The invention relates to a circuit device, an electro-optical device, and an electronic apparatus, for example.
High-speed serial transfer, such as Low Voltage Differential Signaling (LVDS), is known that serves as an interface capable of achieving high-speed communications between circuit devices. In the high-speed serial transfer, a transmission circuit transmits serialized data with differential signals, while a reception circuit differentially amplifies the differential signals, achieving data transfer. JP-A-2009-225406 and JP-A-2005-236931, for example, disclose such techniques about high-speed serial transfer as described above.
In the high-speed serial transfer, a signal delay due to a capacitance and a parasitic resistance at an input terminal of a circuit device is a major issue. Such a method for reducing a signal delay as described above is conceivable that allows a signal to undergo alternating current (AC) coupling to reduce a direct current (DC) component to improve frequency characteristics. The method, however, requires a capacitor having a greater capacitance, leading to an increase in power consumption. Such a method for suppressing a signal delay and a decrease in amplitude is further conceivable in which an amplifier circuit referred to as an equalizer is provided around an input terminal of a circuit device to increase amplitude when a signal level changes. The method, however, causes such issues as an excessive increase in size and power consumption for a circuit device due to the amplifier circuit.
An aspect of the invention relates to a circuit device including a first input terminal configured to accept, from among a first signal and a second signal configuring a differential signal, the first signal, a second input terminal configured to accept the second signal, a reception circuit including a non-inverted input terminal and an inverted input terminal, a first signal line electrically coupling the non-inverted input terminal of the reception circuit and the first input terminal, a second signal line electrically coupling the inverted input terminal of the reception circuit and the second input terminal, a first variable capacitance circuit having an end coupled to a first coupling node of the first signal line on a side adjacent to the first input terminal and another end coupled to a second coupling node of the first signal line on a side adjacent to the non-inverted input terminal, and a second variable capacitance circuit having an end coupled to a third coupling node of the second signal line on a side adjacent to the second input terminal and another end coupled to a fourth coupling node of the second signal line on a side adjacent to the inverted input terminal.
In the aspect of the invention, the first signal line may be provided with a first resistor between the first coupling node and the second coupling node, and the second signal line may be provided with a second resistor between the third coupling node and the fourth coupling node.
In the aspect of the invention, the first variable capacitance circuit may include a first switch group having an end coupled to the first coupling node, a second switch group having an end coupled to the second coupling node, and a first capacitor group provided between another end of the first switch group and another end of the second switch group, and the second variable capacitance circuit may include a third switch group having an end coupled to the third coupling node, a fourth switch group having an end coupled to the fourth coupling node, and a second capacitor group provided between another end of the third switch group and another end of the fourth switch group.
In the aspect of the invention, a capacitance setting circuit configured to set capacitances of the first variable capacitance circuit and the second variable capacitance circuit may be included.
In the aspect of the invention, a register configured to store setting information about the capacitances of the first variable capacitance circuit and the second variable capacitance circuit may be included.
In the aspect of the invention, a third variable capacitance circuit having an end coupled to the second coupling node and another end coupled to a ground node, a fourth variable capacitance circuit having an end coupled to the fourth coupling node and another end coupled to the ground node, and a monitoring circuit configured to accept an output signal of the reception circuit, to monitor a signal delay in the output signal when the capacitances of the third variable capacitance circuit and the fourth variable capacitance circuit are changed, and to output a result of monitoring may be included.
In the aspect of the invention, a first terminal and a second terminal may further be included, and the monitoring circuit may include a retaining circuit configured to sample the output signal of the reception circuit based on a clock signal to be entered from the first terminal, to retain a result of sampling, and to output a signal about the result of sampling being retained to the second terminal.
In the aspect of the invention, the third variable capacitance circuit may include a fifth switch group having an end coupled to the second coupling node, a sixth switch group having an end coupled to the ground node, and a third capacitor group provided between another end of the fifth switch group and another end of the sixth switch group, and the fourth variable capacitance circuit may include a seventh switch group having an end coupled to the fourth coupling node, an eighth switch group having an end coupled to the ground node, and a fourth capacitor group provided between another end of the seventh switch group and another end of the eighth switch group.
