The present invention relates to circuit breakers.
Circuit breakers are one of a variety of overcurrent protection devices used for circuit protection and isolation. The circuit breaker provides electrical protection whenever an electric abnormality occurs. In a typical circuit breaker, current enters the system from a power line and passes through a line conductor to a stationary contact fixed on the line conductor, then to a movable contact. The movable contact is fixedly attached to a pivoting arm. As long as the stationary and movable contacts are in physical contact, current passes between the stationary contact and the movable contact and out of the circuit breaker to down-line electrical devices.
In the event of an overcurrent condition (e.g., a short circuit), extremely high electromagnetic forces can be generated. The electromagnetic forces can be used to separate the movable contact from the stationary contact. Upon separation of the contacts, an arcing condition occurs. The breaker's trip unit will trip the breaker which will cause the contacts to separate.
Embodiments of the invention are directed to circuit breakers with moving arms having first and second spaced apart contacts which can operate with heel-toe action to direct arcing from a second contact across a stationary contact surface to arc chutes to thereby alleviate deterioration due to arcing and/or improve conductivity of the first moving contact surface over time.
A circuit breaker comprising: a moveable contact arm, the contact arm having first and second cooperating arm members coupled together, the first arm member engaging a pivotable handle and the second arm member comprising first and second spaced apart electrical contacts.
The second arm member can be configured to translate the first and second contacts in a rocking action so that the first contact moves away from at least one stationary contact after the second contact engages the at least one stationary contact immediately prior to an arcing event.
A lower end portion of the first arm member can be pivotably attached to an upper end portion of the second arm member. The circuit breaker further can include a link that extends from a top portion of the first arm to the second arm above the first and second contacts to rotate the second arm and facilitate the rocking action when the upper arm starts to rotate.
The circuit breaker can include first and second spaced apart stationary contacts and an arc chute. The second contact of the second arm member can reside closer to the arc chute than the first contact. The first contact can be a continuous use contact and the second contact can engage the second stationary contact while the first contact is spaced apart from the first stationary contact when the contact arm moves toward an “OFF” position and/or in an opening position to thereby direct arcing into the arc chute.
The breaker can include a coupler affixed to the first arm member. The coupler can have a slot. The second arm member can also have a slot. The slot of the coupler and the slot of the second arm member can be aligned with a pin extending therethrough and allow the pin to travel inward, outward, upward and downward while the pin remains in the slots to place the second arm member and first and second electrical contacts in different positions.
The first arm member can hold a lower end of a mechanism spring. The first arm member can apply a downwardly extending force vector to the second arm member. The breaker can include a resilient member extending down from the first arm member to reside behind the second arm member. The resilient member can be configured to apply an upwardly extending force vector.
The first arm member can have a curvilinear receiving pocket that faces an upper end of the second arm member and holds a spring that transmits the downwardly extending first force vector.
A resilient member can extend down from a back surface of the first arm member to reside behind a back surface of the second arm member. The resilient member can have first and second linear segments with the second linear segment angularly extending between about 100-160 degrees from the first linear segment.
The second arm member holds the first contact on one corner and has a downwardly extending leg that holds the second contact.
The first and second contact members can be spaced apart from each other between about 0.030 inches and about 0.234 inch. The second contact arm can have an open space or recess between the first and second contact members.
The second arm member can have an upwardly extending slot. The circuit breaker can further include a coupler that is attached to the first arm member and has an elongate slot. The coupler slot and the second arm member slot can engage a pin that allows the second arm member to move relative to the first arm member through defined positions.
The circuit breaker can include at least one shaped flat resilient member having first and second linear segments separated by a bend so that the second linear segment extends at an angle greater than 90 degrees away from the first linear segment. The first linear segment can be attached to and extends below the first arm member behind the second member to force the second arm member to rotate forward.
The circuit breaker can include a mechanism spring held by a lower end of the first arm member. The first arm member can include a knee that resides above the lower end of the first arm member that faces the mechanism spring. The lower end segment of the first arm member can have a smaller width than a width of the second arm member adjacent thereto and can resides spaced apart a distance from an adjacent underlying portion of the second arm member.
The circuit breaker can also include first and second spaced apart stationary contacts on a contact support. The first contact of the second arm member of the contact arm can be aligned with the first stationary contact and the second contact of the second arm member of the contact arm can be aligned with the second stationary contact. The second arm member can be configured to move relative to the first arm member to position the second contact of the contact arm against the second stationary contact while the first contact of the contact arm is spaced apart from the first stationary contact when the circuit breaker is in an OPENING position (moving toward OFF).
