The present invention is related to a circuit for a system of contactless inductive energy transfer, especially for application in energy supply of mobile devices as well as a related charging circuit.
The principle of inductive energy transfer serves in a plurality of applications as physical basis of technical development of a further field of applications. The principle division of a system for inductive energy transfer is shown in
Due to the special arrangement of the mobile part 104 close to the base part 102, energy transfer between the base part and the mobile part is made possible. The most popular example of such an inductive charging system is the electric toothbrush, which enables charging of the toothbrush as mobile part 104 without galvanic connection.
Omission of galvanic leads is of great importance for manifold usage scenarios. This applies specifically to applications with high demands in the mechanical set up of the electric connections between the power source and sink in which technically complex plugs and cables can be avoided by application of inductive energy transfer (IE). Further, technical energy supply system components based on IE can be protected from environmental impacts without making the mechanical set up unnecessarily complex by appliance of outsourced connectors. Moreover, existing areas of operation for IE in which application of galvanic connections in view of technical feasibility has to be avoided, for example in explosion prone environments or during operation of the system components in conductive and or aggressive media. Furthermore, the use of IE can improve the reliability of technical systems. This is the case on the one hand for systems with rotating or moveable parts since wiper contacts that are prone to attrition can be omitted and on the other hand in devices with connectors which in any other case would have to be dimensioned for a plurality of plugs.
In connection with the increasing penetration of the market by technical solutions based on the principles of IE, the aspect of user friendliness should be emphasized. Especially in the field of portable electrical power sinks, this additional value due to the simplified handling becomes apparent for the user which can initiate supply of these portable devices by only placing the mobile part at the charging station.
The present state of the art mostly includes a signal feedback between power sink and power source in applications of IE due to which the present electric state of the galvanically separated secondary side is known in some form on the primary side. This information is used on the primary side by changing a control value (switching frequency duty cycle etc) on the primary side in order to answer to a change in the load on the secondary side. This technical approach requires provision of a channel for information transfer. Known technical realizations, for example DE 3902618 A1, DE 10158794 B4 and U.S. Pat. No. 6,912,137 B2 use a separate physical channel for this signal feedback as shown in
From a technical set up point of view, this approach is sophisticated because constructive limitations have to be accepted (alignment of the mobile part in relation to the base part can only take place to a limited extent, in case of an optical path providing the optical components or optical fibers outside respectively utilizing transparent materials is necessary, in case of separate magnetic couplings a second inductor pair is indispensible) and further additional expenditure of components and circuits arises.
Alternative approaches use the same magnetic coupling for the signal feedback as for the energy transfer itself (EP288791 B1, EP 982831 A2). This approach is shown in
A further alternative solution exists in utilizsation of wirelessly supported solutions (for example U.S. Pat. No. 6,436,299 B1) based on the propagation of electromagnetic waves.
This technical solution also constitutes an increased technical constructive effort. The necessary components for provision of the wireless channel on the one hand have to be placed in the parts of the devices especially the antennas have to be placed appropriate to one another. Due to this, limitations during operation occur in view of the alignment of the parts of the devices to one another. Moreover, the telecommunication reconditioning of the radio signal increases the circuit device effort.
In case that a channel for information exchange between the base part and the mobile part is available, different modulation schemes (fm, am, etc) are deployed in the existing technical solutions. This telecommunicational conditioning results in an increased demand in the technical realization of the system independent of the kind of the used channel. This is an additional serious disadvantage of known solutions based on the feedback of a signal.
The principle construction of the power part of a system for IE on the basis of resonant DC DC converters is shown in
On the secondary side usage of additional reactive components can be omitted (LLC) although further capacities for compensating the main inductions of the conductor can be used (LLCC) in parallel as well as in serial circuits. Moreover, usage of additional reactive components is possible again for purposefully manipulation of the frequency characteristics of the secondary side.
The secondary current is rectified on the output side. The rectification 114 can be carried out as half way rectification or full way rectification, the components can be regular diodes as well as semi-conductor switches (synchronous rectification). The rectified output current is smoothed with the help of the filter 116 (optional with an inductivity). The present state of the art uses a feedback signal in order to realize a comparison of the nominal value and actual value, for example in order to follow up the switching frequency as a control variable of the controlled system in case of a resonant converter.
