The inventive subject matter relates to circuit breakers and, more particularly, to connection interfaces for circuit breakers.
Medium voltage vacuum circuit breakers are commonly used in industrial power systems. For example, in mining applications, medium voltage breakers may be used to protect transformers, capacitor banks, motors, busbar sections and cables. Such breakers may be designed to be resistant to dust and moisture and may have a compact form factor that facilitates installation in low-profile mining equipment sleds.
Some embodiments of the inventive subject matter provide a vacuum circuit breaker including a frame and a vacuum interrupter supported by the frame. A control wiring harness exits from an opening in a top face of a housing portion of the frame and a terminal block is disposed on the top face of the housing portion and includes first terminals connected to wires of the control wiring harness and second terminals configured to be connected to external wires.
In some embodiments, the terminal block includes a feed-through terminal block. The first terminals may have wire entry locations on a first side of the feed-through terminal block and the second terminals may have wire entry locations on a second side of the feed-through terminal block. The circuit breaker may further include a DIN rail affixed to the top face of the housing portion and the feed-through terminal block may include a plurality of modular feed-through terminal blocks mounted on the DIN rail. At least one jumper may electrically interconnect at least one of the first terminals and at least one of the second terminals.
In some embodiments, the terminal block includes a screw terminal block, the first terminals include a first row of screw terminals on a top side of the screw terminal block and the second terminals include a second row of screw terminals parallel to the first row of screw terminals on the top side of the screw terminal block. At least one jumper may electrically interconnect at least one of the first screw terminals and at least one of the second screw terminals. A DIN rail may be affixed to the top face of the housing portion and the terminal block may be mounted on the DIN rail, e.g., using self-clinching studs that engage holes in the DIN rail.
In some embodiments, the terminal block extends less than about 2 inches above the top face of the housing portion. In further embodiments, the terminal block extends less than about 1 inch above the top face of the housing portion.
Some embodiments of the inventive subject matter provide an apparatus including a vacuum circuit breaker having a frame including a housing portion having first side face serving as a front panel of the circuit breaker. A control wiring harness passes through a top face of the housing portion. A DIN rail is mounted on the top face and a terminal block is mounted on the DIN rail, connected to wires of the control wiring harness and configured to be connected to external wiring. In some embodiments, the terminal block may include a plurality of modular terminal blocks mounted on the DIN rail. In other embodiments, the terminal block may include a screw terminal block mounted on the DIN rail using self-clinching studs that engage holes in the DIN rail.
Specific exemplary embodiments of the inventive subject matter now will be described with reference to the accompanying drawings. This inventive subject matter may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the inventive subject matter to those skilled in the art. In the drawings, like numbers refer to like elements. It will be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. As used herein the term “and/or” includes any and all combinations of one or more of the associated listed items.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the inventive subject matter. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless expressly stated otherwise. It will be further understood that the terms “includes,” “comprises,” “including” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this inventive subject matter belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Referring to
Referring to
In the drawings and specification, there have been disclosed exemplary embodiments of the inventive subject matter. Although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the inventive subject matter being defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5094626 | Fabrizi et al. | Mar 1992 | A |
5541561 | Grunert | Jul 1996 | A |
5669788 | Brockman | Sep 1997 | A |
20040217831 | Bauer | Nov 2004 | A1 |
20080047179 | Puskar | Feb 2008 | A1 |
20090257173 | Rane et al. | Oct 2009 | A1 |
20150016084 | Hrncir, Jr. | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
201311872 | Sep 2009 | CN |
1942514 | Jul 2008 | EP |
2876660 | May 2015 | EP |
Entry |
---|
IEC Medium Voltage Vacuum Circuit Breakers 12 kV, 17.5 kV, and 24 kV Product Guide Eaton Corporation Jan. 2011. |
Dietrich Biester: Siemens 4000 A Vakuum-Leistingsschalter, Oct. 2009, pp. 1-3; Retrieved from http://www.siemens.com/press/pool/de/pressemitteilungen/2009/power—distribution/ (picture). |
European Search Report, corresponding to EP App. No. 14192855.6, 9 pages, Apr. 24, 2015. |
W-VACi for safety, reliability and performance; IEC Medium Voltage Vacuum Circuit Breakers 12 kV, 17.5 kV and 24 kV Product Guide , Eaton Corporation, Jan. 2011, pp. 1-16. |
Number | Date | Country | |
---|---|---|---|
20150144597 A1 | May 2015 | US |