The present invention relates to a switch comprising a suspended mobile element to be used preferably in low-voltage systems.
It is known that automatic switches and disconnectors comprise one or more electrical poles, associated to each of which are at least one fixed contact and at least one mobile contact, which can be coupled to/uncoupled from one another. Automatic switches according to the known art also comprise control means that enable movement of the mobile contacts, thus bringing about their coupling to or uncoupling from the corresponding fixed contacts.
The action of said control means occurs traditionally on a main shaft that is operatively connected to the mobile contacts so that, following upon its rotation, the mobile contacts are moved from a first operating position to a second operating position, which are respectively characteristic of an open configuration of the switch and a closed configuration thereof.
In the case of switches for low currents (indicatively of up to 800 A) and with somewhat limited breaking capacities, there exist solutions that bring the main shaft to coincide with the mobile contacts, giving rise to a rotating mobile element capable of guaranteeing insulation between the phases and of course correct transmission of the movements and of the forces involved. The mobile element is usually supported by structural parts of the box for containing the switch, which basically form bearing areas with the mobile element itself.
As the currents involved increase, an increasing performance of mechanical tightness is required from the mobile element given the same dielectric characteristics, which must in any case be preserved and guaranteed.
From the practical standpoint, the requirement of better mechanical characteristics results in an increase in the radial dimensions of the mobile element, with a consequent increase in the friction that is created in said areas of bearing. This of course adversely affects the performance of the apparatus and tends to reduce the duration of the switch and of its parts, with progressive degradation of the overall mechanical efficiency.
To overcome the above drawback, metal reinforcement shafts have been used, which pass through the mobile element, so enabling rated currents of 800 A to be exceeded in certain configurations. These shafts, however, may interfere with the characteristics of electrical insulation between the poles and are hence far from advantageous inasmuch as their use is extremely critical. In practice, the aspects mentioned above lead to a preference for the use of the mobile element only in switches for low currents.
There consequently exists the need to extend the use of the mobile element also in those switches designed for providing high performance in terms of rated currents and of breaking capacity in order to create more compact assembly structures that can be readily assembled and made up of a limited number of components.
On the basis of these considerations, the main task forming the subject of the present invention is to provide a switch that will enable the limits and drawbacks referred to above to be overcome.
In the framework of this task, a purpose of the present invention is to provide a switch that has a structure that is compact, can be easily assembled, and is made up of a limited number of components.
Another task forming the subject of the present invention is to provide a switch in which the friction between the different parts making up the switch will be extremely limited and compatible with high performance and long service life.
A further purpose of the present invention is to provide a switch that will present a high reliability, will be easy to manufacture, and afford competitive costs.
The above task, as well as the above and other purposes that will emerge more clearly from what follows, is achieved through a switch comprising:
an outer casing containing for each pole at least one fixed contact and at least one mobile contact, which can be coupled to/uncoupled from one another; and
a mobile element, defined by a shaped body comprising at least one seat for each pole of said switch, each seat being designed to house at least one mobile contact of the corresponding pole.
The switch according to the invention is characterized in that it comprises:
a control mechanism, operatively connected to the mobile element to enable its movement, said control mechanism comprising mechanical means, supported by a structural part connected to the outer casing; and
supporting means, constrained to the structural part of said control and operatively connected to the mobile element through hinge connection means to provide a centre of rotation for the mobile element itself.
The switch according to the invention is distinguished by radial dimensions of the mobile element that are freely expandable owing to the presence of supporting means that provide the mobile element itself with a centre of rotation and a rotation pin, limiting the areas of bearing necessary for its support and its rotation. Said supporting means are moreover directly constrained only to the structure of the control mechanism, a fact that facilitates considerably the operations of assembly and maintenance of the switch.
Further characteristics and advantages of the invention will emerge more clearly from the description of preferred but non-exclusive embodiments of the switch according to the invention, illustrated by way of example in the attached plate of drawings, wherein:
With reference to the above figures, the switch 1 according to the invention comprises an outer casing 2 containing one or more electrical poles, each defined by at least one fixed contact 10 that is coupled to/unccoupled from at least one mobile contact 20. The outer casing 2 also houses a mobile element 50, constituted by a shaped body made of insulating material, preferably a thermosetting resin, which comprises at least one seat 25 for each pole of the switch 1. Operatively connected to the mobile element 50 is a control mechanism, basically constituted by mechanical means supported by a structural part 70 stably connected to the outer casing 2, for instance through the use of tie-rods 62, as specified in greater detail hereinafter.
With reference to
The switch 1 according to the invention is characterized in that it comprises supporting means constrained to the structural part 70 of the control 60 and at the same time connected to the mobile element 50 through hinge connection means. As will emerge clearly from the sequel of the description, the supporting means support the mobile element 50 with respect to the outer casing 2, preventing the formation of further areas of contact which, as mentioned above, are a source of disadvantageous phenomena of friction. The supporting means at the same time also provide a centre of rotation for the mobile element itself and perform a function of bearings. This solution appears completely different from certain traditional solutions, in which the containing casing is used as supporting means for the mobile element, or else as compared to other solutions, in which particular supports are used that surround the mobile element, giving rise, however, to extensive areas of relative contact.
