1. Field
The present application relates to a family of resettable circuit breakers that include a reset lockout operation and optionally an independent trip operation, and to power distribution systems in which such circuit breakers are utilized. More particularly, the present application is directed to circuit breakers that include a reset lock out capable of preventing the circuit breaker from resetting if a circuit interrupting portion used for fault protection is not functioning properly and/or if an open neutral condition exists. In addition, a trip portion may be added to the circuit breaker to permit the breaker to be tripped independent of the operation of the circuit interrupting portion.
2. Description of the Related Art
The electrical wiring device industry has witnessed an increasing call for circuit interrupting devices or systems which are designed to interrupt power to various loads, such as household appliances, consumer electrical products and branch circuits. In particular, electrical codes require electrical circuits in home bathrooms and kitchens to be equipped with ground fault circuit protection. Presently available GFCI devices, such as the GFCI receptacle described in commonly owned U.S. Pat. No. 4,595,894, use an electrically activated trip mechanism to mechanically break an electrical connection between one or more input and output conductors. Such devices are resettable after they are tripped by, for example, the detection of a ground fault. In the device discussed in the '894 patent, the trip mechanism used to cause the mechanical breaking of the circuit (i.e., the connection between input and output conductors) includes a solenoid (or trip coil). A test button is used to test the trip mechanism and circuitry used to sense faults, and a reset button is used to reset the electrical connection between input and output conductors.
However, instances may arise where an abnormal condition, caused by for example a lightning strike, occurs which may result not only in a surge of electricity at the device and a tripping of the device but also a disabling of the trip mechanism used to cause the breaking of the circuit. This may occur without the knowledge of the user. Under such circumstances, an unknowing user faced with a GFCI which has tripped may press the reset button which, in turn, will cause the device with an inoperative trip mechanism to reset without the ground fault protection available.
Further, an open neutral condition, which is defined in Underwriters Laboratories (UL) Standard PAG 943A, may exist with the electrical wires supplying electrical power to such GFCI devices. If an open neutral condition exists with the neutral wire on the line (versus load) side of the GFCI device, an instance may arise where a current path is created from the phase (or hot) wire supplying power to the GFCI device through the load side of the device and a person to ground. In the event that an open neutral condition exists, current GFCI devices which have tripped, may be reset even though the open neutral condition may remain.
Commonly owned application Ser. No. 09/138,955, filed Aug. 24, 1998, which is incorporated herein in its entirety by reference, describes a family of resettable circuit interrupting devices capable of locking out the reset portion of the device if the circuit interrupting portion is non-operational or if an open neutral condition exists. Commonly owned application Ser. No. 09/175,228, filed Oct. 20, 1998, which is incorporated herein in its entirety by reference, describes a family of resettable circuit interrupting devices capable of locking out the reset portion of the device if the circuit interrupting portion is non-operational or if an open neutral condition exists and capable of breaking electrical conductive paths independent of the operation of the circuit interrupting portion.
Current resettable circuit breakers with fault protection capabilities, such as the HOM-GFI series of GFCI circuit breakers manufactured by Square-D Company, Palatine, Ill., have line and load power and neutral connections and a switch for controlling power distribution to a load. To provide fault protection, such circuit breakers have sense circuitry and linkage to the switch, which are capable of sensing faults (e.g., ground faults) between the load power and the line neutral conductors and opening the switch. A test button accessible from an exterior of the breaker is used to test the operation of the fault protection portion of the breaker when depressed. However, like conventional resettable receptacles, conventional resettable circuit breakers do not include either a reset lockout or an independent trip portion.
The present application relates to a family of resettable circuit breakers having fault protection capabilities. The circuit breakers according to the present application include a circuit interrupting portion, a reset portion and a reset lockout portion. The circuit breakers may also include an independent trip portion. The reset lockout portion inhibits the resetting of the circuit breaker if the circuit interrupting portion is non-operational or if an open neutral condition exists. The trip portion operates independently of the circuit interrupting portion and facilitates tripping of the circuit breaker whether or not the circuit interrupting portion is operating properly.
In one embodiment, a GFCI circuit breaker having a housing, a circuit interrupting portion, a reset portion and a reset lockout portion is provided. Preferably, the housing has line phase and load phase connections that are accessible from an exterior of the housing and a conductive path within the housing between the line and load phase connections. The circuit interrupting portion is disposed within the housing and is configured to open the conductive path upon the occurrence of a ground fault. Examples of faults contemplated include ground faults, arc faults, immersion detection faults, appliance leakage faults and equipment leakage faults. The reset portion includes an actuator that is also accessible from the exterior of the housing, and is configured to close the conductive path upon actuation. Preferably, the reset lockout portion inhibits the closing of the conductive path if the circuit interrupting portion is non-operational or if an open neutral condition exists. The reset lockout portion may be an active type lockout that prevents the resetting of the conductive path, or a passive type lockout whose characteristics inherently inhibit the resetting of the conductive path.
The circuit breaker may optionally include a trip portion disposed at least partially within the housing. The trip portion is configured to open the conductive path independently of the operation of the circuit interrupting portion. Thus, in this configuration, if the circuit interrupting portion is not operating properly, the circuit breaker can still be tripped but it cannot be reset, since the reset operation utilizes the circuit interrupting portion when resetting the breaker.
The present application also provides a method for testing the operation of a circuit breaker having a housing with line and load phase connections accessible from an exterior surface of the housing, and a conductive path between the line and load phase connections. The method includes the steps of: 1) manually activating a trip portion of the circuit breaker to open the conductive path and to enable a reset lockout portion that inhibits closing the conductive path; and 2) activating a reset portion to perform a reset operation. During the reset operation a circuit interrupting portion is activated, and if the circuit interrupting portion is operational the circuit interrupting portion disables the reset lockout portion and facilitates closing of the conductive path. If, however, the circuit interrupting portion is not operating properly, the reset lockout portion remains enabled so that closing the conductive path is inhibited.
The present application also provides a circuit interrupting system that includes a source of power, a circuit breaker, having for example the above described independent trip and reset lockout portions, connected to the source of power, and at least one load connected to the circuit breaker.
Preferred embodiments of the present application are described herein with reference to the drawings in which similar elements are given similar reference characters, wherein:
Resettable Circuit Interrupting Devices
The present application relates to a family of resettable circuit interrupting devices for breaking and making electrical connections between input and output conductive paths associated with the devices and to systems incorporating such devices. The family of devices include: ground fault circuit interrupters (GFCI's), arc fault circuit interrupters (AFCI's), immersion detection circuit interrupters (IDCI's), appliance leakage circuit interrupters (ALCI's) and equipment leakage circuit interrupters (ELCI's). Generally, each circuit interrupting device according to the present application has a circuit interrupting portion, a reset portion and reset lockout portion, and an optional trip portion, which will be described in more detail below.
