffer principle. Although up to a certain rating the required interruption performance can be achieved, compressed-gas circuit breakers have intrinsic limitations that make it impossible to increase the performance without affecting product cost constraints.


Aiming at a reduction in the size, circuit breakers employing a liquefied gas, in particular SF6, as the interruption medium have been proposed, e.g. in U.S. Pat. No. 3,150,245. However, the design according to U.S. Pat. No. 3,150,245 has inter alia the drawback that given the low critical temperature of SF6 the respective storage vessel has to be designed for extremely high pressures.


In consideration of the drawbacks of this design, further circuit breaker using SF6 have been proposed in U.S. Pat. No. 4,288,668 and U.S. Pat. No. 4,307,274.


However, also the designs according to these documents have the drawback that a sophisticated, external pressurization and cooling system is required to keep SF6 in its liquid phase. As a result, the cost both for the construction and the operation of such liquefied-gas circuit breakers are substantial and they have thus not found acceptance yet.


SUMMARY OF THE INVENTION

The objective of the present invention is thus to provide a circuit breaker which has improved interruption capability and which at the same time allows for a simple and economic construction and operation. This objective is achieved by the subject matter of the independent claims. More specific embodiments of the invention are given in the dependent claims.


The present invention relates to a circuit breaker comprising an ejection device, i.e. at least one ejection device, comprising an arc-extinction medium to improve extinction of an arc formed during a breaking operation. According to the invention the arc-extinction medium comprises an organofluorine compound having a boiling point Tb at 1 bar higher than −60° C. and being selected from the group consisting of: a fluoroether; a fluoroamine; a fluoroketone; and mixtures thereof.


According to another aspect the present invention relates to a circuit breaker comprising an ejection device comprising an arc-extinction and/or exhaust-cooling medium for improving circuit breaker operation, and in particular improving extinction of an arc formed during a breaker operation, wherein the arc-extinction and/or exhaust-cooling medium comprises an organofluorine compound having a boiling point Tb at 1 bar higher than −60° C. and being selected from the group consisting of: a fluoroether; a fluoroamine; a fluoroketone; and mixtures thereof.


According to recent findings, organofluorine compounds, and in particular fluoroketones, are able to provide arc-extinguishing performance required for a circuit breaker.


By using an organofluorine compound having a boiling point at 1 bar higher than −60° C. and thus higher than the one of SF6, the arc-extinction medium can be stored and ultimately ejected in liquid form without requiring sophisticated cooling and pressurizing means. This not only allows for a reduction in size of the whole design, but also leads to an increase in the interruption performance, since part of the arc energy is absorbed by vaporisation of the extinction medium which leads to improved cooling of the arc.


A further reason for improved interruption performance lies in the increased blow pressure which is generated due to the vaporisation and potentially the further decomposition of the arc extinction medium, in particular the organofluorine compound, using the arc energy. Since several of the by-products generated by the decomposition of the organofluorine compound, and in particular decomposition of the fluoroketone, are electronegative, they have good arc quenching capabilities, which further contribute to the excellent interruption performance achieved according to the present invention.


It is understood that the expression “that the arc-extinction and/or exhaust-cooling medium comprises an organofluorine compound” is to be interpreted such that it encompasses embodiments in which a single organofluorine compound is comprised as well as embodiments in which a mixture of different organofluorine compounds is comprised.


According to a preferred embodiment, the arc-extinction and/or exhaust-cooling liquid has a boiling point Tb at 1 bar higher than −40° C., preferred higher than −20° C., more preferred higher than −10°, even more preferred higher than +5° C., most preferred higher than +20° C. In further embodiments, the boiling point can also be higher than +40° C., preferred higher than +65° C., most preferred higher than +90° C. This allows storage of the medium in liquid form by very simple cooling and/or pressurisation means or without such means at all.


According to a particularly preferred embodiment, the arc-extinction and/or exhaust-cooling medium is at least partially present in liquid form, when it is contained in the ejection device, for the reasons mentioned above. More preferably, the arc-extinction and/or exhaust-cooling medium is present at least approximately in fully liquid form, when it is contained in the ejection device.


Such liquid form or liquid phase of the arc-extinction and/or exhaust-cooling medium shall be present in the ejection device under operating conditions of the circuit breaker, in particular under operating temperatures and/or operating pressures of the circuit breaker. Such operating conditions may depend, inter alia, on the type of circuit breaker and the currents and/or voltages to be interrupted. Such operating conditions shall encompass at least intermediate times between circuit breaker operations and/or time intervals of active circuit breaker operations, such as contact-opening and/or contact-closing, for example as occurring in a typical O—C—O sequence according to the IEC or ANSI international standard. In this context, operating temperatures shall be within a rated operating temperature range and operating pressures shall be within a rated operating pressure range of the circuit breaker.


The term “organofluorine compound” as used in the context of the present invention is to be understood broadly to be a compound containing at least one carbon atom and at least one fluorine atom. It is understood that these compounds can optionally comprise further atoms, in particular at least one atom selected from the group consisting of oxygen, hydrogen, nitrogen, and iodine, in addition to carbon and fluorine. The present invention encompasses both embodiments where the arc-extinction and/or exhaust-cooling liquid is at least essentially consisting of the organofluorine compound as well as embodiments comprising further components.


Specifically, the arc-extinction and/or exhaust-cooling liquid comprises preferably as a further organofluorine compound at least one compound selected from the group consisting of: a fluorocarbon, in particular C2F6 and C3F8; a hydrofluorocarbon; and mixtures thereof.


Herein, the term “fluoroether”, “fluoroamine” and “fluoroketone” refer to at least partially fluorinated compounds. In particular, the term “fluoroether” encompasses both hydrofluoroethers and perfluoroethers, the term “fluoroamine” encompasses both hydrofluoroamines and perfluoroamines, and the term “fluoroketone” encompasses both hydrofluoroketones and perfluoroketones.


It is thereby preferred that the fluorocarbon, the fluoroether, the fluoroamine and the fluoroketone are fully fluorinated, i.e. perfluorinated. They are thus devoid of any hydrogen which—in particular in view of the potential by-products, such as hydrogen fluoride, generated by decomposition—is generally considered unwanted in circuit breakers.


According to a particularly preferred embodiment, the arc-extinction liquid comprises as organofluorine compound a fluoroketone or a mixture of fluoroketones, in particular a fluoromonoketone. Fluoroketones have recently been found to have excellent dielectric insulation properties. They have now been found to have also excellent interruption properties.


The term “fluoroketone” as used in the context of the present invention shall be interpreted broadly and shall encompass both perfluoroketones and hydrofluoroketones. The term shall also encompass both saturated compounds and unsaturated compounds including double and/or triple bonds. The at least partially fluorinated alkyl chain of the fluoroketones can be linear or branched and can optionally form a ring.