The circuit breaker can include first and second spaced apart stationary contacts on a contact support. The first contact of the contact arm can be aligned with the first stationary contact and the second contact of the contact arm can be aligned with the second stationary contact. The second arm member can be configured to move relative to the first arm member to: (a) position the first contact of the contact arm against the first stationary contact while the second contact of the contact arm is spaced apart from the second stationary contact when the circuit breaker is in an ON position, (b) position the second contact of the contact arm against the secondary stationary contact while the first contact of the contact arm is spaced apart from the first stationary contact when the circuit breaker is in an OPENING position (moving toward OFF), and (c) position the first and second contacts of the contact arm away from the first and second stationary contacts in an OFF and TRIPPED position.
Other embodiments are directed to methods of operating a circuit breaker. The methods include: providing a circuit breaker with a moving contact arm having first and second spaced apart contacts; rocking the first and second spaced apart contacts against at least one stationary contact so that the first contact is against the stationary contact, while the second contact is placed against the at least one stationary contact, then the first contact is moved away from the at least one stationary contact immediately prior to an arcing action after the second contact engages a respective at least one stationary contact; and directing arcing through the second contact and engaged stationary contact down into an adjacent arc chute providing an arc-free contact surface of the moving contact arm first contact.
The stationary contact can be configured as first and second spaced apart stationary contacts. The second stationary contact can be aligned with the second contact of the moving contact arm. The rocking step can be carried out so that the first contact of the moving contact arm is spaced apart from the first and second stationary contacts immediately prior to an arcing event.
The moving contact arm step can use first and second cooperating arm members coupled together with at least one pin and cooperating slots, and a resilient member extending behind the second arm member. The rocking step comprises translating the pin to move into different positions while held in the slots and pushing the second arm member to move relative to the first arm member to position the first and second contacts against the at least one stationary contact in a defined sequence.
The method can include applying spring force vectors to the lower arm member during the rocking action that (i) push an inner facing surface of the lower arm member downward and (ii) push an outer facing surface of the lower arm member inward.
The method can include applying a first spring force against a lower arm member of a moveable contact arm by mechanically pushing at least one resilient member against the lower arm member to rotate the lower arm member clockwise when opening and applying a second spring force using a spring attached to an upper arm member of the moveable contact arm, the lower arm member configured to move inward, outward and up and down relative to the upper arm member whereby the second spring force is stronger than the first spring force so as to rock the lower arm member counter clockwise once in an “ON” position.
Yet other embodiments are directed to circuit breakers. The circuit breakers include: a housing; a pivotable handle held by the housing; and a moveable contact arm held in the housing. The arm has first and second cooperating arm members, the first arm member engaging the pivotable handle and the second arm member comprising first and second spaced apart electrical contacts with at least one elongate slot. A pin extends through the slot and allows the second arm member to translate inward, outward, upward and downward relative to the first arm member. The breakers also include first and second spaced apart stationary contacts in the housing, the first stationary contact aligned with the first electrical contact of the second arm member and the second stationary contact aligned with the second electrical contact of the second arm member. The first electrical contact of the second arm member is configured to move to reside against only the first stationary contact and the second electrical contact of the second arm member is configured to move to reside against only the second stationary contact, wherein, in an opening state and/or moving toward “OFF” position, prior to an arcing event, the first contact of the second arm member is spaced apart from first stationary contact while the second contact of the second arm member is against the second stationary contact to thereby direct arcing across a surface of the second contact into the arc chute and avoid arcing across surfaces of the first contact and the first stationary contact.
At least one of the stationary contact or the second arm electrical contact includes silver in an amount between about 25 and 97%.
Further features, advantages and details of the present invention will be appreciated by those of ordinary skill in the art from a reading of the figures and the detailed description of the preferred embodiments that follow, such description being merely illustrative of the present invention.
It is noted that aspects of the invention described with respect to one embodiment, may be incorporated in a different embodiment although not specifically described relative thereto. That is, all embodiments and/or features of any embodiment can be combined in any way and/or combination. Applicant reserves the right to change any originally filed claim or file any new claim accordingly, including the right to be able to amend any originally filed claim to depend from and/or incorporate any feature of any other claim although not originally claimed in that manner. These and other objects and/or aspects of the present invention are explained in detail in the specification set forth below.
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which illustrative embodiments of the invention are shown. Like numbers refer to like elements and different embodiments of like elements can be designated using a different number of superscript indicator apostrophes (e.g., 40, 40′, 40″, 40′″).
In the drawings, the relative sizes of regions or features may be exaggerated for clarity. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. The term “Fig.” (whether in all capital letters or not) is used interchangeably with the word “Figure” as an abbreviation thereof in the specification and drawings. In the figures, certain layers, components or features may be exaggerated for clarity, and broken lines illustrate optional features or operations unless specified otherwise. In addition, the sequence of operations (or steps) is not limited to the order presented in the claims unless specifically indicated otherwise.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.