The circuit interrupting and reset portions preferably use electromechanical components to break and make the conductive path between input and output conductors. More particularly, the circuit interrupting portion is used to break electrical continuity between input and output conductive paths (or conductors) upon the detection of a fault. Operation of the reset and reset lockout portions is in conjunction with the operation of the circuit interrupting portion, so that the electrical connection between conductive paths cannot be reset if the circuit interrupting portion is non-operational and/or if an open neutral condition exists.
The trip portion preferably operates independently of the circuit interrupting portion so that in the event the circuit interrupting portion becomes non-operational the device can still be tripped. Preferably, the trip portion is manually activated and uses mechanical components to break the electrical connections. However, the trip portion may use electrical circuitry and/or electromechanical components to break the electrical connections.
For the purpose of the present application, the structure or mechanisms, used in the circuit interrupting devices, shown in the drawings and described hereinbelow are incorporated into GFCI receptacles suitable for installation in a single-gang junction box in a home, and GFCI circuit breakers suitable for installation in a circuit breaker panel. However, the mechanisms according to the present application can be included in any of the various devices in the family of resettable circuit interrupting devices.
Turning now to
A trip actuator 26, preferably a button, which is part of the trip portion to be described in more detail below, extends through opening 28 in the face portion 16 of the housing 12. The trip actuator is used, in this exemplary embodiment, to mechanically trip the GFCI receptacle, i.e., break the electrical connection between input and output conductive paths, independent of the operation of the circuit interrupting portion.
A reset actuator 30, preferably a button, which is part of the reset portion, extends through opening 32 in the face portion 16 of the housing 12. The reset button is used to activate the reset operation, which re-establishes electrical continuity between the input and output conductive paths, i.e., resets the device, if the circuit interrupting portion is operational.
Electrical connections to existing household electrical wiring are made via binding screws 34 and 36, where screw 34 is an input (or line) connection point and screw 36 is an output (or load) connection point. It should be noted that two additional binding screws (not shown) are located on the opposite side of the receptacle 10. Similar to binding screws 34 and 36, these additional binding screws provide input and output connection points. Further, the input connections are for line side phase (hot) and neutral conductors of the household wiring, and the output connections are for load side phase (hot) and neutral conductors of the household wiring. The plug connections are also considered output conductors. A more detailed description of a GFCI receptacle is provided in U.S. Pat. No. 4,595,894 which is incorporated herein in its entirety by reference. It should also be noted that binding screws 34 and 36 are exemplary of the types of wiring terminals that can be used to provide the electrical connections. Examples of other types of wiring terminals include set screws, pressure clamps, pressure plates, push-in type connections, pigtails and quick-connect tabs.
Referring to
There is also shown in
The circuit interrupting portion has a circuit interrupter and electronic circuitry capable of sensing faults, e.g., current imbalances, on the hot and/or neutral conductors. In a preferred embodiment for the GFCI receptacle, the circuit interrupter includes a coil assembly 50, a plunger 52 responsive to the energizing and de-energizing of the coil assembly and a banger 54 connected to the plunger 52. The banger 54 has a pair of banger dogs 56 and 58 which interact with movable latching member 60 used to set and reset the connection between input and output conductors. The coil assembly 50 is activated in response to the sensing of a ground fault by, for example, the sense circuitry shown in
The reset portion includes reset button 30, movable latching member 60 connected to the reset button 30, latching finger 64 and reset contacts 62 and 63 that temporarily activate the circuit interrupting portion when the reset button is depressed. Preferably, the reset contacts 62 and 63 are normally open momentary contacts. The latching finger 64 is used to engage side R of the contact arm 70 and move the arm 70 back to its stressed position where contact 72 touches contact 74.
The movable latching member 60 is, in this embodiment, common to each portion (i.e., the trip, circuit interrupting, reset and reset lockout portions) and used to facilitate making, breaking or locking out of the electrical connections between the input and output conductive paths. However, the circuit interrupting devices according to the present application also contemplate embodiments where there is no common mechanism or member between each portion or between certain portions.
In the embodiment shown in
Referring now to
After tripping, the coil assembly 50 is de-energized so that spring 53 returns plunger 52 to its original extended position and banger 54 moves to its original position releasing latch member 60. At this time the latch member 60 is in a lockout position where latch finger 64 inhibits movable contact 72 from engaging fixed contact 74, as seen in
To reset the GFCI receptacle so that contacts 72 and 74 are closed and continuity between the input and output conductors is reestablished, the reset button 30 is depressed sufficiently to overcome the bias force of return spring 90 and move the latch member 60 in the direction of arrow A, seen in
After the circuit interrupter operation is activated, the coil assembly 50 is de-energized so that so that plunger 52 returns to its original extended position, and banger 54 releases the latch member 60 so that the latch finger 64 is in a reset position, seen in
Referring again to
In operation, upon depression of the trip button 26, the trip button pivots about point T of pivot arm 106 extending from strap 24 so that the surface 104 of the trip arm 102 can contact the movable latching member 60. As the trip button is moved toward the trip position, trip arm 102 also enters the path of movement of the finger 80 associated with reset button 30 thus blocking the finger 80 from further movement in the direction of arrow A. By blocking the movement of the finger 80, the trip arm 102 inhibits the activation of the reset operation and, thus, inhibits simultaneous activation of the trip and reset operations. Further depression of the trip button 26 causes the movable latching member 60 to pivot about point P (
An alternative embodiment of the trip portion will be described with reference to
In this embodiment, the movable latching member 60 includes a ramped portion 60a which facilitates opening and closing of electrical contacts 72 and 74 when the trip button 26 is moved between the set and trip positions, respectively. To illustrate, when the trip button 26 is in the set position, distal end 114 of trip arm 112 contacts the upper side of the ramped portion 60a, seen in
Using the reset lockout feature described above permits the resetting of the GFCI device or any of the other devices in the family of circuit interrupting devices only if the circuit interrupting portion is operational. Thus, testing of the circuit interrupting portion occurs during the reset operation. Further, if the circuit interrupting portion becomes non-operational after the device is set, the independent trip mechanism can still trip the device. In other words, the circuit interrupting device according to the present application can be tripped whether or not the circuit interrupting portion is operating properly.
The circuit interrupting device according to the present application can be used in electrical systems, shown in the exemplary block diagram of
Circuit Breakers
As noted above, various types of circuit interrupting devices are contemplated by the present application. The resettable receptacle with fault protection described above is one example. Another example is a resettable circuit breaker with fault protection. Generally, such circuit breakers are used as resettable branch circuit protection devices, which are capable of opening a conductive path supplying electrical power to various loads in a power distribution system (or sub-system) if a fault occurs or if the current rating of the circuit breaker is exceeded. Such circuit breakers are also capable of being reset to close the conductive path. The conductive path is typically divided between a line side and a load side. Thus, the circuit breaker has line and load phase (or power) connections. The line side has a line phase connection and the load side has a load phase connection. The line phase connection connects to supplied power and the load phase connection connects to one or more loads. The connections are connection points where external conductors can be connected to the circuit breaker. These connections may be, for example, electrical fastening devices, such as binding screws, lugs or binding plates, that secure the external conductor to the circuit breaker, as well as conduct electricity.