The term “fluoroketone” shall encompass compounds that may comprise in-chain heteroatoms. In exemplary embodiments, the fluoroketone shall have no in-chain hetero atom. The term “fluoroketone” shall also encompass fluorodiketones having two carbonyl groups or fluoroketones having more than two carbonyl groups. In exemplary embodiments, the fluoroketone shall be a fluoromonoketone.


According to a preferred embodiment, the fluoroketone is a perfluoroketone. It is preferred that the fluoroketone has a branched alkyl chain. It is also preferred that the fluoroketone is fully saturated.


Preferably, the fluoroketone contains from 5 to 15 carbon atoms, preferably from 5 to 9, more preferably exactly 5, exactly 6 or exactly 7 or exactly 8 carbon atoms. The respective fluoroketones have a relative high boiling point and thus allow storage of the medium in liquid form by means of very simple cooling and/or pressurisation means or without such means at all.


According to a particularly preferred embodiment, the fluoroketone has exactly 5 carbon atoms and is selected from the group consisting of the compounds defined by the following structural formulae in which at least one hydrogen atom is substituted with a fluorine atom:




embedded image


Compared to fluoroketones having a lower chain length with less than 5 carbon atoms, fluoroketones containing 5 carbon atoms have the advantage of a relatively high boiling point, allowing to maintain it in liquid form by means of very simple cooling and/or pressurisation means or without such means at all. Fluoroketones containing exactly 5 carbon atoms have the further advantage that they are generally non-toxic.


In a particularly preferred embodiment, the fluoroketone has the molecular formula C5F10O, i.e. is fully saturated without any double or triple bonds between carbon atoms. The fluoroketone may more preferably be selected from the group consisting of 1,1,1,3,4,4,4-heptafluoro-3-(trifluoromethyl)butan-2-one (also named decafluoro-3-methylbutan-2-one), 1,1,1,3,3,4,4,5,5,5-decafluoropentan-2-one, 1,1,1,2,2,4,4,5,5,5-decafluoropentan-3-one, 1,1,1,4,4,5,5,5,-octafluoro-3-bis(trifluoromethyl)-pentan-2-one; and most preferably is 1,1,1,3,4,4,4-heptafluoro-3-(trifluoromethyl)butan-2-one.


Among the fluoroketones containing exactly 5 carbon atoms, 1,1,1,3,4,4,4-heptafluoro-3-(trifluoromethyl)butan-2-one, here briefly cited by the generic term “C5-ketone” (=fluoroketone containing exactly 5 carbon atoms), with molecular formula CF3C(O)CF(CF3)2 (or sum formula C5F10O), has been found to be particularly preferred because it has the advantages of a high dielectric insulation performance, in particular in mixtures with a dielectric carrier gas component, a very low GWP and a low boiling point. It has an ozone depletion potential of 0.


1,1,1,3,4,4,4-heptafluoro-3-(trifluoromethyl)butan-2-one can be represented by the following structural formula (I):




embedded image


According to a further preferred embodiment, the fluoroketone has exactly 6 carbon atoms and is at least one compound selected from the group consisting of the compounds defined by the following structural formulae in which at least one hydrogen atom is substituted with a fluorine atom:




embedded image


According to a further preferred embodiment, the fluoroketone has exactly 7 carbon atoms and is at least one compound selected from the group consisting of the compounds defined by the following structural formulae in which at least one hydrogen atom is substituted with a fluorine atom:




embedded image


embedded image



named dodecafluoro-cycloheptanone.


The present invention encompasses each compound or combination of compounds selected from the group consisting of the compounds according to structural formulae Ia to Id, IIa to IIg, IIIa to IIIn.


A fluoroketone containing exactly 6 carbon atoms is particularly preferred for the purpose of the present invention due to its relatively high boiling point. Also, fluoroketones having exactly 6 carbon atoms are non-toxic with outstanding margins for human safety.


In particular, the fluoroketone has the molecular formula C6F12O. More preferably, the fluoroketone is selected from the group consisting of 1,1,1,2,4,4,5,5,5-nonafluoro-2-(trifluoromethyl)pentan-3-one (also named dodecafluoro-2-methylpentan-3-one), 1,1,1,3,3,4,5,5,5-nonafluoro-4-(trifluoromethyl)pentan-2-one (also named dodecafluoro-4-methylpentan-2-one), 1,1,1,3,4,4,5,5,5-nonafluoro-3-(trifluoromethyl)pentan-2-one (also named dodecafluoro-3-methylpentan-2-one), 1,1,1,3,4,4,4-heptafluoro-3-bis-(trifluoromethyl)butan-2-one (also named dodecafluoro-3,3-(dimethyl)butan-2-one), dodecafluorohexan-2-one and dodecafluorohexan-3-one, and particularly is the mentioned 1,1,1,2,4,4,5,5,5-nonafluoro-2-(trifluoromethyl)pentan-3-one.


1,1,1,2,4,4,5,5,5-Nonafluoro-2-(trifluoromethyl)pentan-3-one (also named dodecafluoro-2-methylpentan-3-one or perfluoro-2-methyl-3-pentanone) can be represented by the following structural formula (II):




embedded image


1,1,1,2,4,4,5,5,5-Nonafluoro-4-(trifluoromethyl)pentan-3-one, here briefly cited by the more generic term “C6-ketone” (=fluoroketone comprising exactly 6 carbon atoms), with molecular formula C2F5C(O)CF(CF3)2 (or sum formula C6F12O) has been found to be particularly preferred.


It has a boiling point of 49.2° C. at 1 bar and can thus be kept in liquid form by means of very simple cooling and/or pressurisation means or without such means at all.


1,1,1,2,4,4,5,5,5-Nonafluoro-4-(trifluoromethyl)pentan-3-one has further been found to have high insulating properties and an extremely low GWP. It has an ozone depletion potential of 0 and is non-toxic (LC50 of about 100′000 ppm). Thus, the environmental impact is much lower than with conventional insulation gases, and at the same time outstanding margins for human safety are achieved.


As will be discussed in detail below, the present invention encompasses embodiments of the circuit breaker comprising an improved ejection device which allows for an accurate control of the dosing of the medium as well as of the timeliness, duration and rate of its ejection. The ejection device is preferably designed such that the arc-extinction medium is ejected at a rate in a range from 0 ml/ms, in particular 0.1 ml/ms, to 15 ml/ms, preferably from 1 ml/ms to 10 ml/ms, more preferably from 3 ml/ms to 6 ml/ms.


It is further preferred that the ejection device is designed such that the arc-extinction and/or exhaust-cooling medium is ejected during an ejection time shorter than 25 ms (milliseconds), preferably during an ejection time in a range from 5 ms to 15 ms, more preferably during an ejection time of about 10 ms.