In the aspect of the invention, a variable resistance circuit provided between the non-inverted input terminal and the inverted input terminal, and having a variable resistance value may be included.
Another aspect of the invention relates to an electro-optical device including the circuit device, described above, including a display driver circuit configured to accept an output signal of the reception circuit as a data signal to drive an electro-optical panel, and the electro-optical panel.
Still another aspect of the invention relates to an electronic apparatus including the circuit device described above.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
Some exemplary embodiments of the disclosure will be described in detail hereinafter. Note that the exemplary embodiments described hereinafter are not intended to limit the content of the disclosure as set forth in the claims, and not all of the configurations described in the exemplary embodiments are absolutely required to address the issues described in the disclosure.
1. Circuit Device
The input terminal T1 (first input terminal) is configured to accept, from among a signal DP (first signal) and a signal DN (second signal) configuring a differential signal, the signal DP. The input terminal T2 (second input terminal) is configured to accept the signal DN. Specifically, the signal DP and the signal DN configure a differential signal (LVDS) having smaller amplitude. For example, the signals DP and DN respectively are a first data signal and a second data signal configuring a differential data signal. The input terminals T1 and T2 are achieved by pads of the circuit device 10. The input terminals T1 and T2 are arranged in an input/output (I/O) region serving as a pad arrangement region of the circuit device 10.
The reception circuit 20 includes a non-inverted input terminal TP and an inverted input terminal TN. The signal DP and the signal DN configuring a differential signal respectively enter into the non-inverted input terminal TP and the inverted input terminal TN of the reception circuit 20. The reception circuit 20 is configured to differentially amplify the signals DP and DN, and to output an output signal SQ. As will be described later, the reception circuit 20 can be achieved with a circuit configured to perform current-voltage conversion on the signals DP and DN being current signals to generate a first voltage and a second voltage, and a comparator configured to accept the first voltage and the second voltage, for example.
The signal line L1 (first signal line) is provided between the non-inverted input terminal TP of the reception circuit 20 and the input terminal T1. The signal line L1 electrically couples the non-inverted input terminal TP and the input terminal T1. The signal line L2 (second signal line) is provided between the inverted input terminal TN of the reception circuit 20 and the input terminal T2. The signal line L2 electrically couples the inverted input terminal TN and the input terminal T2.
The first variable capacitance circuit 30 has an end coupled to a coupling node N1 (first coupling node)of the signal line L1 on a side adjacent to the input terminal T1 and another end coupled to a coupling node N2 (second coupling node) of the signal line L1 on a side adjacent to the non-inverted input terminal TP. The coupling node N1 is arranged adjacent to the input terminal T1. The coupling node N2 is arranged adjacent to the non-inverted input terminal TP. The coupling nodes N1 and N2 serve as coupling points of the first variable capacitance circuit 30 to the signal line L1, for example. The first variable capacitance circuit 30 variably sets a capacitance between the coupling nodes N1 and N2.
The second variable capacitance circuit 40 has an end coupled to a coupling node N3 (third coupling node) of the signal line L2 on a side adjacent to the input terminal T2 and another end coupled to a coupling node N4 (fourth coupling node) of the signal line L2 on a side adjacent to the inverted input terminal TN. The coupling node N3 is arranged adjacent to the input terminal T2. The coupling node N4 is arranged adjacent to the inverted input terminal TN. The coupling nodes N3 and N4 serve as coupling points of the second variable capacitance circuit 40 to the signal line L2, for example. The second variable capacitance circuit 40 variably sets a capacitance between the coupling nodes N3 and N4.
A capacitance CP1 represents a total capacitance (including a parasitic capacitance) between a signal line for the signal DP and a ground node NG. A capacitance CP2 represents a total capacitance (including a parasitic capacitance) between a signal line for the signal DN and the ground node NG. The ground node NG represents a node for grounding (GND).