As noted above, the circuit breakers according to the present application can provide fault protection for various types of faults or combination of faults. Examples of the various faults contemplated include ground faults, arc fault, immersion detection faults, appliance leakage faults and equipment leakage faults. Although many various types of fault protection circuit breakers are contemplated, the following descriptions are for GFCI circuit breakers and AFCI circuit breakers.
Ground Fault Circuit Interrupter Circuit Breakers
An exemplary embodiment of a GFCI circuit breaker incorporating a reset lockout will now be described. Generally, each GFCI circuit breaker according to the present application has a circuit interrupting portion, a reset portion and a reset lockout. The GFCI circuit breaker may also include a trip portion that operates independently of the circuit interrupting portion.
The circuit interrupting and reset portions preferably use electromechanical components to break (open) and make (close) the conductive path between the line and load phase connections. However, electrical components, such as solid state switches and supporting circuitry, may be used to open and close the conductive path. Similar to the embodiments described above, the circuit interrupting portion is used to automatically break electrical continuity in the conductive path (i.e., open the conductive path) between the line and load phase connections upon the detection of a ground fault. The reset portion is used to disable the reset lockout and to permit the closing of the conductive path. That is, the reset portion permits re-establishing electrical continuity in the conductive path from the line connection to the load connection. Operation of the reset and reset lockout portions is in conjunction with the operation of the circuit interrupting portion, so that the electrically conductive path between the line and load phase connections cannot be reset if the circuit interrupting portion is non-operational and/or if an open neutral condition exists.
Circuit breakers with an independent trip portion can still be tripped, i.e., the conductive path between the line and load phase connections can still be opened, even if the circuit interrupting portion becomes non-operational. Preferably, the trip portion is manually activated and uses mechanical components to open the conductive path. However, the trip portion may use electrical components, such as solid state switches and supporting circuitry, and/or electro-mechanical components, such as relay switches, to open the conductive path between the line and load phase connections.
Referring now to
Referring to
The movable contact arm 230 is pivotally connected to the actuator 220 such that movement of the actuator is translated to movement of the contact arm 230, or movement of the contact arm 230 is translated to movement of the actuator 220. Preferably, the contact arm 230 is movable between a closed position where contacts 226 and 228 are closed and the conductive path is completed (
A trip/reset assembly 240 is operatively coupled to the power control assembly 224 and is used for ground fault protection and resetting of the circuit breaker 200. In this embodiment, the trip/reset assembly operates as the above-described circuit interrupting portion and the reset portion. When the trip/reset assembly operates to provide fault protection, the assembly operates as the circuit interrupting portion. When the trip/reset assembly 240 operates to reset the circuit breaker, the assembly operates as the reset portion. The trip/reset assembly also provides the current protection for the circuit breaker 200. That is, if the current flowing from the line connection to the load connection exceeds a predetermined current rating for the circuit breaker (e.g., 15 amps), then the trip/reset assembly will respond by causing the power control assembly 224 to open the conductive path, e.g., contacts 226 and 228 will open.
The trip/reset assembly 240 according to this exemplary embodiment includes mechanical linkage 242 to the power control assembly and sensing circuitry included on wiring board 244. The sensing circuitry, examples of which are shown in
The latch arm controller 252 includes solenoid 258 and latch arm linkage 260 which couples the latch arm 248 to the solenoid piston 262 such that movement of the solenoid piston is translated to pivotal movement of the latch arm 248. The trip/reset assembly 240 also includes a reset enable switch assembly 270 that is activated by switch activator 264 secured to the latch arm 248. The reset enable switch assembly is provided to induce or simulate a ground fault condition on the sensing circuitry so that the circuit interrupting portion is activated to disable the reset lockout, as will be described in more detail below. As noted, the latch arm 248 is pivotally movable relative to the latch arm support 250. In addition, the latch arm is also movable in a direction parallel to the latch arm support 250 such that upward movement of the latch arm 248 causes the switch actuator 264 to move in a manner which activates the reset enable switch assembly 270 which, in turn, activates the circuit interrupting portion, if operational. If the circuit interrupting portion is not operational, the circuit breaker cannot be reset. Various switching arrangements for the reset enable switch assembly 270 are shown in
In
In
To prevent multiple firings of the solenoid, the reset enable switch assembly is preferably configured to induce and/or simulate the ground fault condition while in the lock-out condition until solenoid 258 trips latch arm 248 and releases control arm catch 256 or actuator 220 is released. Thus, in the embodiment of
The portion of the trip/reset assembly used to perform the tripping operation is also designated as the circuit interrupting portion, and the portion of the trip/reset assembly used to perform the reset operation is also designated as the reset portion. Further, the portion of the trip/reset assembly used to perform current protection is also designated as the current protection portion.
Referring now to
In this embodiment, the conductive path extends from line power connection 212 to load power connection 214 via the power control assembly 224, the trip/reset assembly and transformer assembly 290. The transformer assembly includes a differential transformer and ground/neutral coil shown in
Typically, circuit breakers are reset by first moving the actuator 220 to the ‘off’ position and then moving the actuator to the ‘on’ position. While this sequence of movements of the actuator are being performed, the control arm 246 and latch arm 248 are moved so that the control arm catch 256 is releasably latched to the latch arm 248. The circuit breaker is in the ‘on’ state so that the conductive path is closed and ground fault protection is armed.
The operation of the circuit breaker 200 embodiment according to the present application will now be described with reference to
If a fault is detected by the sensing circuitry, the solenoid 258 is energized so that the solenoid piston 262 retracts, causing the latch arm linkage 260 to pull the latch arm 248 away from the control arm 246. Once the latch arm 248 moves far enough away from the control arm 246 the control arm catch 256 is released from the latch arm 248. After the catch 256 is released, the tension in spring 254 causes the control arm 246 to pivot in the direction of arrow P′ permitting arm 230 to pivot in direction P causing contacts 226, 228 to open and the actuator 220 to automatically move to the ‘trip’ position, seen in
When the circuit breaker is in the ‘tripped’ state, the reset lockout portion of the breaker is enabled, as seen in
To reset the circuit breaker, further movement of the actuator 220 in the direction of arrow F activates reset enable switch assembly 270 so that if the circuit interrupting portion is operational, the solenoid 258 will energize causing the latch arm linkage 260 and thus the latch arm 248 to retract. When the latch arm 248 retracts, the control arm catch 256 disengages from the latch arm 248 so that the actuator 220 is no longer inhibited from moving to the ‘off’ position, as seen in
Referring again to
To trip the circuit breaker 200 independently of the operation of the circuit interrupting portion, the trip actuator 222 is depressed so that surface 296 of trip arm 292 pushes against the control arm 246 and surface 309 of trip arm 292 pushes against latch arm 248 causing the control arm catch 256 to release from the latch arm 248. The tension in spring 254 causes the contact arm 246 and thus contact 228 to pivot away from the fixed contact 226, thus opening the conductive path.