According to a further preferred embodiment the circuit breaker comprises a dielectric insulation medium comprising an organofluorine compound which is at least partially in gaseous state at operational conditions. Specifically, the dielectric insulation medium is comprised outside the ejection device. Thus, increased insulating properties can be achieved. The term dielectric insulation medium here also encompasses arc-extinction capability of the medium.


In particular, the organofluorine compound comprised in the dielectric insulation medium corresponds to the organofluorine compound comprised in the arc-extinction liquid and/or exhaust-cooling liquid and more particularly stems therefrom. Again, it is understood that the expression “comprising an organofluorine compound” is to be interpreted such that it encompasses embodiments in which a single organofluorine compound is comprised as well as embodiments in which a mixture of different organofluorine compounds is comprised.


According to a further preferred embodiment at least one background gas is present in the circuit breaker selected from the group consisting of: CO2, N2, O2, SF6, CF4, a noble gas, in particular argon, and mixtures thereof. When using an arc-extinction liquid comprising a fluoroketone as in the above described preferred embodiment in combination with a background, in particular a background gas as defined above, also the insulation performance of the background gas can be improved due to the high dielectric strength of the gaseous fluoroketone obtained by vaporization of the arc-extinction liquid using the arc energy and/or due to the high dielectric strength of its decomposition products. As well, when the arc-extinction liquid and specifically the fluoroketone liquid is used for exhaust cooling, it readily evaporates after ejection, possibly decomposes and thus very efficiently cools the exhaust gases.


As mentioned, the present invention further encompasses a preferred embodiment which allows for an accurate control of the dosage of the arc-extinction and/or exhaust-cooling medium as well as of the duration and rate of its ejection.


According to this embodiment, the circuit breaker comprises an ejection device which comprises a compartment in which the arc-extinction and/or exhaust-cooling medium is contained and which has an ejection orifice, i.e. at least one ejection orifice, through which the arc-extinction medium is to be ejected.


According to one embodiment, the ejection orifice opens out directly into an arcing zone of the circuit breaker.


According to an alternative embodiment, the ejection orifice opens out into an injection zone of the circuit breaker, in which injection zone the pressure is lower than in an arcing zone when an arc is present. Thus, a relatively low force is sufficient to eject the arc-extinction liquid at a high ejection rate. In combination with the effect that the arc-extinction medium readily evaporates after ejection, a very high blow pressure can thereby be achieved. As well, when the liquid is used for exhaust cooling, it readily evaporates after ejection and thus very efficiently cools the exhaust gases.


In particular, the ejection orifice of this embodiment preferably opens out into a heating volume, and/or puffer chamber, and/or an exhaust volume of the circuit breaker. An ejection device of the present invention with injection into the heating volume or compression chamber improves the arc extinction capability of the circuit breaker. An ejection device of the present invention with injection into the exhaust volume improves the exhaust cooling and thus the dielectric behaviour of the circuit breaker.


In order to safeguard that the required blow pressure can be built up, the ejection orifice preferably is or comprises a valve which only opens when a predetermined threshold pressure is reached in the compartment.


In particular, the circuit breaker further comprises a floating piston which is designed to transmit a compressing force onto the interior of the compartment during a breaking or breaker operation.


As will be shown in detail below, pressure increase forcing the floating piston to move relative to the compartment and thus transmitting the compressing force onto the compartment can be obtained by mechanical means and/or by a pressure rise in the heating volume due to the heating by the arc. Such compressing force can also be obtained by gas pressure present in a compression chamber or puffer volume, or in an exhaust volume of the circuit breaker.


According to a preferred embodiment, the ejection device is connected to a moving part of the circuit breaker such that a movement of the moving part during a breaker operation is translated into a movement of the floating piston relative to the compartment for compressing the compartment.


It is thereby particularly preferred that the ejection device further comprises an auxiliary compartment which contains a compressible medium, in particular gas, the compartment and the auxiliary compartment being separated from each other by the floating piston. More particularly, the circuit breaker comprises a piston for compressing the interior of the auxiliary compartment, wherein a moving part of the circuit breaker causes a relative movement between the piston and the auxiliary compartment. In particular, the auxiliary compartment can be connected to the moving part. Then the piston increases the pressure in the auxiliary compartment which in turn drives the floating piston and causes ejection of arc-extinction liquid and/or exhaust-cooling liquid from the compartment containing the arc-extinction and/or exhaust-cooling medium into the injection zone of the circuit breaker.


When the piston is moved relatively to the auxiliary compartment, the auxiliary compartment thus functions as a compressible force transmitter or gas cushion that allows smoothing out pressure peaks in the compression force to be transmitted to the floating piston, and consequently to the compartment containing the arc-extinction and/or exhaust-cooling medium. Ultimately, this allows controlling the dosing of the arc-extinction and/or exhaust-cooling medium as well as of the timeliness, duration and rate of its ejection in a very accurate manner.


The compartment containing the arc-extinction and/or exhaust-cooling medium and the auxiliary compartment functioning as a gas cushion can be arranged axially displaced from each other or can be arranged coaxially. Coaxial arrangement, also in combination with some axial displacement, is preferred as it allows a very simple and straightforward design of the ejection device. Thus, the circuit breaker can comprise a housing comprising the compartment and the auxiliary compartment, said housing having a cylindrical shape.


The effect of smoothing out pressure peaks is particularly pronounced when the area of the piston for compressing the interior of the auxiliary compartment is smaller than an area of the floating piston, as it is the case in a further embodiment.


Additionally or alternatively to the above mechanism using a moving part of the circuit breaker, increase of the pressure acting on the floating piston can also be achieved by the heating of the gas, and thus by the pressure increase, e.g. in the heating volume or compression chamber or exhaust volume, caused by the arc.


In a preferred embodiment, the floating piston is therefore designed such that its compressing force is increased when an arc is present, the increase being in particular at least partially caused by an increase of the pressure in the heating volume due to the heating by the arc.


In this embodiment, the floating piston preferably comprises a primary floating piston facing the heating volume and a secondary floating piston facing the compartment containing the arc-extinction and/or exhaust-cooling medium, said primary floating piston and said secondary floating piston being rigidly connected to each other.


In order to avoid the building up of a counterproductive pressure between the primary floating piston and the secondary floating piston, appropriate means such as an outflow valve can be provided. Additionally or alternatively, the volume between the primary and secondary floating piston can be connected to a low pressure volume.


According to a particularly preferred embodiment, both concepts for increasing the compressing force of the floating piston, i.e. the concept of using a moving part of the circuit breaker as well as the concept of using the pressure increase in e.g. the heating volume caused by the arcing heat, can be combined with each other.