There are other technical approaches allowing for the omission of the signal feedback in case of a resonant converter by a restricted choice of the bias point. These are based on the determination of the switching frequency to a constant value. In order to limit the variation of the input voltage at different coupling ratios in these approaches it is suggested to carry out the operation at a so called “coupling independent point” a bias point at which under condition that the resistive charging of the source is equal, an approximately equal output voltage is achieved.
Often these determined special bias points are based on simplified calculation methods. If one examines the adjusted output voltage in view of the charging for different spaces for a system for IE in more detail, one obtains the characteristic trend as shown in
As can be seen from these trends, this characteristic property of a coupling independent point for the shown exemplarily chosen system is indeed comprehensible (choice of switching frequency at fs≈48 kHz for IG=3 mm and IG=6 mm) although in a practical system being available only under significant constraints. Hence it is apparent that for poor coupling conditions in the chosen example for IG=8 mm the property of a preferably constant output voltage is lost. Moreover, a variation of the value of the output voltage occurs when the output is loaded with a capacity different from the nominal capacity especially in case of idle running occurring in almost every application.
By using the inventive concept described in the following embodiments, several problems in view of the technical realization of a system for IE are eliminated. By using a feedback signal the associated signal path has to be realized either separate or has to be integrated with significant influence on the construction of the magnetic coupling in the principle energy current path. Both solutions result in increased technical complexity. By using the concept described herein it can be provided for an optimal mechanical and electrical construction of the total system in view of the energy transfer by omission of the signal feedback.
A further technical problem arises from the exploitation of the coupling independent bias point. On the one hand, an interval comprising an intercept point of the upper voltage for the distances IG=3 mm and IG=6 mm can be recognized from the chosen example of
On the other hand, a variation of the output voltage occurs when the initial load is changed in case the switching frequency is chosen, as fixed value as follows from the intersection point of the dashed trends shown in
If one considers a further important aspect of a system for IE operating at a fixed frequency besides the variation of the output voltage, namely the occurring leakages from
The level of efficiency of the system for IE accordingly reacts very sensitive to variations of the distance in this regime. Consequently, for systems that make use of the coupling independent point, the positioning is significantly constrained and another aspect of the level of efficiency has to be paid attention that no too significant variations of the distance from the nominal distance are possible.
However, if a switching frequency is chosen in the regime of the steepening to the anti-resonance frequency (for the exemplarily chosen example at 65 up to 70 kHz) a plurality of advantages in view of the trend of the power loss occur. On the one hand, the absolute value of the occurring power loss in this regime is smallest for great distances of the shown example. On the other hand, the variation of the level of efficiency is significantly smaller in this regime. This effect is re-enforced for the efficiency of the partial load once more as can be seen from
Due to the restriction of the possible switching frequency to the special position of the coupling independent bias point, significant restrictions in view of the performance of the overall system occur which can be circumvented by using the present invention. Exploitation of the coupling independent bias point nevertheless results in an inherent variation of the output voltage. The presence of a certain fluctuation range of the output voltage of the resonant level does not fulfil the requirement for the necessary stability of the output voltage for supplying modern power electrical loads. Thus, exploitation of the “coupling independent point” is only possible for a strongly restricted class of energy consumers on the secondary side. In modern usage scenarios, however, the voltage variation of the supply voltage of those loads becomes inadmissibly great even when using this special bias point. Not least, attention has to be paid to the variation in case of charging applications based on Li-ion technology.
Therefore, the present invention is based on the concept of omitting a signal feedback by abandoning the requirement of a stabilized output voltage. The resonant stage is operated at a fixed frequency in this case wherein the choice of the switching frequency in contrast to the known approaches can happen basically arbitrarily. In view of minimal power losses, an excellent optimum exists for this parameter, however, as can be seen in the above explanations. The free choice of the switching frequency therefore simplifies the construction of the resonant converter state significantly. Furthermore, this approach allows for purposeful, optimal construction of this stage.
