The present invention relates to computing systems and was developed with specific attention being paid to cryptographic systems (cryptosystems) based on the use of elliptic curves.
Elliptic Curve Cryptosystems or, briefly, ECC, appear to be particularly promising for use in smart cards where intrinsic restrictions exist in terms of silicon area and power consumption, while processing time constraints are also to be taken into account.
ECCs make it possible to reach the same level of security of RSA systems using keys of about 200 bits. Operations on elliptic curves are based on the arithmetic of finite Galois fields. Essentially, two basic operations are necessary to implement such a cryptosystem: multiplication and addition in finite fields. While addition is a simple bit-wise X-OR operation, multiplication is inevitably more complex.
For a general review on ECC systems, reference may be made e.g. to M. Rosing, “Implementing Elliptic Curve Cryptography”, Manning Publications, 1999; A. Menezes, “Elliptic Curve Public Key Cryptosystems”, Kluwer Academic Publ., Boston, 6th Printing, 1998; R. Lidl, H. Niederreiter, “Introduction to Finite Fields and their Applications” Cambridge Univ. Press, 1986.
Previous research work concerning practical implementation of ECCs at hardware level are based on co-processor design. A co-processor is essentially a sort of additional arithmetic-logical unit (ALU) adapted to implement the two basic operations of addition and multiplication.
For a general review of previous activity in that area reference can be made e.g. to M. Hasan, “Look-up Table-Based Large Finite Field Multiplication in Memory Constrained Cryptosystems”, in IEEE Trans. on Comp., vol. 49, no. 7, July, 2000; G. Orlando, C. Paar, “A Super-Serial Galois Field Multiplier for FPGA's and its Application to Public-Key Algorithms”, 7th Annual IEEE Symp. on Field-Progr. Custom Computing Machines, 1999, Page(s): 232–239; C. Paar, “Implementation Options for Finite Fields Arithmetic for Elliptic Curve Cryptosystems”, Proc. 3rd Workshop on Elliptic Curve Cryptosystems, ECC '99, Waterloo, Ontario, Canada, November, 1999; L. Song, K. K. Parhi, I. Kuroda, T. Nishitani, “Low-Energy Programmable Finite Field Data Path Architectures”, Proc. ISCAS '98, Vol. 2, 1998, Page(s): 406–409; A. G. Wassal, M. A. Hasan, M. I. Elmasry, “Low-Power Design of Finite Field Multipliers for Wireless Applications”, Proc. 8th Great Lakes Symposium on VLSI, 1998, Page(s): 19–25; H. Wu, M. A. Hasan, “Low Complexity Bit-Parallel Multipliers for a Class of Finite Fields”, in IEEE Trans. on Comp., Vol. 478, August, 1998, Page(s): 883–887; L. Song, K. K. Parhi, “Efficient Finite Field Serial/Parallel Multiplication”, Proc. ASAP '96, 1996, Page(s): 72–82; M. Furer, K. Mehlhorn, “AT2 Optimal Galois Field Multiplier for VLSI”, in IEEE Trans. on Comp., Vol. 389, September 1989, Page(s): 1333–1336.
While satisfactory from a general viewpoint, most prior art solutions still extensively suffer from inherent disadvantages in terms of circuit complexity, power consumption and computational speed. This last cited point is particularly significant as regards the so-called kP operation on elliptic curves, which in fact represents the kernel of any ECC cryptosystem.
The object of the invention is thus to provide a new improved solution which overcomes the intrinsic disadvantages of the prior art.
According to the invention, such an object and other additional objects are achieved by means of a process and system having the features set forth in the claims which follow.
Essentially, the basic idea underlying the invention is to perform in a single step two standard multiplication operations and the addition of the two results so obtained, instead of using twice a standard multiplier and eventually an adder. In fact, using elliptic curves in cryptography requires two operations to be carried out on the points of the curve: addition of two points and doubling of a point. Both require some basic operations in Galois fields, like addition, multiplication, and—possibly—division and squaring. In the design phase some basic choices must therefore be made such as e.g. the choice of the basis of the elements in the fields (polynomial basis, normal basis, dual basis, triangular basis or “ghost bit” basis) and the choice of the co-ordinates for representing the elliptic curve (affine, homogeneous, Jacobian, etc.).
In fact, by using homogeneous (projective) coordinates to describe the curve, point addition and point doubling can be executed upon the curve without resorting to division in the underlying Galois field. This is important because division is the most complex operation. Using homogeneous co-ordinates and performing some grouping of basic operations it is thus possible to use the inner product operation to perform the kP operation on the whole elliptic curve.
The invention will now be described, by way of example only, in connection with the enclosed drawings, wherein:
Essentially, the present invention aims at providing a hardware device (such as a functional unit or a co-processor) adapted to be integrated in an embedded systems (for instance a smart-card) in order to render public key cryptographic operations faster.
Specifically, the operation to be implemented is:
E(x)=((A(x)×B(x))+C(x)×D(x))mod φ(x)
where A(x), B(x), C(x), D(x), and E(x) are elements of finite field GF(2n), or polynomial or order n−1 having one bit coefficients. Any of this can also be identified as a sequence of n bits. Usually 150≦n≦250 for cryptographic applications using elliptic codes (ECC).