For example, the capacitance CP1 includes a wire capacitance of the signal line L1 in the circuit device 10, a gate capacitance of a transistor having a gate coupled to the signal line L1, and a drain capacitance of a transistor having a drain coupled to the signal line L1, for example. The transistor having the gate coupled to the signal line L1 is a transistor configuring the reception circuit 20, for example. The transistor having the drain coupled to the signal line L1 is a transistor configuring a switch of the first variable capacitance circuit 30, for example. The circuit device 10 performs communications with an external circuit device. The signals DP and DN are to be output from a transmission circuit of the external circuit device. The external circuit device serves as a host device, such as a host controller. At this time, the circuit device 10 serves as a target device, for example. The capacitance CP1 includes a capacitance of a signal line coupling the external circuit device and the input terminal T1 of the circuit device 10. The signal line is wired to a wiring substrate, for example. The wiring substrate may be a rigid substrate or a flexible substrate.
The capacitance CP2 includes a wire capacitance of the signal line L2 in the circuit device 10, a gate capacitance of a transistor having a gate coupled to the signal line L2, and a drain capacitance of a transistor having a drain coupled to the signal line L2, for example. The transistor having the gate coupled to the signal line L2 is a transistor configuring the reception circuit 20, for example. The transistor having the drain coupled to the signal line L2 is a transistor configuring a switch of the second variable capacitance circuit 40, for example. The capacitance CP2 includes a capacitance of a signal line coupling the external circuit device and the input terminal T2 of the circuit device 10. The signal line is wired to a wiring substrate, for example.
In
The external circuit device includes the transmission circuit for data transfer purpose and configured to output the signals DP and DN, and a transmission circuit for clock transfer purpose and configured to transmit clock signals CLKP and CLKN. The clock signals CLKP and CLKN also configure the differential signal. The circuit device 10 receives data signals including the signals DP and DN and the clock signals CLKP and CLKN from the external circuit device. For example, the circuit device 10 includes a reception circuit for clock transfer purpose. The reception circuit is configured to receive the clock signals CLKP and CLKN. The signals CLKP and CLKN can be received with a circuit configuration similar to the circuit configuration for the signals DP and DN. The circuit device 10 uses the clock signals CLKP and CLKN to sample the signals DP and DN. For example, rising edges and falling edges of the clock signals CLKP and CLKN are used to sample the signals DP and DN. A setting-up time in this case is represented as TSS. A holding time in this case is represented as TSH.
As described above, the capacitances CP1 and CP2 are respectively present in the signal lines for the signals DP and DN. The capacitances CP1 and CP2 and the resistors R1 and R2, for example, would blur waveforms of the signals DP and DN, generating a signal delay. As a result, the setting-up time TSS in
TN of the reception circuit 20. At a timing TM in
In the signal waveform illustrated as A2 in
In contrast, in the signal waveform illustrated as A1, when the first and second variable capacitance circuits 30 and 40 according to the exemplary embodiment are provided, a signal delay can be reduced, compared with A2. That is, the low-pass filter property based on the capacitance CP and the resistor R can be canceled out by a high-pass filter property based on the capacitance CV and the resistor R, reducing a signal delay. In other words, the signal waveform illustrated as A2 due to the low-pass filter property can be waveform-shaped into the signal waveform illustrated as A1.
For example, in
As described above, in the circuit device 10 according to the exemplary embodiment, by providing the first and second variable capacitance circuits 30 and 40, the low-pass filter property based on the capacitances CP1 and CP2 and the resistors R1 and R2 is canceled out, suppressing the signal waveforms of the signals DP and DN from blurring. Therefore, as illustrated with A1 in
In the exemplary embodiment, the signal line L1 is provided with the resistor R1 between the coupling nodes N1 and N2, while the signal line L2 is provided with the resistor R2 between the coupling node N3 and N4. By providing the resistors R1 and R2 as described above, impedance matching can take place during high-speed serial transfer. With the high-pass filters respectively formed based on the resistors R1 and R2 and the capacitances of the first and second variable capacitance circuits 30 and 40, the low-pass filter property illustrated as A2 in
The first variable capacitance circuit 30 includes a first switch group 31, a second switch group 32, and a first capacitor group 33. The first switch group 31 includes switches S11 to S1m. The second switch group 32 includes switches S21 to S2m. The first capacitor group 33 includes capacitors C11 to C1m. The letter “m” represents an integer of 2 or greater. The first switch group 31 has an end coupled to the coupling node N1. The second switch group 32 has an end coupled to the coupling node N2. The first capacitor group 33 is provided between the first switch group 31 and the second switch group 32. For example, the first switch group 31 has another end coupled to an end of the first capacitor group 33. The second switch group 32 has another end coupled to another end of the first capacitor group 33. The switches in the exemplary embodiment are achieved by metal oxide semiconductor field effect (MOS) transistors or transfer gates, for example.