In order to nevertheless allow for supply of sensitive loads on the secondary side the present invention suggests an extension to a two-stage concept. Therein, the second stage serves for conditioning the output voltage V0 on the secondary side. The block wiring diagram of such subsequent stabilization is shown in
The present invention allows in an advantageous manner to completely abstain from a separated signal feedback in order to configure the construction of the magnetic coupling between primary side and secondary side technically as simple as possible. Thus the construction can be made with a maximum possible priority for the energy transfer and no technical trade-offs have to be accepted and no sophisticated demodulation wirings have to be taken into account.
From the thesis Schwalbe, Ulf: “Vergleichende Untersuchungen dreistufiger Schaltnetzteil Topologien im Ausgangsleistungsbereich bis 3 kW”, Dissertation, TU Ilmenau, September 2009, it is known to apply multistage topologies in switching power supplies with fixed coupled transformers.
The discussed approach of a three-stage switching power supply in this thesis follows the approach of overcoming the problems of the construction of a classic switching power supply (SNT) including two stages by adding a third stage. Herein, especially the relationship between the size of the intermediate circuit electrolyte compensator for the compliance of a specific dwelling time and the necessary input voltage interval of the DC-DC stage are taken into account. Moreover, in general, it is to the detriment for the efficiency of the DC-DC converter if said converter has to cover a large input voltage interval since this requirement results in extensive limitations to the construction.
In contrast to the provided problems, the resonant LLC converter is only utilized in order to ensure the ZVS operation of the so-called “electronic transformers”. During application of inductive energy transfer, however, no such classical transformer in which the air gap can be adjusted between virtually zero and a maximum value in a fixed way. Rather, it is about loosely coupled inductors which can be brought closer to one another up to a minimal distance. Said distance is not adjustable up to an arbitrary small value. Accordingly, a developer of a system for inductive energy transfer has to cope with a very small magnetisation inductivity LM as well as a very high scattering inductivity Lres even under optimal conditions. Moreover, due to the mechanical tolerances when producing the device parts as well as the positioning of said parts in relation to one another, variable distances occur even during operation while the air gap from the dissertation Swalbe represents a fixed value which is chosen purposefully during the design phase. The application of the inductive energy transfer results in only topologies being reasonably usable which can cover significantly varying states of the loosely magnetic coupling. Such a topology is for example the resonant LLCC converter.
The present invention therefore suggests a wiring for a system for contactless inductive energy transfer, especially for application in energy supply of mobile devices. A primary side circuit is arranged on a primary side and is compoundable with a primary side supply voltage and a secondary side circuit is arranged on a secondary side and compoundable with a load that is to be supplied with energy.
According to the present invention, a conductor stage with galvanic separation for contactless transfer of energy from the primary side over an air gap to the secondary side is provided wherein at least two magnetically coupled inductors for inductive energy transfer are provided which are separable via moving the secondary side from the primary side spatially from one another. The conductor stage has a resonant converter and the secondary circuit further includes a subsequent stabilizing stage.
The subsequent stabilizing stage according to the present invention can be provided as a simple linear regulator or as a clocked switching power supply shown in
For a better understanding of the present invention, said invention will be explained with reference to the embodiments depicted in the subsequent figures. Therein equal parts are provided with equal reference signs and equal component labels. Furthermore, particular features or combinations of features from the depicted and described embodiments can provide individually seen independent inventive solutions or solutions according to the invention.
In the figures,
The present invention will be described in detail with reference to figures.
The central idea of the present invention is the realization of a system for IE based on the two- or three-stage concept. This approach renders the transmission of information for regulating the load voltage between the primary and secondary side redundant. In particular, three stages are provided:
1st stage: Processing of the input voltage (AC/DC respectively DC/DC). Depending on the application this stage is optionally.
2nd stage: Energy transfer via an air gap.
3rd stage: Subsequent stabilizing.
For the application of a clocked power supply for subsequent stabilizing a plurality of DC-DC converters are possible especially in this context the buck inverter, the buck-boost converter the CUK converter as well as the boost converter are to be named. Further, galvanically separated converters like the fly back or forward converter as well as the load resonant or switching resonant converter can be applied. For extremely insensitive loads, also a simple over-voltage limitation can be provided.