In a separate aspect of the invention, embodiments relate to a circuit breaker, in particular a circuit breaker as disclosed above and also in connection with the figures, with the circuit breaker comprising an ejection device comprising an arc-extinction medium for improving extinction of an arc formed during a breaker operation, wherein the arc-extinction medium contained in the ejection device comprises an auxiliary injection compound selected from the group consisting of: O2, CO2, N2, CF4, a noble gas, in particular argon, and mixtures thereof. This allows to create a locally increased concentration of the auxiliary injection compound in the arcing zone and to enhance the thermal and/or dielectric interruption capability of the circuit breaker.


In embodiments, the ejection device comprises an additional compartment for storing the auxiliary injection compound, which has an ejection orifice for ejecting the auxiliary injection. In particular, the above disclosed compartment of the ejection device comprises or is the additional compartment. Preferably, the additional compartment can be arranged close to the arcing zone for pre-heating the auxiliary compound, in particular above 2000 Kelvin.


In embodiments, the auxiliary injection compound contained in the additional compartment is to be injected directly into the arcing zone, in particular via an auxiliary injection channel, or indirectly via the heating volume and/or compression volume.


A same or similar construction as described above with a floating piston, and in particular with an auxiliary compartment as compressible force transmitter, for ejecting an organofluorine compound out of a compartment of the ejection device may be present to transmit an additional compressing force onto an additional compartment of the ejection device, which may be present for storing and ejecting the auxiliary compound.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is further illustrated by the following examples in combination with the figures, which show exemplarily and schematically in:



FIG. 1 a circuit breaker with an outside ejection device or inside ejection device;



FIG. 2 an outside ejection device with a compression mechanism according to a first embodiment of the invention;



FIG. 3 an inside ejection device with a compression mechanism according to a second embodiment of the invention;



FIG. 4a, 4b, 4c three operating states of the outside ejection device of FIG. 2;



FIG. 5 an outside ejection device with another compression mechanism according to a third embodiment of the invention;



FIG. 6 an inside ejection device with yet another compression mechanism according to a fourth embodiment of the invention; and



FIG. 7a, 7b, 7c an ejection device comprising an auxiliary chamber for injection of an auxiliary injection compound.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 shows schematically an exemplary circuit breaker 1 having a central axis 1a, an enclosure 1b, nominal contacts 2, arcing contacts 30, 31, in particular a plug 30 and tulip 31 which provide in opened state between them an arcing zone 32 (see FIG. 2, 3), and an insulating material nozzle 4. The circuit breaker 1 has further a puffer volume or compression chamber 6 and optionally, if it is a self-blast circuit breaker 1, a heating volume or heating chamber 5. It also has an exhaust tube 70 which leads exhaust gases into an exhaust volume 71. The exhaust volume 71 can also be present on the side of the arcing pin or plug 30. FIG. 1 also indicates that the circuit breaker 1 has a novel ejection device outside 8 or inside 9 the circuit breaker enclosure 1b.



FIG. 2 shows a first embodiment of an outside ejection device 8 with a compression mechanism 14 comprising a compartment 14a for arc-extinction medium 18; 18a, 18b, in particular arc-extinction liquid 18; 18a, 18b. The arc-extinction medium 18; 18a, 18b contained in compartment 14a comprises or is an organofluorine compound having a boiling point Tb at 1 bar higher than −60° C. and being selected from the group consisting of: a fluoroether; a fluoroamine; a fluoroketone; and mixtures thereof.


The ejection device further comprises an auxiliary compartment 14b separated from and mechanically connected to the compartment 14a by a floating piston 15, and a mechanically driven piston 11 of the auxiliary compartment 14b. The compression mechanism 14 according to FIG. 2 is arranged outside the circuit breaker enclosure 1b. The compartment 14a serves for receiving, storing and ejecting the arc-extinction medium 18; 18a, 18b under pressure. As shown, the piston 11 can e.g. be fixedly supported on a wall 13 while the compression mechanism 14, in particular the auxiliary compartment 14b, is moveable, typically along the operating axis 1a of the circuit breaker.


Preferably, the ejection device 8, in particular the compression mechanism 14, is mechanically connected to a moving part 16 of the circuit breaker 1. During a breaker operation a movement of the moving part 16 is translated into a relative movement between the auxiliary compartment 14b and the piston 11 for compressing the auxiliary compartment 14b such that a volume of the auxiliary compartment 14b is reduced. Thus the pressure inside the auxiliary compartment 14b increases. This increased pressure is applied via the floating piston 15 onto the liquid ejection compartment 14a so that there the pressure rises, as well.



FIG. 3 shows a second embodiment of an inside ejection device 9 with a compression mechanism 14 comprising a compartment 14a for the arc-extinction medium 18; 18a, 18b, in particular the arc-extinction liquid 18; 18a, 18b, an auxiliary compartment 14b separated from and mechanically connected to the compartment 14a by a floating piston 15, and a mechanically driven piston 11 of the auxiliary compartment 14b. The ejection device 9 and in particular the compression mechanism 14 is now arranged inside the circuit breaker enclosure 1b. The functions of the elements, in particular the moveable mechanism 14, the preferably fixed piston 11, the liquid compartment 14a and the auxiliary compartment 14b are as described above for FIG. 1.


In both embodiments of FIGS. 1 and 2, the pressure in the compartment 14a filled with the incompressible arc-extinction medium 18; 18a, 18b, typically a liquid 18; 18a, 18b, is increased by the compressive force exerted onto the interior of the compartment 14a via the externally driven piston 11. As a result the arc-extinction medium 18; 18a, 18b is ejected through the ejection orifice 17 out of the compartment 14a into an injection zone 5, 6, 71. The injection zone 5, 6, 71 can be a heating volume 5, a puffer volume 6 or an exhaust volume 71.


In a first general embodiment, the injection zone can be any zone of the circuit breaker 1 in which the pressure is lower than in an arcing zone 32 when an arc is present. In a second embodiment, the injection zone can be the arcing zone 32 itself.


In both FIGS. 1 and 2, the auxiliary compartment 14b is filled with a compressible medium, in particular a gas, and serves for transmitting a compression force to the compartment 14a and thereby to pressurize and eventually eject arc-extinction liquid 18; 18a, 18b into an injection zone 5, 6, 71 or possibly arcing zone 32 of the circuit breaker 1. The auxiliary compartment 14b as disclosed herein functions as a compressible force transmitter or gas cushion that allows to smoothen out pressure peaks in the compression force to be transmitted to the liquid compartment 14a. Thus the timeliness, amount and dosing of the arc-extinction medium or liquid 18; 18a, 18b is improved considerably over previously known ejection devices.