Arc Fault Circuit Interrupter Circuit Breakers
An exemplary embodiment of an AFCI circuit breaker incorporating a reset lockout will now be described. Generally, each AFCI circuit breaker according to the present application has a circuit interrupting portion, a reset portion and a reset lockout. Similar to the GFCI circuit breaker, the circuit interrupting and reset portions preferably use electromechanical components to break (open) and make (close) the conductive path between the line and load phase connections. However, electrical components, such as solid state switches and supporting circuitry, may be used to open and close the conductive path. Similar to the embodiments described above, the circuit interrupting portion is used to automatically break electrical continuity in the conductive path (i.e., open the conductive path) between the line and load phase connections upon the detection of an arc fault. The reset portion is used to disable the reset lockout and to permit the closing of the conductive path. That is, the reset portion permits re-establishing electrical continuity in the conductive path from the line side connection to the load side connection. Operation of the reset and reset lockout portions is in conjunction with the operation of the circuit interrupting portion so that the electrically conductive path between the line and load phase connections cannot be reset if the circuit interrupting portion is non-operational and/or if an open neutral condition exists.
Similar to the GFCI circuit breaker, the AFCI circuit breaker may also include a trip portion that operates independently of the circuit interrupting portion. AFCI circuit breakers with this trip portion can still be tripped, i.e., the conductive path between the line and load phase connections can still be opened, even if the circuit interrupting portion becomes non-operational. Preferably, the trip portion is manually activated and uses mechanical components to open the conductive path. However, the trip portion may use electrical components, such as solid state switches and supporting circuitry, and/or electromechanical components, such as relay switches and supporting circuitry, to open the conductive path between the line and load phase connections.
The circuit interrupting, reset, reset lockout and optional trip portions according to this embodiment are substantially the same as those for the above-described GFCI circuit breaker embodiment. These portions are shown in
Generally, the sensing circuitry can be configured to monitor the phase conductive path 410 (
In the embodiment of
The following is a description of an exemplary embodiment of the sensing circuitry contemplated by the present application. Referring to
Referring to
The pickup portion 412 includes transformer assembly 430 which picks up spurious signals, which may include arc faults, on the conductive path 410. However, the spurious signals can also be detected using capacitive coupling via capacitors coupled to the conductive path 410. Techniques of using capacitive coupling onto the AC line to detect spurious voltage signals are known and can be used instead of the transformer assembly 430. The transformer assembly 430 includes a magnetic core 431 and a coil 432 constructed using, for example, known toroidal ferrite design techniques. Preferably, the ferrite material and the turn ratio of the magnetic core 431 and coil 432 are chosen to achieve a natural resonance at about 1.5 MHz. A resistor 434 in combination with capacitor 436 form a resonance damping network for broadband frequency pickup. This configuration enables the sensing circuitry to react to a wider range of spurious signals from different sources rather than limiting the sensing circuitry to detecting signals within a limited frequency spectrum.
The signal generated by transformer assembly 430 is transferred to capacitor 438 which performs a DC decoupling function, and diodes 440, 442 prevent low level signals below about 0.6 V peak to peak from entering the processing circuitry. The signal output by the pickup portion 412 is identified as an arcing signal, labeled ARC_SENSE, and is transferred to the processing portion 414. As noted, the processing portion determines whether the spurious signal, ARC_SENSE, includes characteristics that qualify as an arc fault.
A schematic diagram illustrating the processing circuitry 414 is shown in
The amplifier 450 includes a resistor divider network that includes resistors 458 and 460 which determine the maximum dynamic range of the amplifier 450. The amplifier 450 also includes an operational amplifier (op amp) 462 having a fixed gain provided by resistors 464 and 466. The plus input of the op amp 462 is tied to ground potential by resistor 468, and the minus input to the op amp 462 is connected to the junction of resistors 464 and 466, as shown in
The output of the op amp 462 is input to frequency selective circuitry, such as filter 452. Preferably, the filter 452 is a 2nd order Butterworth high pass active filter, which provides better cut off response than passive filters. However, passive type filter designs, such as LC filters, can also be used. The filter 452 includes an op amp 470 connected to an RC network including capacitors 472, 474 and resistors 476, 478, 480, which perform the filtering function. Utilizing capacitors and resistors in conjunction with the op amp 470 provides a steeper roll off in frequency gain below 500 KHz than would be achieved with passive components alone. Preferably, the internal operating characteristics of the op amp 470 provide the upper limit to the high frequencies passed by the filter 452. To permit maximum utilization of the high frequency characteristics of the op amp 470, the gain of the op amp is preferably set at unity. Filter 452 permits the detection of arc faults even if the AC power lines (including the conductive path) are being used for data communications which typically occur at frequencies below 500 KHz.
The output of the filter 452 is input to the rectifier 454 which is preferably a full wave rectifier. The rectifier 454 includes an op amp 482 having its plus input connected to ground and its minus input connected to its feedback path. The rectifier 454 provides a variable level of gain, depending on whether the input signal from the filter 452 is positive or negative. To illustrate, for positive input signals the gain is zero and for negative signals the gain is determined by the ratio of resistors 484 and 486. If the input signal is positive relative to ground, the output of the op amp 482 is negative which pulls the minus input of the op amp down through diode 488 until it is equal to the plus input. Thus, the amplifier has a gain of zero. If, on the other hand, the signal input to the minus input is negative relative to ground, the output of the op amp 482 is positive and feedback current flows through diode 490 and resistor 486.
The signal output from the rectifier 454 is in the form of a pulsed DC voltage, which is fed to the peak detector 456. The peak detector 456 has a constant current source that includes op amp 492, diode 494 and resistors 496, 498 and 499. The constant current source is responsive to the pulsed DC voltage from the rectifier 454, and provides a linear charging curve across capacitor 500. The rate of charging of the capacitor 500 is proportional to the number of positive signals input to the peak detector from the rectifier 454.
As shown in
The arcing signals being detected by the processing circuitry 414 can be categorized into three main types: high, low and very low arcing signals. In the presence of a high arcing signal, the output of the rectifier 454 includes a substantial number of DC pulses so that the current output by the constant current source rapidly charges the capacitor 500 causing the voltage across the capacitor to reach a zener diode breakdown voltage of output transistor 504 relatively quickly.