The second variable capacitance circuit 40 includes a third switch group 43, a fourth switch group 44, and a second capacitor group 45. The third switch group 43 includes switches S31 to S3m. The fourth switch group 44 includes switches S41 to S4m. The second capacitor group 45 includes capacitors C21 to C2m. The third switch group 43 has an end coupled to the coupling node N3. The fourth switch group 44 has an end coupled to the coupling node N4. The second capacitor group 45 is provided between the third switch group 43 and the fourth switch group 44. For example, the third switch group 43 has another end coupled to an end of the second capacitor group 45. The fourth switch group 44 has another end coupled to another end of the second capacitor group 45.
With the configuration described above, by setting the switches of the first and second switch groups 31 and 32 to on or off, the capacitance of the first variable capacitance circuit 30 can be set with a desired capacitance value. By setting the switches of the third and fourth switch groups 43 and 44 to on or off, the capacitance of the second variable capacitance circuit 40 can be set with a desired capacitance value. For example, the capacitances of the first and second variable capacitance circuits 30 and 40 can be respectively set to be equal to the capacitances CP1 and CP2. Therefore, the capacitance of the first variable capacitance circuit 30 can be set with an optimum capacitance value in accordance with the capacitances CP1 and CP2.
Capacitances of the capacitors C11 to C1m configuring the first capacitor group 33 are respectively set to follow a ratio of power of 2 of a capacitance of the capacitor C11, such as C12=2×C11, C13=22×C11, and C14=23×C11. Similarly, capacitances of the capacitor C21 to C2m configuring the second capacitor group 45 are respectively set to follow a ratio of power of 2 of a capacitance of the capacitor C21, such as C22=2×C21, C23=22×C21, and C24=23×C21. As described above, capacitance values of the capacitances of the first and second variable capacitance circuits 30 and 40 can be appropriately set based on respective bits of digital data. The configuration of the first and second variable capacitance circuits 30 and 40 is not limited to the configuration illustrated in
As illustrated in
By providing the capacitance setting circuit 50 described above, the capacitances of the first and second variable capacitance circuits 30 and 40 can be set with desired capacitance values. Therefore, the capacitances can be set to allow the signals DP and DN to have appropriate signal waveforms illustrated as A1 in
The circuit device 10 includes a register 51 configured to store setting information about the capacitances of the first and second variable capacitance circuits 30 and 40. The register 51 can be achieved by a flip-flop circuit, for example. The register 51 may be achieved by a random access memory (RAM) such as a static random access memory (SRAM). For example, the register 51 stores, as the setting information about the capacitances, on-off setting information about the switches of the first and second switch groups 31 and 32 of the first variable capacitance circuit 30. The register 51 further stores, as the setting information about the capacitances, on-off setting information about the switches of the third and fourth switch groups 43 and 44 of the second variable capacitance circuit 40. For example, the capacitance setting circuit 50 sets the capacitances of the first and second variable capacitance circuits 30 and 40 based on the setting information about the capacitances stored in the register 51. For example, the capacitance setting circuit 50 includes a logic circuit configured to generate the capacitance setting signals SC1 and SC2, and then generates the capacitance setting signals SC1 and SC2 based on the setting information about the capacitances sent from the register 51 and outputs the capacitance setting signals SC1 and SC2 to the first variable capacitance circuit 30 and the second variable capacitance circuit 40. For example, the circuit device 10 accepts, from the external circuit device, a writing command for the setting information about the capacitances. Based on the writing command, the setting information about the capacitances is written onto the register 51.