FIG. 4a, 4b, 4c show three operating states of the circuit breaker 1 and of the ejection devices 8, 9 here shown for the outside ejection device 8. With increasing contact separation an arc forms, the pressure in the auxiliary compartment 14b is increased by the advancing decrease of the volume of the auxiliary compartment 14b due to the breaker movement of circuit breaker 1 and is smoothly transmitted to the liquid compartment 14a. Continuously or upon traversing a pressure limit, if the ejection orifice is or has a valve 17, arc-extinction fluid 18; 18a, 18b is ejected and is injected into any or several of the aforementioned injection zones 5, 6, 71, in the shown embodiment, particularly into the heating volume 5. After release out of the liquid compartment 14a, the arc-extinction medium 18; 18a, 18b vaporizes and then improves the extinguishing performance of the breaker 1 with highest efficiency.



FIG. 5 shows another variant of an outside ejection device 80 of a circuit breaker 1 having an axis 1a, an enclosure 1b, arcing contacts, in particular a plug (not shown) and a tulip 31, which provide in opened state between them an arcing zone 32. In analogy to the embodiment shown e.g. in FIG. 1, also the embodiment shown in FIG. 5 comprises an insulating material nozzle 4a and an exhaust tube 70 which leads exhaust gases into an exhaust volume 71. Generally, the exhaust volume 71 may also exist on the side of the plug 30, and the exhaust gas may be guided into the exhaust volume 71 by passing through the main nozzle 4 or through a hollow plug 30.


According to the variant shown in FIG. 5, floating piston 21, which is acting on and is compressing compartment 140a containing the arc-extinction medium, is driven by gas pressure present in the circuit breaker 1 during a breaker operation, and in particular is driven by gas pressure present in the heating volume 5 of a self-blast circuit breaker 1. To this end, ejection device 80 is connected to the heating volume 5 via a pressure opening 50.


If due to the compressing force exerted on compartment 140a a pressure limit is exceeded, valve 17 opens such that arc-extinction medium 18; 18a, 18b, in particular arc-extinction liquid 18; 18a, 18b, is ejected out of liquid compartment 140a and is injected into the heating volume 5.



FIG. 6 shows a further variant similar to the one shown in FIG. 5 but with an inside ejection device 90 which operates as described above.


According to both embodiments shown in FIGS. 5 and 6, the floating piston 21 is guided in a piston guidance 140b and comprises a primary floating piston 19 which transmits compressing force from the heating chamber 5 onto a secondary floating piston 20, said secondary floating piston 20 transmitting compressing force to the compartment 14a containing the arc-extinction medium 18; 18a, 18b, in particular the arc-extinction liquid 18; 18a, 18b. The primary floating piston 19 is rigidly connected to the secondary floating piston 20. Given the design of the primary floating piston 19 having a larger area than the secondary floating piston 20a high injection pressure can also be achieved even if the movement of the primary floating piston is relatively small. This blow pressure in the heating volume 5 is further increased by evaporation of the arc-extinction liquid 18; 18a, 18b upon release into the heating volume 5.


The circuit breaker 1 can be, e.g., a high voltage circuit breaker, a generator circuit breaker, a medium voltage circuit breaker, or any other electrical switch which requires active arc extinction, as e.g. a load break switch.


In further embodiments, an ejection device 8, 9; 80, 90—as disclosed in FIG. 1-6 and in the description thereof for an arc-extinction medium 18; 18a, 18b which serves for improving extinction of an arc burning temporarily in the arcing zone 32 of the circuit breaker 1—can also be used when being arranged close to or inside of or outside of the exhaust volume 71 of the circuit breaker, as indicated in FIG. 1, and when containing an exhaust-cooling medium 18; 18a, 18b. Please note that the arc-extinction medium 18 may also serve as the exhaust-cooling medium 18; 18a, 18b and vice versa, and both media 18; 18a, 18b can be or can comprise the same compound or compounds and, in particular, can be identical. Herein, exhaust volume is any volume of the circuit breaker that is connected downstream of the arcing zone and is for outflowing exhaust gases.


Another aspect of the invention is disclosed in connection with FIGS. 7a, 7b and 7c. Embodiments relate to a circuit breaker 1, in particular a circuit breaker 1 as disclosed above, with the circuit breaker 1 comprising an ejection device 8, 9; 80, 90 comprising an arc-extinction medium 18; 18b for improving extinction of an arc formed during a breaker operation, wherein the arc-extinction medium 18; 18b contained in the ejection device 8, 9; 80, 90 comprises an auxiliary injection compound 18b selected from the group consisting of: O2, CO2, N2, CF4, a noble gas, in particular argon, and mixtures thereof. This allows to create a locally increased concentration of the auxiliary injection compound 18b in the arcing zone 32 and to enhance the thermal and/or dielectric interruption capability of the circuit breaker.


In a preferred embodiment the arc extinction medium 18 contained in the ejection device 8, 9; 80, 90 is or comprises oxygen 18b. This may serve for boosting an arc-blowing pressure in the arcing zone 32. The auxiliary injection compound 18b and in particular oxygen 18b as an example can namely trigger additional effects between the components of the gas mixture in the arcing zone 32 which leads to an increased pressure build-up and enhances the extinction capability of the circuit breaker 1.


In an embodiment, and as exemplarily shown in FIG. 7a-7c, the ejection device 8, 9; 80, 90 can comprise an additional compartment 14c in which the arc-extinction medium 18; 18b is contained and which has an ejection orifice 17 through which the auxiliary injection compound 18b, in particular oxygen 18b, is to be ejected. The additional compartment 14c may also be pressurized indirectly via an or the above mentioned auxiliary compartment (not shown in FIG. 7a-7c), in particular for smoothening out pressure peaks in the compression force to be transmitted to a or the above mentioned floating piston and for accurately controlling the dosing of the auxiliary injection compound 18b, in particular oxygen 18b, and the timeliness, duration and rate of its ejection.



FIG. 7a shows an embodiment, in which the auxiliary injection compound 18b, in particular oxygen 18b, is to be injected directly into an arcing zone 32 of the circuit breaker 1 via an auxiliary injection channel 24. In particular, the auxiliary injection channel 24 can be arranged in close proximity to the arcing zone 32 such that temperatures of the auxiliary compound 18b above 2000 K are achievable when the auxiliary compound 18b is injected into the auxiliary injection channel 24 during a contact-opening operation of the circuit breaker 1.



FIGS. 7b and 7c show embodiments, in which the auxiliary injection compound 18b, in particular oxygen 18b, is to be injected indirectly via a or the heating volume 5 and/or compression volume 6 and/or via an auxiliary volume 22. In particular, the auxiliary volume 22 can be arranged in close proximity to the arcing zone 32 such that temperatures of the auxiliary compound 18b above 2000 K are achievable when the auxiliary compound 18b is injected into the auxiliary volume 22 during a contact-opening operation of the circuit breaker 1.