When the signal detected is a low arcing signal, the peak detector 456 generates pulses that are more dispersed, causing the voltage across capacitor 500 to rise more slowly, thus delaying the breakover of the zener diode breakdown voltage of transistor 504. In this instance, although resistor 502 continuously discharges the capacitor 500, if the pulses from the rectifier 454 continue for a sufficient enough time to completely charge the capacitor 500, breakover of the zener diode breakdown voltage of transistor 504 can occur.
When the signal detected is a very low arcing signal, the discharge rate of the capacitor 500 via resistor 502 is greater than or equal to the charging rate of the capacitor 500. Thus, the voltage across the capacitor 500 does not reach a sufficiently high level to cause breakover of the zener diode breakdown voltage of transistor 504.
The output of transistor 504, labeled TRIG_AFCI, is the trigger signal for the SCR 422 (seen in
The operation of the AFCI circuit breaker is similar to the operation of the GFCI circuit breaker described above with reference to
If an arc fault is detected by the sensing circuitry described above for
When the circuit breaker is in the ‘tripped’ state, the reset lockout portion of the breaker is enabled, as seen in
To reset the circuit breaker, further movement of the actuator 220 in the direction of arrow F activates reset enable switch assembly 270 by closing switch 271, which is preferably a momentary switch. Closing switch 271 triggers pulse generator 273 which outputs a pulse that turns on oscillator 275 for a finite period of time at a resonant frequency of about 1.5 MHz. An example of a suitable pulse is a 10 ms pulse at low current, e.g., in the order of about 1–10 mA. If the circuit interrupting portion is operational, activation of the reset enable switch assembly 270, which simulates a fault, energizes the solenoid 258 causing the latch arm linkage 260 and thus the latch arm 248 to retract. When the latch arm 248 retracts, the control arm catch 256 disengages from the latch arm 248 so that the actuator 220 is no longer inhibited from moving to the ‘off’ position, as seen in
Circuit Breakers with Combined Fault Detection Capabilities
The present application also contemplates circuit breakers that incorporate fault protection capabilities for more than one type of fault. For example, the circuit breaker can be configured with ground fault and arc fault protection, or the circuit breaker can be configured with ground fault and immersion detection fault protection. The construction of such circuit breakers can be similar to that shown in
The following description of
Referring again to
The pickup portion 412 includes a ground fault pickup and an arc fault pickup. The ground fault pick up includes transformer assembly 550 having a differential transformer 570 and a ground neutral transformer 572 both coupled to an integrated circuit 580. The integrated circuit 580 is used to detect ground faults and to output a trigger signal, labeled TRIG_GFCI, to the SCR trigger circuit 564. Examples of suitable integrated circuits include the National Semiconductor LM1851 and the Raytheon RA903 1. As noted above, such ground fault sensing circuitry is known.
The arc fault pickup includes transformer assembly 552 which picks up spurious current signals, which may include arc faults, on the conductive path. However, spurious voltage signals can also be detected using capacitive coupling via capacitors coupled to the phase conductive path. Techniques of using capacitive coupling onto the AC line are known.
The transformer assembly 552 has a magnetic core 590 and a coil 592 constructed using, for example, known toroidal ferrite design techniques. Preferably, the ferrite material and the turn ratio of the magnetic core 590 and coil 592 are chosen to achieve a natural resonance at about 1.5 MHz. A resistor 594 in combination with capacitor 596 forms a resonance damping network for broadband frequency pickup. This configuration of the arc fault pickup enables the sensing circuitry to react to a wider range of spurious signals from different sources rather than limiting the sensing circuitry to detecting signals within a limited frequency spectrum.
The signal generated by transformer assembly 552 is transferred to capacitor 598 which performs a DC decoupling function, and diodes 600, 602 prevent low level signals below about 0.6 V peak to peak from entering the processing circuitry 414. The signal output by the pickup portion is identified as an arcing signal, labeled ARC_SENSE, and is transferred to the processing portion 414. As noted, the processing portion determines whether the spurious signal includes characteristics that qualify it as an arc fault.
The operation of the circuit breaker with combined fault protection capabilities according to the embodiment of
In operation, the actuator 220 (seen in
If a fault (e.g., an arc fault or a ground fault) is detected by the sensing circuitry described above for
When the circuit breaker is in the ‘tripped’ state, the reset lockout portion of the breaker is enabled, as seen in
To reset the circuit breaker, further movement of the actuator 220 (seen in
It should be noted that in the embodiment of
It may be desirable for the sensing circuitry to generally pinpoint the location of an arc fault within a branch circuit. To accomplish this, a second arc fault pickup is added to the pickup portion 412, shown in
In this embodiment, the AC line (i.e., the line phase and neutral conductive paths) is partitioned into two different segments separated by the ground fault pickup of the pickup portion 412. The AC line is split for high frequency signals while the normal 50 or 60 Hz power transmission is unaffected. Referring to
The line side arc fault pickup includes transformer assembly 610 having a magnetic core 612 and a coil 614. The magnetic core 612 and coil 614 are constructed using, for example, known toroidal ferrite design techniques. Preferably, the ferrite material and the turn ratio of the magnetic core 612 and coil 614 are chosen to achieve a natural resonance at about 1.5 MHz. A resistor 616 in combination with capacitor 618 form a resonance damping network for broadband frequency pickup. This configuration enables the sensing circuitry to react to a wider range of spurious signals from different sources rather than limiting the sensing circuitry to detecting signals within a limited frequency spectrum. The load side pickup is the same as the arc fault pickup described above with reference to
Similar to the above-described embodiments, the arcing signal can also be detected using capacitive coupling via capacitors on both the line side pickup and the load side pickup. Techniques of using capacitive coupling onto the AC line are known.
Schematic diagrams illustrating the line processing circuitry 414a and the load processing circuitry 414b are shown in
Referring to
The AGC amplifier 620 also includes an operational amplifier (op amp) 642 having a fixed gain provided by resistors 644 and 646. Resistor 644 is preferably a variable resistor that permits matching of the base gain of the AGC amplifier in both the line processing circuitry 414a and the load processing circuitry 414b. The plus input of the op amp 642 is connected to ground by resistor 648, and the minus input of the op amp is connected to resistors 644 and 646 as shown. To illustrate the effect of the feedback of the FET 636, assume that resistors 630, 632 and 634 are equal. With no feedback on the LINE_AGC signal, FET 636 is an open circuit and 67% of the LINE_ARC_SENSE signal enters op-amp 642. With full feedback on the LINE_AGC, the FET 636 is saturated so that only 50% of the LINE_ARC_SENSE signal enters the op-amp 642. By altering the values of resistors 630, 632 and 634 and resistors 638 and 640, the weight and responsiveness of the AGC amplifier can be varied.