By providing the register 51 described above, the setting information about the capacitances allowing the signals DP and DN to have appropriate signal waveforms illustrated as A1 in
2. Second Configuration Example
The monitoring circuit 80 monitors a signal delay in the output signal SQ when the capacitances of the third and fourth variable capacitance circuits 60 and 70 are changed, and outputs a result of monitoring. For example, the monitoring circuit 80 outputs, as a result of monitoring, monitoring information used for monitoring a signal delay in the output signal SQ when the capacitances of the third and fourth variable capacitance circuits 60 and 70 are changed.
As described above, with the circuit device 10 according to the second configuration example, a signal delay in the output signal SQ when the capacitances of the third and fourth variable capacitance circuits 60 and 70 are changed can be monitored with the monitoring circuit 80. Therefore, as will be described later with reference to
The fourth variable capacitance circuit 70 includes a seventh switch group 77, an eighth switch group 78, and a fourth capacitor group 79. The seventh switch group 77 includes switches S71 to S7j. The eighth switch group 78 includes switches S81 to S8j. The fourth capacitor group 79 includes capacitors C41 to C4j. The seventh switch group 77 has an end coupled to the coupling node N4. The eighth switch group 78 has an end coupled to the ground node NG. The fourth capacitor group 79 is provided between the seventh switch group 77 and the eighth switch group 78. For example, the seventh switch group 77 has another end coupled to an end of the fourth capacitor group 79. The eighth switch group 78 has another end coupled to another end of the fourth capacitor group 79.
Capacitances of the capacitors C31 to C3j configuring the third capacitor group 67 are respectively set to follow a ratio of power of 2 of a capacitance of the capacitor C31, such as C32=2×C31 and C33=22×C31. Similarly, capacitances of the capacitors C41 to C4j configuring the fourth capacitor group 79 are also respectively set to follow a ratio of power of 2 of a capacitance of the capacitor C41, such as C42=2×C41 and C43=22×C41.
With the configuration described above, by setting the switches of the fifth and sixth switch groups 65 and 66 to on or off, the capacitance of the third variable capacitance circuit 60 can be changed. By setting the switches of the seventh and eighth switch groups 77 and 78 to on or off, the capacitance of the fourth variable capacitance circuit 70 can be changed. A capacitance setting circuit 52 described later with reference to
As illustrated in
The capacitances CP1 and CP2 can be measured and the capacitances of the first and second variable capacitance circuits 30 and 40 can be set based on a result of measurement as described above when the circuit device 10 is inspected before product shipping or when an electro-optical device 250 and an electronic apparatus 300, described later, configured to be equipped with the circuit device 10 are inspected before product shipping, for example.
Next, a method for measuring a capacitance and a delay time in a signal will be described with reference to
In the exemplary embodiment, the capacitance C of the third variable capacitance circuit 60 or the fourth variable capacitance circuit 70 is changed to monitor the delay time Y in the output signal SQ. For example, when a capacitance is C=C1, a delay time in the output signal SQ is set as Y=Y1. When a capacitance is C=C2, a delay time in the output signal SQ is set as Y=Y2. Equations (1) and (2) described below are thus satisfied. Where, α corresponds to an inclination of a straight line LN in
Y1=α(CP+C1) (1)
Y2=α(CP+C2) (2)
When C2=2C1, the capacitance CP can be obtained as Equation (3) described below with Equations (1) and (2) described above. Therefore, by obtaining the delay times Y1 and Y2, the capacitance CP can be measured.
CP=(Y1+Y2)/2α−3C1/2 (3)
In
In
In
Specifically, the capacitance setting circuit 52 is controlled by the control circuit 90 to set the capacitance of the third variable capacitance circuit 60 as C=C1, as illustrated in
Similarly, the capacitance setting circuit 52 sets the capacitance of the fourth variable capacitance circuit 70 as C=C1, obtains, based on a result of monitoring of the output signal SQ when the control circuit 90 has changed the signal level of the signal DN, the delay time Y=Y1 in the output signal SQ, and outputs the delay time Y=Y1 to the operational circuit 92. The capacitance setting circuit 52 sets the capacitance of the fourth variable capacitance circuit 70 as C=C2, obtains, based on a result of monitoring of the output signal SQ when the control circuit 90 has changed the signal level of the signal DN, the delay time Y=Y2 in the output signal SQ, and outputs the delay time Y=Y2 to the operational circuit 92. The operational circuit 92 performs a computing process with Equation (3) described above to obtain the capacitance CP=CP2. The capacitance setting circuit 50 sets the capacitance of the second variable capacitance circuit 40 to allow the capacitance of the second variable capacitance circuit 40 to be equal to the capacitance CP2, for example.