The auxiliary volume 22 for temporarily receiving and transmitting the auxiliary injection compound 18b has the following advantages: When there is high current arcing, as may occur during severe short-circuits (such as T60 and higher) in a circuit breaker 1, for example a self-blast and/or puffer circuit breaker 1, the arcing zone 32 may mainly be filled with ablated PTFE (C2F4) that displaces the gas mixture with which the circuit breaker 1 is filled. In this case, direct injecting of oxygen is likely to be less efficient and not to the full extent to create the additional effect that result in increased pressure build-up. Therefore, indirect injection into the heating volume 5 and/or compression volume 6 and/or auxiliary volume 22 is done.


In particular, the auxiliary volume 22 is fluidly connected via an auxiliary intermediate channel (not explicitly shown in FIG. 7c), an auxiliary opening 23 or an auxiliary valve 23 to a or the heating volume 5 and/or compression chamber 6 for transmitting the auxiliary compound 18b to the arcing zone 32.


In an embodiment, timing means for timed injection of the auxiliary compound 18b, in particular oxygen 18b, into the arcing zone 32 can be present such that a or the boosting of the arc-blowing pressure occurs close to current-zero, in particular in a time window of less than 15 ms, preferably less than 10 ms, more preferably less than 5 ms, and most preferred less than 3 ms, around the time instant when current-zero occurs. Such timed injection allows to create the boost in pressure in close time-relationship to current-zero when the high pressure is most beneficial. The timing means may for example comprise an timing control for operating an ejection orifice valve 17 and/or an auxiliary valve 23 for the auxiliary volume 22.


Such valve timing control may comprise valves 17, 23 that are actively operated, for example based on information about operational timing or operational conditions of the circuit breaker, or that are passively operated, for example by the pressures and/or temperatures present under operating conditions in the circuit breaker. Alternatively or in addition, the timing means may for example also comprise other passive timing control, such as a time-delaying injection channel 17a, and/or a time-delaying auxiliary intermediate channel between auxiliary volume 22 and heating volume 5 or compression chamber 6, and/or a time-delaying auxiliary injection channel (to be present at position 23 in FIG. 7c).


While there are shown and described presently preferred embodiments of the invention, it is to be distinctly understood that the invention is not limited thereto but may otherwise variously be embodied and practised within the scope of the following claims. Therefore, terms like “preferred”, “preferably”, “in particular”, “particularly” or “advantageously” signify optional and exemplary embodiments only. As well, reference numerals are not meant to be limiting but exemplary only.


LIST OF REFERENCE NUMERALS




  • 1 circuit breaker


  • 1
    a axis (of circuit breaker)


  • 1
    b enclosure (of circuit breaker), chamber wall, heating chamber wall, compression chamber wall


  • 2 nominal contacts


  • 30, 31 arcing contacts


  • 30 plug


  • 31 tulip


  • 32 arcing zone


  • 4 nozzle


  • 5, 6, 71 injection zone


  • 5 heating volume, heating chamber


  • 50 pressure opening


  • 6 puffer volume, compression chamber


  • 70 exhaust tube


  • 71 exhaust volume


  • 8, 9; 80, 90 ejection device


  • 8, 80 outside ejection device


  • 9, 90 inside ejection device


  • 11 piston, mechanically driven piston


  • 12 rod, mechanical connection


  • 13 support


  • 14, 140 compression mechanism


  • 14
    a, 140a compartment, liquid compartment


  • 14
    b, auxiliary compartment, gas compartment, gas cushion compartment


  • 140
    b piston guidance


  • 14
    c additional compartment of ejection device 8, 9; 80, 90 for auxiliary injection compound


  • 15, 21 floating piston


  • 16 moving part of interrupter, movement transmitter


  • 17 ejection orifice; valve, outlet valve, ejection valve, injection nozzle, spray nozzle


  • 17
    a injection opening, injection channel


  • 18 arc-extinction medium, arc-extinction liquid


  • 18
    a fluoroketone, mixture of fluoroketones, fluoromonoketone


  • 18
    b auxiliary injection compound; O2, CO2, N2, CF4, a noble gas


  • 19 primary piston, primary floating piston


  • 20 secondary piston, secondary floating piston


  • 22 auxiliary volume for receiving auxiliary compound, pre-heating-up volume for the auxiliary compound


  • 23 auxiliary intermediate channel, auxiliary opening, auxiliary valve


  • 24 auxiliary injection channel.

  • Tb boiling point (at 1 bar), boiling temperature of arc-extinction liquid, boiling temperature of exhaust-cooling liquid