The output of the op amp 642 is input to frequency selective circuitry, such as filter 622. Preferably, the filter 622 is a 2nd order Butterworth high pass active filter, which provides better cut off response than passive filters. However, passive type filter designs, such as LC filters, can also be used.
Preferably, the filter 622 includes an op amp 650 connected to an RC network including capacitors 652, 654 and resistors 656, 658, 660 which perform the filtering function. Utilizing capacitors and resistors in conjunction with the op amp 650 provides a steeper roll off in frequency gain below 500 KHz than would typically be achieved with passive components alone. Preferably, the internal operating characteristics of the op amp 650 provide the upper limit to the high frequencies passed by the filter 622. To permit maximum utilization of the high frequency characteristics of the op amp 650, the gain of the op amp is preferably set at unity. Filter 622 permits the detection of arc faults even if the AC power lines (including the conductive path) are being used for data communications which typically occur at frequencies below 500 KHz.
The output of the filter 622 is input to the rectifier 624, which is preferably a full wave rectifier. Preferably, the rectifier 624 is configured to rectify input voltages in the millivolt range, and to provide a DC voltage for the peak detectors 626. The rectifier 624 includes an op amp 670 having its plus input connected to ground and its minus input connected to its feedback path. The rectifier 624 provides a variable level of gain, depending on whether the input signal from the filter 622 is positive or negative. To illustrate, for positive input signals the gain is zero, and for negative signals the gain is preferably determined by the ratio of resistors 672 and 674. If the input signal is positive relative to ground, the output of the op amp 670 is negative which pulls the minus input of the op amp down through diode 676 until it is equal to the plus input. Thus, the op amp 670 has a gain of zero. If, on the other hand, the signal input to the minus input is negative relative to ground, the output of the op amp 674 is positive and feedback current flows through diode 678 and resistor 674 and the gain is set by resistors 672 and 674.
The signal output from the rectifier 624 is in the form of a pulsed DC voltage, which is fed to the peak detector 626. The peak detector 626 has a constant current source that includes op amp 680, diode 682 and resistors 684,686 and 688. The constant current source is responsive to the pulsed DC voltage from the rectifier 624 and provides a linear charging curve across capacitor 690. The rate of charging of the capacitor 690 is proportional to the number of positive signals input to the peak detector 626 from the rectifier 624.
As shown in
The arcing signals being detected by the processing circuitry 414a can be categorized into three main types: high, low and very low arcing signals. In the presence of a high arcing signal, the output of the rectifier 624 includes a substantial number of DC pulses so that the current output by the constant current source rapidly charges the capacitor 690 causing the voltage across the capacitor 690 to reach a zener diode breakdown voltage of output transistor 694 relatively quickly.
When the signal detected is a low arcing signal, the peak detector 626 generates pulses that are more dispersed, causing the voltage across capacitor 690 to rise more slowly, thus delaying the breakover of the zener diode breakdown voltage of transistor 694. In this instance, although resistor 692 continuously discharges the capacitor 690, if the pulses from the rectifier 624 continue for a sufficient enough time to completely charge the capacitor 690, breakover of the zener diode breakdown voltage of transistor 694 can occur.
When the signal detected is a very low arcing signal, the discharge rate of the capacitor 690 via resistor 692 is greater than or equal to the charging rate of the capacitor 690. Thus, the voltage across the capacitor 690 does not reach a sufficiently high level to cause breakover of the zener diode breakdown voltage of transistor 694.
The output of transistor 694, labeled LINE_OUT, is input to arc fault trigger generator 700 (seen in
Referring now to
The AGC amplifier 710 also includes op amp 724 having a fixed gain provided by resistors 726 and 728. The plus input of the op amp 724 is connected to ground via resistor 730, and the minus input of the op amp 724 is connected to resistors 726 and 728 as shown.
The output of the op amp 724 is input to frequency selective circuitry, such as filter 732. Similar to the line processing circuitry the filter 732 is preferably a 2nd order Butterworth high pass active filter, which provides better cut off response than passive filters. However, passive type filter designs, such as LC filters, can also be used.
Preferably, the filter 732 includes an op amp 734 connected to an RC network including capacitors 736, 738 and resistors 740, 742, 744 which perform the filtering function. Utilizing capacitors and resistors in conjunction with the op amp 734 provides a steeper roll off in frequency gain below 500 KHz than would be achieved with passive components alone. Preferably, the internal operating characteristics of the op amp 734 provide the upper limit to the high frequencies passed by the filter 732. To permit maximum utilization of the high frequency characteristics of the op amp 734, the gain of the op amp is preferably set at unity. Filter 732 permits the detection of arc faults even if the AC power lines (including the conductive path) are being used for data communications which typically occur at frequencies below 500 KHz.
The output of the filter 732 is input to the rectifier 750, which is preferably a full wave rectifier. Preferably, the rectifier 750 is configured to rectify input voltages in the millivolt range, and provides a DC voltage for the peak detector 762. The rectifier 750 includes an op amp 752 having its plus input connected to ground and its minus input connected to its feedback path. The rectifier portion provides a variable level of gain, depending on whether the input signal from the filter portion is positive or negative. To illustrate, for positive input signals the gain is zero, and for negative signals, the gain is determined by the ratio of resistors 754 and 756. If the input signal is positive relative to ground, the output of the op amp 752 is negative which pulls the minus input of the op amp down through diode 760 until it is equal to the plus input. Thus, the amplifier has a gain of zero. If, on the other hand, the signal input to the minus input is negative relative to ground, the output of the op amp 752 is positive and feedback current flows through diode 758 and resistor 756 and the gain is set by resistors 754 and 756.
The signal output from the rectifier 750 is in the form of a pulsed DC voltage, which is fed to the peak detector 762. The peak detector 762 has a constant current source that includes op amp 764, diode 766 and resistors 768, 770 and 772. The constant current source is responsive to the pulsed DC voltage from the rectifier 750, the output of which provides a linear charging curve across capacitor 774. Similar to the line processing circuitry 414a, the rate of charging of capacitor 774 is proportional to the number of positive signals input to the peak detector portion from the rectifier 750.
As seen in
The arcing signals being detected by the processing circuitry 414b can be categorized into three main types: high, low and very low arcing signals. In the presence of a high arcing signal, the output of the rectifier 750 includes a substantial number of DC pulses so that the current output by the constant current source rapidly charges the capacitor 774 causing the voltage across the capacitor to reach a zener diode breakdown voltage of output transistor 778 relatively quickly.
When the signal detected is a low arcing signal, the peak detector 762 generates pulses that are more dispersed, causing the voltage across capacitor 774 to rise more slowly, thus delaying the breakover of the zener diode breakdown voltage of transistor 778. In this instance, although resistor 776 continuously discharges the capacitor 774, if the pulses from the rectifier 750 continue for a sufficient enough time to completely charge the capacitor 774, breakover of the zener diode breakdown voltage of transistor 778 can occur.