By providing a circuit configured as described above with reference to
3. Modification Example
Next, various modification examples to the exemplary embodiment will be described herein. In
The current-voltage converter circuit 26 is configured to convert a drive current to be flowed toward a low potential power supply side by the current driver 19 into a voltage VI1, and to output the voltage VI1 to the comparator 28. The current-voltage converter circuit 27 is configured to convert a drive current to be flowed toward the low potential power supply side by the current driver 19 into a voltage VI2, and to output the voltage VI2 to the comparator 28. The comparator 28 is configured to accept the voltage VI1 and the voltage VI2 respectively via its non-inverted input terminal and its inverted input terminal, and to output the output signal SQ representing a result of comparison. The current-voltage converter circuit 26 includes a current source transistor provided between an input node serving as a node for the non-inverted input terminal TP and a low potential power supply node, as well as includes a current-voltage conversion transistor and a variable resistance element transistor provided in series between a high potential power supply node and the input node. The current-voltage converter circuit 27 includes a current source transistor provided between an input node serving as a node for the inverted input terminal TN and the low potential power supply node, as well as includes a current-voltage conversion transistor and a variable resistance element transistor provided in series between the high potential power supply node and the input node. The current source transistor is an N-type transistor. The current-voltage conversion transistor is a diode-coupled, P-type transistor. The variable resistance element transistor is a P-type transistor having a gate configured to accept an output signal of an inverter configured to amplify a signal sent from the input node. JP-A-2005-236931 described above discloses the detailed configuration example of the reception circuit 20.
In
As illustrated in
In the exemplary embodiment, the variable resistance circuit 22 for impedance matching purpose is provided between the non-inverted input terminal TP and the inverted input terminal TN of the reception circuit 20. When the impedance in the transfer route 15 of the flexible substrate 14 changes or an impedance changes due to the capacitances of the first variable capacitance circuit 30 to the fourth variable capacitance circuit 70, for example, a resistance value of the variable resistance circuit 22 is changed to allow the output impedance and the input impedance to match with each other. For example, a control signal sent from the control circuit 90 in
With the configuration in
The variable resistance circuit 22 in
With the configuration in
Specifically, in
When phase correction for shaping a signal waveform into a signal waveform illustrated as A1 in
On the other hand, when measuring the capacitances CP1 and CP2 described with reference to
4. Electro-Optical Device
Next, a configuration example of the electro-optical device 250 using the circuit device 10 according to the exemplary embodiment will be described herein. The electro-optical device 250 in
Specifically, in
The electro-optical panel 200 is a panel for displaying images, and can be implemented by a liquid crystal panel or an organic electro-luminescence (EL) panel, for example. An active-matrix panel using switching elements such as thin film transistors (TFTs) can be employed as the liquid crystal panel. Specifically, the electro-optical panel 200 serves as a display panel including a plurality of pixels. The plurality of pixels are disposed in a matrix, for example. The electro-optical panel 200 also includes a plurality of data lines and a plurality of scan lines laid in a direction intersecting with the plurality of data lines. Each pixel among the plurality of pixels is disposed at a region where each data line and each scan line intersect. In an active-matrix panel, a switching element such as a thin film transistor is disposed at each pixel region. The electro-optical panel 200 realizes display operations by causing the optical properties of electro-optical elements at the pixel regions to change. An electro-optical element is a liquid crystal element or an EL element, for example. Note that in an organic EL panel, pixel circuits for driving the EL elements with current are disposed at each pixel region.