Claims
  • 1. A circuit breaker comprising at least one ejection device comprising an arc-extinction medium and/or exhaust-cooling medium for improving circuit breaker operation, and in particular for improving extinction of an arc formed during a breaker operation, wherein the arc-extinction medium and/or exhaust-cooling medium comprises an organofluorine compound having a boiling point Tb at 1 bar higher than −60° C. and being selected from the group consisting of: a fluoroether; a fluoroamine; a fluoroketone; and mixtures thereof.
  • 2. The circuit breaker according to claim 1, wherein the organofluorine compound has a boiling point Tb at 1 bar higher than −20° C.
  • 3. The circuit breaker according to claim 1, wherein the arc-extinction medium and/or exhaust-cooling medium is at least partially present in liquid form, when it is contained in the ejection device.
  • 4. The circuit breaker according to claim 3, wherein the arc-extinction medium and/or exhaust-cooling medium is present in fully liquid form, when it is contained in the ejection device.
  • 5. The circuit breaker according to claim 3, wherein the arc-extinction medium and/or exhaust-cooling medium is present in the ejection device at least partially or fully in liquid form under operating conditions of the circuit breaker, in particular under operating temperatures and/or operating pressures of the circuit breaker.
  • 6. The circuit breaker according to claim 1, wherein the organofluorine compound comprises in addition at least one atom selected from the group consisting of oxygen, hydrogen, nitrogen, and iodine.
  • 7. The circuit breaker according to claim 1, wherein the arc-extinction medium and/or exhaust-cooling medium, in particular the arc-extinction liquid and/or exhaust-cooling liquid, further comprises at least one compound selected from the group consisting of: a fully fluorinated fluorocarbon, in particular C2F6 and C3F8; a hydrofluorocarbon; and mixtures thereof.
  • 8. The circuit breaker according to claim 1, wherein the fluoroether, the fluoroamine and the fluoroketone are fully fluorinated.
  • 9. The circuit breaker according to claim 1, wherein the arc-extinction medium and/or exhaust-cooling medium comprises a fluoroketone or a mixture of fluoroketones, in particular a fluoromonoketone.
  • 10. The circuit breaker according to claim 9, wherein the fluoroketone, in particular the fluoromonoketone, contains from 5 to 15 carbon atoms.
  • 11. The circuit breaker according to claim 1, wherein the ejection device is designed such that the arc-extinction medium and/or exhaust-cooling medium is ejected at a rate in a range from 0.1 ml/ms to 15 ml/ms.
  • 12. The circuit breaker according to claim 1, wherein the ejection device is designed such that the arc-extinction medium and/or exhaust-cooling medium is ejected during an ejection time shorter than 25 ms.
  • 13. The circuit breaker according to claim 1, wherein the circuit breaker further comprises outside the ejection device a dielectric insulation medium comprising an organofluorine compound selected from the group consisting of: a fluoroether; a fluoroamine; a fluoroketone; and mixtures thereof, which organofluorine compound is at least partially in gaseous state at operational conditions of the circuit breaker.
  • 14. The circuit breaker according to claim 13, wherein at least one background gas is present which is selected from the group consisting of: CO2, N2, O2, SF6, CF4, a noble gas, in particular argon, and mixtures thereof.
  • 15. The circuit breaker according to claim 1, wherein the ejection device comprises a compartment in which the arc-extinction medium and/or exhaust-cooling medium is contained and which has at least one ejection orifice through which the arc-extinction medium is to be ejected.
  • 16. The circuit breaker according to claim 15, wherein the ejection orifice opens out directly into an arcing zone of the circuit breaker.
  • 17. The circuit breaker according to claim 15, wherein the ejection orifice opens out into an injection zone of the circuit breaker, in which injection zone the pressure is lower than in an arcing zone when an arc is present.
  • 18. The circuit breaker according to claim 15, wherein the ejection orifice opens out into a heating volume and/or a compression chamber of the circuit breaker for improving extinction of an arc formed during a breaker operation.
  • 19. The circuit breaker according to claim 15, wherein the ejection orifice opens out into an exhaust volume of the circuit breaker for improving exhaust-cooling during a breaker operation.
  • 20. The circuit breaker according to claim 15, wherein the ejection orifice is a valve which only opens when a predetermined threshold pressure is reached in the compartment.
  • 21. The circuit breaker according to claim 15, further comprising a floating piston which is designed to transmit a compressing force onto the interior of the compartment during a breaker operation.
  • 22. The circuit breaker according to claim 21, wherein the ejection device connected to a moving part of the circuit breaker such that a movement of the moving part during a breaker operation is translated into a movement of the floating piston relative to the compartment for compressing the compartment.
  • 23. The circuit breaker according to claim 21, wherein the ejection device further comprises an auxiliary compartment which contains a compressible medium, in particular a gas, the compartment and the auxiliary compartment being separated from each other by the floating piston.
  • 24. The circuit breaker according to claim 23, further comprising a piston for compressing the interior of the auxiliary compartment, wherein a moving part of the circuit breaker causes a relative movement between the piston and the auxiliary compartment, in particular wherein the auxiliary compartment is connected to the moving part.
  • 25. The circuit breaker according to claim 23, wherein the compartment and the auxiliary compartment are arranged axially displaced from each other and/or are arranged coaxially, and/or wherein the circuit breaker comprises a housing comprising the compartment and the auxiliary compartment, said housing having a cylindrical shape.
  • 26. The circuit breaker according to claim 23, wherein an area of the piston for compressing the interior of the auxiliary compartment is smaller than an area of the floating piston.
  • 27. The circuit breaker according to claim 21, wherein the floating piston is designed such that its compressing force is increased when an arc is present, in particular wherein the increase is at least partially caused by an increase of the pressure in a or the heating volume or compression chamber or exhaust volume of the circuit breaker due to the heating by the arc.
  • 28. The circuit breaker according to claim 27, wherein the floating piston comprises a primary floating piston facing the heating volume or compression chamber or exhaust volume and a secondary floating piston facing the compartment, said primary floating piston and said secondary floating piston being rigidly connected to each other.
  • 29. The circuit breaker according to claim 28, wherein the primary floating piston has a larger area than the secondary floating piston.
  • 30. The circuit breaker according to claim 1, wherein the circuit breaker is a high voltage circuit breaker, a medium voltage circuit breaker, a generator circuit breaker, or a load-break switch.
  • 31. The circuit breaker according to claim 1, with the circuit breaker comprising the ejection device comprising the arc-extinction medium for improving extinction of the arc formed during a breaker operation, wherein the arc-extinction medium when contained in the ejection device comprises an auxiliary injection compound selected from the group consisting of: O2, CO2, N2, CF4, a noble gas, in particular argon, and mixtures thereof.
  • 32. The circuit breaker according to claim 31, wherein the auxiliary injection compound is or comprises oxygen for boosting an arc-blowing pressure in the arcing zone.
  • 33. The circuit breaker according to claim 31, wherein the ejection device comprises an additional compartment in which the auxiliary injection compound is contained and which has an ejection orifice through which the auxiliary injection compound is to be ejected.
  • 34. The circuit breaker according to claim 31, wherein the auxiliary injection compound is to be injected directly into an arcing zone of the circuit breaker via an auxiliary injection channel.