Spatially relative terms, such as “beneath”, “below”, “bottom”, “lower”, “above”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary term “below” can encompass orientations of above, below and behind. The device may be otherwise oriented (rotated 90° or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
The term “about” refers to numbers in a range of +/−20% of the noted value.
As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless expressly stated otherwise. It will be further understood that the terms “includes,” “comprises,” “including” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. It will be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
The term “non-ferromagnetic” means that the noted component is substantially free of ferromagnetic materials so as to be suitable for use in the arc chamber (non-disruptive to the magnetic circuit) as will be known to those of skill in the art.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Turning now to the figures,
As is also shown in
The lower end 22e of the arm 20 and/or lower member 22 can have two spaced apart outer edges 22o with a recess therebetween 22r. The first contact 251 can be held above the lower contact 252. The lower end of the second arm member 22 can have the respective spaced apart portions that hold the first and second contacts 251, 252.
The lower end can have a perimeter which includes a first (typically upper) corner 22c on one side and a projecting leg 22l on the other, the first corner 22c holds the first contact 251 and the leg 22l holds contact 252. The lower end 22e of the arm 20, typically lower arm member 22, can be split or forked to define the contact holding regions/segments 22c, 22l with the recess 22r therebetween. The leg 22l typically extends a greater distance out from the primary body of the second/lower arm member 22 than the upper corner 22c.
Referring to
As shown in
It is also noted that the “heel-toe” action of the separated contacts can be used with other circuit breaker configurations not requiring the magnetic separation.
The conductive contact arm 20 can fit over a handle bearing segment 18 of the handle 15. The handle bearing segment 18 allows the handle 15 and arm 20 to move while the handle 15 remains in contact with the arm 20.
The handle 15 can be associated with a disconnect operator (e.g., an operating handle) connected to an assembly for opening and closing separable main contacts in a circuit breaker 10 or for turning power “ON” and “OFF” using a switch associated with a fuse. The circuit breaker 10 can be for a motor starter unit or feeder unit, for example. It is noted that not all circuit breakers 10 require a “TRIP” position (e.g., fused disconnect switches), so in some embodiments, the arm 25 and handle 15 can include only two operative positions, “ON”, “OFF,” rather than “ON,” “OFF” and “TRIP” positions.
Referring to
Referring to
Referring to
Embodiments of the invention are configured to keep the arc at the second contact 252 close to the arc chute 75 (
Embodiments of the invention configure the arm 20 so that the lower arm member 22 can rock the first and second spaced apart contacts 251, 252 to have a heel/toe engagement sequence for the two separate contacts 251, 252. The moving arm 20 can rock from the first (continuous use) contact 251 to the arcing contact 252 immediately before separating from the stationary contact 1251 whereby the arc is drawn between the two contacts 252, 1252. Upon closing, the arcing contact 252 can mate first with its stationary contact 1252 and the continuous use contact 251 will then mate/engage with its stationary contact 1251.
In conventional circuit breakers, the contact 25 opens exactly opposite: the “ON” position is at the bottom and the “opening” position is located at the top of the contact, but the arc chutes 75 (
While a coupler 30 is shown to allow the pivoting movement of the two arm members 21, 22 relative to each other, the arm members 21, 22 may be directly attached, e.g., a pin 33 may extend through each arm 21, 22 as shown in
During endurance testing per UL 489, the arm 20 rapidly repetitively moves through its operative positions. Operational requirements from UL's “X” Program called “Overload” currently requires a breaker to be toggled 50 times at six (6) times rated current. For a 150 Amp breaker, the six (6) times test current is 900 Amps, which is arcing the contacts 25, 125 fifty (50) times. Afterwards, a temperature rise test is performed and the temperature rise cannot exceed 50 degrees C. It is contemplated that the new cooperating arm members 21, 22 will meet the overload temperature rise requirement, and, indeed, be able to operate at a maximum temperature rise defined by the noted UL Overload test of 50 degrees C.
The effectiveness of contact performance is typically directly proportional to the amount of silver in the contacts, which can be an expensive component of a breaker 10. Embodiments of the invention allow a reduction in the percentage of silver in one or more of the contacts 252, 1252 (e.g., the second “arcing contact” 252 and/or portions of a single larger stationary contact or one or both of first and second stationary contacts 1251, 1252, where two spaced apart stationary contacts are used), potentially allowing for a substantial cost reduction. Today some contacts are 50% Ag by weight, although 70% and up to 97% may be useful. It is contemplated that one or more of the contacts 252, 1252 can have Ag in a range as low as about 25% by weight. Embodiments of the invention can have stationary and/or moving contacts 25, 125 with Ag content between about 25%, and 97%, including about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, and about 90%. As noted above, the continuous use or first contact 251 and/or stationary contact 1251 can have a greater percentage of silver than the arcing or second contact 252 and/or stationary contact 1252. In some embodiments, the first contact 251 can have 10-50% greater silver than the second contact 252. For example, the first contact 251 and/or 1251 can comprise between 60-97% silver and the second contact 252 and/or 1252 can comprise between 25-50% silver.