When the signal detected is a very low arcing signal, the discharge rate of the capacitor 774 via resistor 776 is greater than or equal to the charging rate of the capacitor 774. Thus, the voltage across the capacitor 774 does not reach a sufficiently high level to cause breakover of the zener diode breakdown voltage of transistor 778.
The output of transistor 778, labeled LOAD_OUT, is input to the arc fault trigger generator 700, which as described above, will trigger the SCR 562 causing the solenoid 258 to be energized and contacts 226 and 228 to open or permits resetting of the circuit breaker.
As noted, the output voltage of peak detector 762, designated LNE_AGC, is used as the feedback signal for the AGC amplifier 620 in the line processing circuitry 414a.
Referring to
Resistors 784 and 786 provide input resistance to the respective comparator 780 or 782, while resistor 788 provides feedback and resistors 790 and 792 provide adjustable hysteresis for each respective comparator. The output of each comparator 780 and 782 is rectified by a diode 794. In one configuration shown in
In another configuration, the rectified output of comparator 780 can be used to provide, for example, a visual or audible indication via indicator 808 that a sensed arc fault occurred on the line side. While, the rectified output of comparator 782 can be used as the arc fault trigger signal to trip or reset the circuit breaker. In this alternative configuration, arc faults sensed on the line side would neither trip the circuit breaker nor permit resetting of the circuit breaker, but arc faults sensed on the load side would.
It should be noted that the LINE_OUT and LOAD_OUT signals are input to both comparators 780 and 782. The LINE_OUT signal is input to the plus input of comparator 780 and the minus input of comparator 782. The LOAD_OUT signal is input to the plus input of comparator 782 and the minus input of comparator 780. In this exemplary configuration, the comparators are prebiased to initially set the outputs of the comparators 780 and 782 low. Thus, if the LINE_OUT signal is greater than the LOAD_OUT signal, the output of comparator 780 goes high, assuming the LINE_OUT signal is greater than the breakover voltage of transistor 694, seen in
Therefore, if arcing occurs on the load side of the AFCI/GFCI, the signal generated at the load side pickup will be greater than the signal generated at the line side pickup due to the attenuation of high frequencies caused by the separating impedance. On the other hand, arcing occurring on the line side will generate a larger signal at the line side pickup than at the load side pickup.
In the embodiments described above, both the AFCI and GFCI fault protection capabilities operate to interrupt the AC power by opening contacts 226 and 228 via the actuation of solenoid 258. The solenoid 258 is actuated by triggering the SCR 562 via the SCR trigger circuit 564. As described above, in one embodiment, the SCR trigger circuit 564 can function to provide an OR function to trigger the SCR 562 using known thyristor triggering techniques when either of its two input trigger signals TRIG_GFCI and TRIG_AFCI go active.
When resetting the circuit breaker, the reset operation can be configured so that reset of the circuit breaker can be achieved when one of the two trigger signals, TRIG_GFCI or TRIG_AFCI, go active. In this instance, the SCR trigger circuit 564 would continue to provide the OR function.
However, if the SCR trigger circuit 564 is configured as an OR function, then one of the fault protection operations of the circuit breaker need be operational in order to reset the circuit breaker. To verify that each fault protection operation of the circuit breaker is operational when the circuit breaker is reset, a test operation for each type of fault protection should be provided.
Similar to the reset operation for the above described embodiments, the circuit breaker is reset by moving the actuator 220 in the direction of arrow F (seen in
In this configuration, when the latch 830 is clocked and the TRIG_AFCI and TRIG_GFCI lines are active, AND gate 820 outputs a logic 1 which triggers the SCR 562 to energize solenoid 258.
The output of AND gate 820 is also connected to the reset input of the latch 830 via inverter 836. As a result, when AND gate 820 outputs a logic 1, latch 830 is reset, so that gate 820 is disabled and gates 822 and 824 are enabled for standard operation of the breaker. It may be desirable to include a delay line 838 (shown in phantom in
Systems Having Circuit Breakers With Reset Lockout
The circuit breakers described above can be used in electrical distribution systems in, for example, a home, shown in the exemplary block diagram of
While there have been shown and described and pointed out the fundamental features of the invention, it will be understood that various omissions and substitutions and changes of the form and details of the device described and illustrated and in its operation may be made by those skilled in the art, without departing from the spirit of the invention.
This application is a continuation of application Ser. No. 09/950,733, filed Sep. 12, 2001 now U.S. Pat. No. 6,717,782; which is a continuation of Ser. No. 09/379,140, filed Aug. 20, 1999 and which was granted U.S. Pat. No. 6,288,882 on Sep. 11, 2001; which is a continuation-in-part of application Ser. No. 09/369,759, filed Aug. 6, 1999 and which was granted U.S. Pat. No. 6,282,070 on Aug. 28, 2001; which is a continuation-in-part of application Ser. No. 09/138,955, filed Aug. 24, 1998 and which was granted U.S. Pat. No. 6,040,967 on Mar. 21, 2000, all of which are incorporated herein in their entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
3309571 | Gilker | Mar 1967 | A |