  • 35. The circuit breaker according to claim 34, wherein the auxiliary injection channel is arranged in close proximity to the arcing zone such that temperatures of the auxiliary compound above 2000 K are achievable when the auxiliary compound is injected into the auxiliary injection channel during a contact-opening operation of the circuit breaker.
  • 36. The circuit breaker according to claim 31, wherein the auxiliary injection compound is to be injected indirectly into the arcing zone via a or the heating volume and/or compression volume and/or via an auxiliary volume.
  • 37. The circuit breaker according to claim 36, wherein the auxiliary volume is arranged in close proximity to the arcing zone such that temperatures of the auxiliary compound above 2000 K are achievable when the auxiliary compound is injected into the auxiliary volume during a contact-opening operation of the circuit breaker.
  • 38. The circuit breaker according to claim 36, wherein the auxiliary volume is fluidly connected via an auxiliary intermediate channel, an auxiliary opening or an auxiliary valve to a or the heating volume and/or compression chamber for transmitting the auxiliary compound to the arcing zone.
  • 39. The circuit breaker according to claim 31, wherein timing means for timed injection of the auxiliary compound into the arcing zone are present such that the boosting of the arc-blowing pressure occurs in a time window of less than 15 ms.
  • 40. A gas-insulated switchgear, comprising a circuit breaker according to claim 1.
  • 41. A method for improved circuit breaker operation in a circuit breaker, in particular for improved extinguishing of an arc and/or for improved cooling of exhaust gases formed in a circuit breaker, wherein a liquid arc-extinction medium and/or liquid exhaust-cooling medium comprises an organofluorine compound having a boiling point Tb at 1 bar higher than −60° C. and being selected from the group consisting of: a fluoroether; a fluoroamine; a fluoroketone; and mixtures thereof, comprising the step of: injecting the liquid arc-extinction medium and/or liquid exhaust-cooling medium into an injection zone of the circuit breaker.
  • 42. The method according to claim 41, wherein the organofluorine compound is a fluoroketone or mixture of fluoroketones, wherein the fluoroketone or mixture of fluoroketones is or are injected into a heating volume and/or compression chamber of the circuit breaker for improved extinguishing of an arc formed in the circuit breaker.
  • 43. The method according to claim 41, wherein the organofluorine compound is a fluoroketone or mixture of fluoroketones, wherein the fluoroketone or mixture of fluoroketones is or are injected into an exhaust volume of the circuit breaker for improved cooling of exhaust gases in the circuit breaker.
  • 44. The circuit breaker according to claim 2, wherein the organofluorine compound has a boiling point Tb at 1 bar higher than −10°.
  • 45. The circuit breaker according to claim 2, wherein the organofluorine compound has a boiling point Tb at 1 bar higher than +5° C.
  • 46. The circuit breaker according to claim 2, wherein the organofluorine compound has a boiling point Tb at 1 bar higher than +20° C.
  • 47. The circuit breaker according to claim 2, wherein the organofluorine compound has a boiling point Tb at 1 bar higher than +40° C.
  • 48. The circuit breaker according to claim 2, wherein the organofluorine compound has a boiling point Tb at 1 bar higher than +65° C.
  • 49. The circuit breaker according to claim 2, wherein the organofluorine compound has a boiling point Tb at 1 bar higher than +90° C.
  • 50. The circuit breaker according to claim 10, wherein the fluoromonoketone contains from 5 to 9 carbon atoms.
  • 51. The circuit breaker according to claim 10, wherein the fluoromonoketone contains exactly 5 or exactly 6 or exactly 7 or exactly 8 carbon atoms.
  • 52. The circuit breaker according to claim 11, wherein the arc-extinction medium and/or exhaust-cooling medium is ejected at a rate in a range from 1 ml/ms to 10 ml/ms.
  • 53. The circuit breaker according to claim 11, wherein the arc-extinction medium and/or exhaust-cooling medium is ejected at a rate in a range from 3 ml/ms to 6 ml/ms.
  • 54. The circuit breaker according to claim 12, wherein the ejection device is designed such that the arc-extinction medium and/or exhaust-cooling medium is ejected during an ejection time in a range from 5 ms to 15 ms.
  • 55. The circuit breaker according to claim 12, wherein the ejection device is designed such that the arc-extinction medium and/or exhaust-cooling medium is ejected during an ejection time of about 10 ms.
  • 56. The circuit breaker according to claim 1, wherein at least one background gas is present which is selected from the group consisting of: CO2, N2, O2, SF6, CF4, a noble gas, in particular argon, and mixtures thereof.
  • 57. The circuit breaker according to claim 15, wherein at least two orifices are present and open out into at least two of: an arcing zone, an injection zone with lower pressure than in the arcing zone, a heating volume, a compression chamber, and an exhaust volume.
  • 58. The circuit breaker according to claim 16, further comprising a floating piston which is designed to transmit a compressing force onto the interior of the compartment during a breaker operation.
  • 59. The circuit breaker according to claim 39, wherein the boosting of the arc-blowing pressure occurs in a time window of less than 10 ms.
  • 60. The circuit breaker according to claim 39, wherein the boosting of the arc-blowing pressure occurs in a time window of less than 5 ms.
  • 61. The circuit breaker according to claim 39, wherein the boosting of the arc-blowing pressure occurs in a time window of less than 3 ms.
  • 62. The circuit breaker according to claim 39, wherein the boosting of the arc-blowing pressure occurs around a time instant when current-zero occurs.
  • 63. The circuit breaker according to claim 32, wherein the ejection device comprises an additional compartment in which the auxiliary injection compound is contained and which has an ejection orifice through which the auxiliary injection compound is to be ejected.
  • 64. The circuit breaker according to claim 33, wherein the auxiliary injection compound is to be injected directly into an arcing zone of the circuit breaker via an auxiliary injection channel.
  • 65. The circuit breaker according to claim 35, wherein the auxiliary injection compound is to be injected indirectly into the arcing zone via a or the heating volume and/or compression volume and/or via an auxiliary volume.
  • 66. The method according to claim 42, wherein the organofluorine compound is a fluoroketone or mixture of fluoroketones, wherein the fluoroketone or mixture of fluoroketones is or are injected into an exhaust volume of the circuit breaker for improved cooling of exhaust gases in the circuit breaker.
US Referenced Citations (22)
Number Name Date Kind
3150245 Leeds et al. Sep 1964 A
3739125 Noeske Jun 1973 A
3941962 Thaler Mar 1976 A
3946180 Votta Mar 1976 A
4219711 McConnell Aug 1980 A
4268733 Garzon May 1981 A
4288668 Fischer et al. Sep 1981 A
4307274 Rostron et al. Dec 1981 A
4486632 Niemeyer et al. Dec 1984 A
4736080 St-Jean et al. Apr 1988 A
5001314 Thuries et al. Mar 1991 A
5600111 Dufournet Feb 1997 A
6207918 Lorenz et al. Mar 2001 B1
7763821 Yoshitomo Jul 2010 B2
7893379 Schoenemann Feb 2011 B2
8030590 Yoshida et al. Oct 2011 B2
20030094437 Hirose et al. May 2003 A1
20090078680 Franck et al. Mar 2009 A1
20110192821 Dufournet Aug 2011 A1
20110232871 Flynn et al. Sep 2011 A1
20130277334 Mantilla et al. Oct 2013 A1
20140291292 Pisu Oct 2014 A1
Foreign Referenced Citations (2)
Number Date Country
753375 Jul 1953 GB
2000224722 Aug 2000 JP
Non-Patent Literature Citations (2)
Entry
International Search Report and Written Opinion of the International Searching Authority Application No. PCT/EP2012/075213 Completed: Mar. 11, 2013; Mailing Date: Mar. 20, 2013 13 pages.
International Search Report and Written Opinion of the International Searching Authority Application No. PCT/EP2011/072552 Completed: Sep. 4, 2012; Mailing Date: Sep. 12, 2012 13 pages.
Related Publications (1)
Number Date Country
20140291291 A1 Oct 2014 US
Continuations (3)
Number Date Country
Parent PCT/EP2012/075213 Dec 2012 US
Child 14303177 US
Parent PCT/EP2011/072553 Dec 2011 US
Child PCT/EP2012/075213 US
Parent PCT/EP2011/072552 Dec 2011 US
Child PCT/EP2011/072553 US