In some embodiments, in the “ON” position (
The coupler 30, where used, can be pinned, screwed, nailed, riveted (27,
Referring again to
Referring to
As shown in
The lower/second arm member 22 can have a shunt attachment member 61 that engages a shunt 60 (
Still referring to
The lower resilient member 32 (
The two arm members 21, 22 are typically pivotably attached together. The resilient member 32 can extend to a back side of the lower arm to provide a bias to force the lower member 22 to kick and/or rotate forward to a desired operative position(s).
In some particular embodiments, a separate resilient member (e.g., spring) 37 can be used to transmit the force vector F1 and can reside in the gap space 24 (
Referring to
The handle 15 can include an external portion 15e (
Still referring to
The arm 20 and handle 15 can have defined operative positions, “OFF,” “ON” and (optionally) “TRIP”. The movements can be over a desired handle angulation, typically between about 45 degrees to about 90 degrees, more typically about 90 degrees between the “OFF” and “ON” positions with the “TRIP” position between the “OFF” and “ON”. Typically, in use, the face F (
In some embodiments, the circuit breakers 10 can be DC circuit breakers, AC circuit breakers, or both AC (alternating current) and DC (direct current) circuit breakers.
The circuit breakers 10 can be rated for voltages between about 1V to about 5000 volts (V) DC and/or may have current ratings from about 15 to about 2,500 Amps. The circuit breakers 10 may be high-rated miniature circuit breakers, e.g., above about 70 A in a compact package. However, it is contemplated that the circuit breakers 10 and components thereof can be used for any voltage, current ranges and are not limited to any particular application as the circuit breakers can be used for a broad range of different uses.
The circuit breakers 10 can be molded case circuit breakers (MCCB)s. MCCBs are well known. See, e.g., U.S. Pat. Nos. 4,503,408, 4,736,174, 4,786,885, and 5,117,211, the contents of which are hereby incorporated by reference as if recited in full herein.
The circuit breakers 10 can be a bi-directional DC MCCB. See, e.g., U.S. Pat. No. 8,222,983, the content of which is hereby incorporated by reference as if recited in full herein. The DC MCCBs can be suitable for many uses such as data center, photovoltaic, and electric vehicle applications.
As is known to those of skill in the art, Eaton Corporation has introduced a line of MCCBs designed for commercial and utility scale photovoltaic (PV) systems. Used in solar combiner and inverter applications, Eaton PVGard™ circuit breakers are rated up to 600 Amp at 1000 Vdc and can meet or exceed industry standards such as UL 489B, which requires rigorous testing to verify circuit protection that meets the specific requirements of PV systems. However, it is contemplated that the circuit breakers 10 can be used for various applications with corresponding voltage capacity/rating. In some particular embodiments, the circuit breaker 10 can be a high-rating miniature circuit breaker.
The pivoting can be carried out to move adjacent ends of the first and second cooperating arm members closer together and farther apart over a sequence of operational positions between ON and OFF (block 205).
The first and second arm members can be made of different conductive metallic materials (block 202).
The second arm member can have opposing longitudinally spaced apart ends, the first end has the contacts and can pivot toward and away from the at least one stationary contact and the second end is attached directly or indirectly to the first arm member (block 208).
The first and second arm members can be connected with a coupler with an elongate slot attached to adjacent end portions of the first and second arm members. The method can include moving the second arm member up and down while a pin attached to the sleeve and second arm member travels in the slot (block 212).
Only the second contact 252 of the arm 22 engages an aligned second stationary contact while the first contact is spaced apart from an aligned first stationary contact to thereby direct arcing directly into the arc chutes avoiding virgin contact surfaces thereabove (block 215).
The foregoing is illustrative of the present invention and is not to be construed as limiting thereof. Although a few exemplary embodiments of this invention have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention. Therefore, it is to be understood that the foregoing is illustrative of the present invention and is not to be construed as limited to the specific embodiments disclosed, and that modifications to the disclosed embodiments, as well as other embodiments, are intended to be included within the scope of the invention.
This application is a continuation-in-part of U.S. patent application Ser. No. 14/559,276, filed Dec. 3, 2014, the contents of which are hereby incorporated by reference as if recited in full herein.
Number | Date | Country | |
---|---|---|---|
Parent | 14559276 | Dec 2014 | US |
Child | 14698192 | US |