Overcoming of the air gap can advantageously happen by the resonant converter amongst other already-mentioned realizations, as shown in
Moreover, further topologies for overcoming the air gap in the case of comparably loosely coupled inductors which occur in the IE as a rule can be thought of. Thus, despite the significantly spread inductivity of flyback converter (potentially as two-switch variant therein) or a forward converter could be deployed) as illustrated in
Generation of an input voltage Vi of the resonance stage is also possible in many ways. On the one hand this DC voltage can be provided directly through a battery respectively a DC-DC converter as depicted in
Alternatively to the exemplarily depicted boost converter in
The DC voltage Vg can beyond that be generated by a rectifying of the line voltage with the help of a bridge rectifier including a storage capacitor.
The opportunities from
Alternatively, the resonant intermediate state can be supplied directly from an rectified AC power supply as schematically depicted in
Subsequent preferred embodiments of the inventive circuit configuration are explained in detail with reference to the
As preferred embodiment for overcoming the air gap resonant converters were identified. Preferred fundamental structure of the resonant circuit are shown in
The subsequent stabilization is realized in
In view of the pre-processing of the input voltage,
In
In order to increase the supply line sided power factor a passive power factor correction (PFC) can be provided as schematically depicted in
In order to be able to cover a great value range of the line voltage (wide range input with European and non-European nominal values) an additional DC-DC stage as shown in
In order to purposefully optimizing the power factor on the supply side towards high values, an active power factor correction can be provided as depicted in
In summary, it is to be noted that the realizations in
Number | Date | Country | Kind |
---|---|---|---|
10005752 | Jun 2010 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/002637 | 5/27/2011 | WO | 00 | 4/9/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/151038 | 12/8/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5568036 | Hulsey et al. | Oct 1996 | A |
5963210 | Lewis et al. | Oct 1999 | A |
6118249 | Brockmann et al. | Sep 2000 | A |
6160374 | Hayes et al. | Dec 2000 | A |
6436299 | Baarman et al. | Aug 2002 | B1 |
6586909 | Trepka | Jul 2003 | B1 |
6683438 | Park et al. | Jan 2004 | B2 |
6912137 | Berghegger | Jun 2005 | B2 |
20020141208 | Nanbu et al. | Oct 2002 | A1 |
20020167824 | Boeke et al. | Nov 2002 | A1 |
20030227364 | Li et al. | Dec 2003 | A1 |
20040124807 | Nakata et al. | Jul 2004 | A1 |
20080094027 | Cho | Apr 2008 | A1 |
20080198638 | Reinberger | Aug 2008 | A1 |
20080224544 | Koyama | Sep 2008 | A1 |
20090261778 | Kook | Oct 2009 | A1 |
20090290385 | Jungreis | Nov 2009 | A1 |
20100171367 | Kitamura et al. | Jul 2010 | A1 |
20110199046 | Tsai et al. | Aug 2011 | A1 |
20130154559 | Cho | Jun 2013 | A1 |
Number | Date | Country |
---|---|---|
3902618 | Aug 1990 | DE |
10158794 | May 2008 | DE |
288791 | Nov 1993 | EP |
982831 | Mar 2000 | EP |
1221753 | Jul 2002 | EP |
1744443 | Jan 2007 | EP |
1780862 | May 2007 | EP |
2002262468 | Sep 2002 | JP |
2005313884 | Nov 2005 | JP |
2007124754 | May 2007 | JP |
2006101285 | Sep 2006 | WO |
2006101285 | Sep 2006 | WO |
2007012272 | Feb 2007 | WO |
Entry |
---|
International Search Report for International Application No. PCT/KR2005/001037 dated Nov. 18, 2005 (2 pages). |
Schwalbe, U., “Comparative studies of three-stage switching power supply topologies in the output power up to 3 kW” Nov. 11, 2008, Erfurt, Germany (247 pages). |
Japanese Notice of Reasons for Rejection for Japanese Application No. 2013-512787 dated Jan. 7, 2014 (8 pages). |
International Search Report for International Application No. PCT/EP2011/002637 dated Oct. 18, 2011 (3 pages). |
Chinese Patent Office Action for Application No. 201180038028.9 dated Oct. 10, 2014 (17 pages, English translation included). |
International Search Report for Application No. PCT/EP2011/002637 dated Oct. 18, 2011 (English Translation and Original, 6 pages). |
Number | Date | Country | |
---|---|---|---|
20130187595 A1 | Jul 2013 | US |