With reference to
With reference to
Alternatively, the outer casing can be made of sheet metal, as commonly occurs in switches of the so-called “open” or “air circuit breaker” (ACB) type.
In the case of use of metal outer casings, insulating elements will be set between the fixed contacts and the casing itself, as in the known art.
With reference to
With reference once again to
In a preferred embodiment thereof, the seats 25 are defined basically by a front wall 26, a rear wall 27, substantially opposite to the front one 26, by a first side wall 28 and a second side wall 29, which are substantially opposite to one another. These walls are mutually arranged in such a way as to generate at least one first opening and one second opening, from which there come out, respectively, the corresponding mobile contact 20 and means of electrical junction 47 (see
The mobile element 50 comprises connecting parts 55a and 55b, which are substantially circular, located between two adjacent seats 25. In the solution illustrated in
Each of these connecting parts 55 comprises at least one radial recess for connection of the mobile element 50 to the supporting means, as described in what follows. More precisely the mobile element 50 illustrated in
In a possible embodiment illustrated once again in
In the solution illustrated, the first side 71 also comprises a side opening 77 provided for enabling the members 79 for signalling the state of the switch 1 (for example, open, closed, tripped) to come out.
As illustrated in
The structural part 70 of the control mechanism 60 comprises fastening protrusions 78, which enable fixing of the control itself to the containment casing 2 of the switch 1 and in particular to the bottom 3. As already mentioned, fixing is obtained preferably by means of a plurality of tie-rods 62, which are inserted in through holes 83 made in the bottom 3 of the outer casing 2 and then screwed in threaded cavities 34 provided on the fastening protrusions 78. It is evident that said connection renders the mobile element 50 substantially suspended in cantilever fashion with respect to the casing 2, and for said purpose the “three-lobed” shape of the supporting arms 80 and 81 is particularly advantageous in so far as it enables a greater resistance to bending and hence a more stable positioning of the mobile element itself.
As already referred to above, the supporting arms 80 and 81 provide the centre of rotation of the mobile element 50 through a hinge connection. The latter is obtained within said radial recesses 51 and 52, pre-arranged in the connecting parts 55a and 55b of the mobile element 50. With reference in particular to
Alternatively, the two pins 110 and 111 could also be replaced by a single transverse pin that reaches both of the radial recesses 51 and 52 once it is inserted in the mobile element 50.
An initial step envisages the assembly of the supporting arms 80 and 81 to the mobile element 50, which follows placing of the mobile contacts 20 in the seats 25. The mobile contacts 20 are in this step preferably already connected to the corresponding electrodes 22 through the aforesaid electrical-junction means 21. Next, the mobile element 50 is placed within the outer casing 2 generated by the coupling between the bottom 3 and the lid 4, and is then connected to the control mechanism 60. In particular, the connection rods 91 and 92 of the kinematic means are fixed to the mobile element 50 in a position corresponding to the hollow sectors 57 thereof and through the use of the transverse pin 131. The supporting arms 80 and 81 are then fixed to the sides 71 and 72 of the structure 70 of the control 60 through the removable fixing means 73 in a position corresponding to the retention ends 86 and 86a provided on the arms themselves. The control 60 is then located in the correct operating position by means of the use of the axial tie-rods 62 that connect it stably to the bottom 3. The sides 71 and 72 of the control 60 are shaped in such a way as to mate with the rear wall 32 of the lid, which functions in practice as spacer between the control itself and the bottom 3. In this way, also the mobile element 50 suspended to the control 60 is placed in a correct operating position. The presence of the lid 4 made of insulating material contributes also to improving insulation of the control from the electrical parts.
In the case of a casing made of sheet metal, such as for example in the typical construction of an air circuit breaker (ACB), the sides of the structure of the control may be shaped so as to mate directly with the bottom of the outer casing.
From what has just been said, it may therefore be understood that another advantage of the switch 1 according to the invention is represented by the fact that it is structurally configured in such a way as to enable convenient replacement of a control mechanism with one having a different construction and performance, as schematically illustrated in
The technical solutions adopted for the switch according to the invention, thus enable the pre-set tasks and purposes to be fully achieved. The switch has a compact internal structure, which can be easily assembled and is made up of a limited number of components. The use of supporting means enables limitation of the areas of friction, thus improving the mechanical efficiency of the switch.
The switch thus conceived may undergo numerous modifications and variations, all of which falling within the scope of the inventive idea; moreover, all of the items may be constituted by other technically equivalent ones.
In practice, the materials used, as well as the contingent dimensions and shapes, may be any whatsoever according to the requirements and the state of the art.
Number | Date | Country | Kind |
---|---|---|---|
BG2005A000026 | May 2005 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/062024 | 5/3/2006 | WO | 00 | 11/8/2007 |