The display driver circuit 110 includes a drive circuit 120, a digital/analog (D/A) converter circuit 130, a tone voltage generating circuit 132, a display data register 134, and a processing circuit 140. Note that the configuration of the display driver circuit 110 is not limited to the configuration in
The drive circuit 120 is configured to output data voltages VD1 to VDn (n is an integer of 2 or greater) corresponding to display data to data lines DL1 to DLn to drive the electro-optical panel 200. The drive circuit 120 includes a plurality of amplifier circuits AM1 to AMn. The amplifier circuits AM1 to AMn output the data voltages VD1 to VDn to the data lines DL1 to DLn. The electro-optical panel 200 may be provided with a switching element for demultiplex purpose. The amplifier circuits AM1 to AMn may respectively output, in a time division manner, data voltages corresponding to a plurality of source lines of the electro-optical panel 200.
The processing circuit 140 is configured to perform various control processes, such as a display control for the electro-optical panel 200, controls of circuits in the circuit device 10, and an interface process with an external circuit device. The processing circuit 140 can be achieved with automatic arrangement wiring, such as a gate array. The processing circuit 140 outputs a plurality of control signals to execute the control processes. The processing circuit 140 accepts as data signals output signals of the reception circuit 20 of the interface circuit 12.
The display data register 134 is configured to latch the display data sent from the processing circuit 140. The display data denotes data based on a data signal representing an output signal of the reception circuit 20. The tone voltage generating circuit 132 is a gamma voltage circuit, and is configured to generate a plurality of tone voltages and to supply the plurality of tone voltages to the D/A converter circuit 130. The D/A converter circuit 130 includes a plurality of D/A converters DAC1 to DACn. The D/A converter circuit 130 is configured to select, from among the plurality of tone voltages sent from the tone voltage generating circuit 132, a tone voltage corresponding to the display data sent from the display data register 134, and to output the tone voltage being selected to the drive circuit 120. The drive circuit 120 is configured to output the tone voltage being selected to each of the data lines as a data voltage.
5. Electronic Apparatus, Projector
The processing device 310 carries out control processing for the electronic device 300, various types of signal processing, and the like. The processing device 310 can be realized by, for example, a processor such as a CPU or an MPU, an ASIC, or the like. The storage unit 320 stores data sent from the operation interface 330 and the communication interface 340, for example, or functions as a work memory for the processing device 310, for example. The storage unit 320 can be realized by, for example, a semiconductor memory such as a random access memory (RAM) or a read-only memory (ROM), a magnetic storage device such as a hard-disc drive (HDD), an optical storage device such as a compact disc (CD) drive or a digital versatile disc (DVD) drive, or the like. The operation interface 330 is a user interface for receiving various operations from a user. For example, the operation interface 330 can be realized by buttons, a mouse, a keyboard, a touch panel installed in the electro-optical panel 200, or the like. The communication interface 340 is an interface for use in communications of image data and control data. Communication processing carried out by the communication interface 340 may be wired communication processing or wireless communication processing.
When the electronic apparatus 300 is a projector, a projection unit including a light source and an optical system is further provided. The light source is realized by a lamp unit including a white light source such as a halogen lamp, for example. The optical system is realized by lenses, prisms, mirrors, or the like. In a case where the electro-optical panel 200 is a transmissive type, light from the light source is incident on the electro-optical panel 200 via the optical system and the like, and the light transmitted by the electro-optical panel 200 is projected onto a screen. In a case where the electro-optical panel 200 is a reflective type, light from the light source is incident on the electro-optical panel 200 via the optical system and the like, and the light reflected by the electro-optical panel 200 is projected onto a screen.
Although some exemplary embodiments have been described in detail above, those skilled in the art will understand that many modified examples can be made without substantially departing from the novel matter and effects of the disclosure. All such modified examples are thus included in the scope of the disclosure. For example, terms in the descriptions or drawings given even once along with different terms having identical or broader meanings can be replaced with those different terms in all parts of the descriptions or drawings. All combinations of the exemplary embodiments and modified examples are also included within the scope of the disclosure. The configurations, the operations, and the like of the circuit device, the electro-optical device, the electro-optical panel, the electronic apparatus, and the like are not limited to those described in the exemplary embodiments, and various modifications can be achieved.
The entire disclosure of Japanese Patent Application No. 2018-032855, filed Feb. 27, 2018 is expressly incorporated by reference herein.
Number | Date | Country | Kind |
---|---|---|---|
2018-032855 | Feb 2018 | JP | national |