3538477 | Walters et al. | Nov 1970 | A |
3702418 | Obenhaus | Nov 1972 | A |
3766434 | Sherman | Oct 1973 | A |
3813579 | Doyle | May 1974 | A |
3864649 | Doyle | Feb 1975 | A |
3872354 | Nestor et al. | Mar 1975 | A |
3949336 | Dietz | Apr 1976 | A |
4002951 | Halbeck | Jan 1977 | A |
4010431 | Virani | Mar 1977 | A |
4010432 | Klein | Mar 1977 | A |
4013929 | Dietz et al. | Mar 1977 | A |
4034266 | Virani et al. | Jul 1977 | A |
4034360 | Schweitzer, Jr. | Jul 1977 | A |
4051544 | Vibert | Sep 1977 | A |
4063299 | Munroe | Dec 1977 | A |
4109226 | Bowling | Aug 1978 | A |
4114123 | Grenier | Sep 1978 | A |
4159499 | Bereskin | Jun 1979 | A |
4163882 | Baslow | Aug 1979 | A |
4194231 | Klein | Mar 1980 | A |
4223365 | Moran | Sep 1980 | A |
4288768 | Arnhold et al. | Sep 1981 | A |
4316230 | Hansen | Feb 1982 | A |
4377837 | Matsko | Mar 1983 | A |
4386338 | Doyle | May 1983 | A |
4409574 | Misencik | Oct 1983 | A |
4412193 | Bienwald et al. | Oct 1983 | A |
4442470 | Misencik | Apr 1984 | A |
4515945 | Ranken et al. | May 1985 | A |
4518945 | Doyle | May 1985 | A |
4521824 | Morris | Jun 1985 | A |
4538040 | Ronemus | Aug 1985 | A |
4567456 | Legatti | Jan 1986 | A |
4568899 | May | Feb 1986 | A |
4574260 | Franks | Mar 1986 | A |
4578732 | Draper | Mar 1986 | A |
4587588 | Goldstein | May 1986 | A |
4595894 | Doyle et al. | Jun 1986 | A |
4630015 | Gernhardt et al. | Dec 1986 | A |
4631624 | Dvorak | Dec 1986 | A |
4641216 | Morris et al. | Feb 1987 | A |
4641217 | Morris et al. | Feb 1987 | A |
4686600 | Morris et al. | Aug 1987 | A |
4719437 | Yun | Jan 1988 | A |
4802052 | Brant et al. | Jan 1989 | A |
4814641 | Dufresne | Mar 1989 | A |
4816957 | Irwin | Mar 1989 | A |
4851951 | Foster, Jr. | Jul 1989 | A |
4901183 | Lee | Feb 1990 | A |
4949070 | Wetzel | Aug 1990 | A |
4967308 | Morse | Oct 1990 | A |
4979070 | Bodkin | Dec 1990 | A |
5144516 | Sham | Sep 1992 | A |
5148344 | Rao | Sep 1992 | A |
5161240 | Johnson | Nov 1992 | A |
5179491 | Runyan | Jan 1993 | A |
5185687 | Beihoff et al. | Feb 1993 | A |
5202662 | Bienwald | Apr 1993 | A |
5223810 | Van Haaren | Jun 1993 | A |
5224006 | MacKenzie et al. | Jun 1993 | A |
5229730 | Legatti | Jul 1993 | A |
5239438 | Echtler | Aug 1993 | A |
5281331 | Golan | Jan 1994 | A |
5293522 | Fello | Mar 1994 | A |
5363269 | McDonald | Nov 1994 | A |
5418678 | McDonald | May 1995 | A |
5448443 | Muelleman | Sep 1995 | A |
5477412 | Neiger et al. | Dec 1995 | A |
5510760 | Marcou et al. | Apr 1996 | A |
5515218 | DeHaven | May 1996 | A |
5517165 | Cook | May 1996 | A |
5541800 | Misencik | Jul 1996 | A |
5555150 | Newman, Jr. | Sep 1996 | A |
5576580 | Hosoda et al. | Nov 1996 | A |
5594398 | Marcou et al. | Jan 1997 | A |
5600524 | Neiger et al. | Feb 1997 | A |
5617284 | Paradise | Apr 1997 | A |
5625285 | Virgilio | Apr 1997 | A |
5637000 | Osterbrock et al. | Jun 1997 | A |
5654857 | Gershen | Aug 1997 | A |
5655648 | Rosen | Aug 1997 | A |
5661623 | McDonald et al. | Aug 1997 | A |
5680287 | Gernhardt | Oct 1997 | A |
5694280 | Zhou | Dec 1997 | A |
5706155 | Neiger et al. | Jan 1998 | A |
5710399 | Castonguay et al. | Jan 1998 | A |
5715125 | Neiger | Feb 1998 | A |
5729417 | Neiger et al. | Mar 1998 | A |
5805397 | MacKenzie | Sep 1998 | A |
5808397 | Kotani | Sep 1998 | A |
5815363 | Chu | Sep 1998 | A |
5825602 | Tosaka | Oct 1998 | A |
5844765 | Kato | Dec 1998 | A |
5847913 | Turner et al. | Dec 1998 | A |
5875087 | Spencer et al. | Feb 1999 | A |
5877925 | Singer | Mar 1999 | A |
5917686 | Chan | Jun 1999 | A |
5920451 | Fasano et al. | Jul 1999 | A |
5933063 | Keung et al. | Aug 1999 | A |
5943198 | Hirsh et al. | Aug 1999 | A |
5956218 | Berthold | Sep 1999 | A |
5963408 | Neiger et al. | Oct 1999 | A |
6021034 | Chan | Feb 2000 | A |
6040967 | DiSalvo | Mar 2000 | A |
6052265 | Zaretsky et al. | Apr 2000 | A |
6180899 | Passow | Jan 2001 | B1 |
6204743 | Greenberg et al. | Mar 2001 | B1 |
6226161 | Neiger et al. | May 2001 | B1 |
6232857 | Mason, Jr. et al. | May 2001 | B1 |
6242993 | Fleege et al. | Jun 2001 | B1 |
6246558 | DiSalvo et al. | Jun 2001 | B1 |
6252407 | Gershen | Jun 2001 | B1 |
6255923 | Mason, Jr. et al. | Jul 2001 | B1 |
6259340 | Fuhr et al. | Jul 2001 | B1 |
6282070 | Ziegler et al. | Aug 2001 | B1 |
6288882 | DiSalvo et al. | Sep 2001 | B1 |
6309248 | King | Oct 2001 | B1 |
6381112 | DiSalvo | Apr 2002 | B1 |
6381113 | Legatti | Apr 2002 | B1 |
6437700 | Herzfeld et al. | Aug 2002 | B1 |
6437953 | DiSalvo et al. | Aug 2002 | B2 |
D462660 | Huang et al. | Sep 2002 | S |
6545574 | Seymour et al. | Apr 2003 | B1 |
6590753 | Finlay | Jul 2003 | B1 |
6646838 | Ziegler et al. | Nov 2003 | B2 |
6657834 | DiSalvo | Dec 2003 | B2 |
6671145 | Germain et al. | Dec 2003 | B2 |
6717782 | DiSalvo et al. | Apr 2004 | B2 |
6813126 | DiSalvo et al. | Nov 2004 | B2 |
6864766 | DiSalvo et al. | Mar 2005 | B2 |
7049911 | Germain et al. | May 2006 | B2 |
20050063110 | DiSalvo et al. | Mar 2005 | A1 |
20050286183 | Germain | Dec 2005 | A1 |
20060139132 | Porter et al. | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
28 21 138 | Nov 1978 | DE |
34 31 581 | Nov 1991 | DE |
081661 | Jun 1983 | EP |
21345 | May 1977 | ES |
2391549 | Dec 1978 | FR |
227930 | Jan 1925 | GB |
830018 | Sep 1960 | GB |
2207823 | Aug 1989 | GB |
2292491 | Feb 1996 | GB |
61-259428 | Nov 1986 | JP |
WO0011696 | Mar 2000 | WO |
WO0045366 | Mar 2001 | WO |
WO0233720 | Apr 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20040184207 A1 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09950733 | Sep 2001 | US |
Child | 10818626 | US | |
Parent | 09379140 | Aug 1999 | US |
Child | 09950733 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09369759 | Aug 1999 | US |
Child | 09379140 | US | |
Parent | 09138955 | Aug 1998 | US |
Child | 09369759 | US |