The representation of the finite field GF(2n) is given in a “polynomial basis” or a “standard basis”. Choosing the representation of the field corresponds to fixing the polynomial of order n≧1 which generates the field itself. Such generator polynomial is designated φ(x). The generator polynomial φ(x) is fixed, and is changed only if the representation of the field is changed, which happens only if the system is reconfigured, which is seldom the case.
The result E(x) is the inner product (scalar product) of two vectors each having a first and a second element belonging to the finite field GF(2n). The inner (scalar) product operation can be easily generalized to vectors having three or more elements belonging to the finite field GF(2n).
One could well write:
E(x)=([A(x),B(x)]{circle around (×)}[C(x), D(x)])mod φ(x)
wherein {circle around (×)} represents the inner (scalar) product of two vectors. This formal representation is thoroughly equivalent to the previous one.
The operators + and × denote, respectively: addition in GF(2n), which is carried out by means of simple array of n XOR gates having two input, and multiplication in GF(2n), which corresponds to computing the product of two polynomials, in current algebraic sense, followed by “reduction” with respect to the generator polynomial φ(x), that is computing the remainder of the division with respect to φ(x). Such reduction operation is indicated with the symbol “mod φ(x)”: for instance “F(x)=A(x)×B(x)mod φ(x)” designate calculation of the current product of two polynomials A(x) and B(x), each of order n−1, with a result of order 2n−2, followed by computing the remain of the division by the polynomial φ(x), of order n. The final result is a polynomial of order n−1.
Essentially, the various exemplary embodiments of the invention shown in
In general, factors or operands A(x), B(x), C(x) and D(x) could be provided in serial or parallel format. In practice, each factor is a sequence of n bits. Serial operation involves providing one bit at a time, while parallel operation requires all the n bits to be provided simultaneously.
Purely serial architectures have a throughput too low for cryptographic applications. Fully parallel architectures give rise to circuits which are too complex for embedded systems (one as to keep in mind that, typically n=200 bits).
It is therefore advisable to resort to digit-serial architectures, wherein some factors are provided in parallel, while other are provided serially in groups of k≧1 bit at a time (for K=1 one has the serial-parallel case, for k=n one has the fully parallel case). In that case a balance is struck between circuit complexity and throughput.
In the preferred embodiment of the present invention, operands B(x) and D(x) are provided in a parallel format, while operands A(x) and C(x) are provided in groups of k bits at a time. The result E(x) is finally produced in a parallel format.
The digit-serial approach is particularly suited for using combination with look-up tables. In such tables are initialized by memorising some partial computation results. Subsequently, the contents of these tables is read and re-used with purpose of making the whole computation faster. In certain cases the table contents may be fixed, or may vary infrequently. In these cases, table initialization can be dispensed with or carried out only from time to time, thus having low impact on circuit operation.
The digit-serial approach based on the use of look-up tables has been originally proposed in the first work by M. Hasan cited in the foregoing. In the captioned work only multiplication, and not calculation of inner (scalar) product of vectors of two or more elements is considered.
In the following, three different architectural embodiments are considered.
In a first embodiment shown in
Conversely, reference numerals 14 and 16 designate two look-up tables TAB B(x) and TAB D(x) storing a first set of digital words derived—as better explained in the following—from the factors B(x) and D(x), each representative of the second element of one of the two vectors to be multiplied, and the generator polynomial φ(x).
Reference numeral 26 designates a further look-up table TAB φ(x) storing a second set of digital words derived—as better explained in the following—from the generator polynomial and representative of the mod φ(x) reduction function.
Look-up tables 14, 16 and 26 are preferably comprised of solid state memories such as RAMs, ROMs or EPROMs, each including words n bits each.
Reference numerals 18, 20 and 22 designate three arrays of n XOR gates with two inputs for each gate. Reference numerals 28 and 30 designate further n bit registers.
Each register is adapted to perform a k bit shift at a time. The shift unit of the result register E(x) is shown explicitly.
Finally, reference numeral 24 designates a feedback line from register 30 to one of the inputs of array 18.
Look-up table TAB φ(x) implemented by memory 26 is fixed once the generator polynomial of the field is chosen, which is fixed. Therefore, memory 26 is preferably a ROM or EPROM with 2k words of n bit each.
The i-th word with 0≦i≦2k−1 of table φ(x) is obtained by considering only the n least significant bits of the polynomial including n+k coefficient obtained by the previous calculation: φ(x)×P(i), this being a product without reduction. By P(i) the polynomial of order between 0 and k−1 (extremities included) is meant as having exactly k coefficients, wherein the serious of coefficients represents the natural binary expansion of integer i.
In view of operation, tables TAB B(x) and TAB D(x) in memories 14 and 16 are first initialized. Each look-up table is a RAM with 2k words of n bits each.
The i-th word, with 0≦1≦2k−1 of TAB B(x) is obtained in the way: B(x)×P(i)mod φ(x).
The i-th word, with 0≦1≦2k−1, of TAB D(x) is obtained in the following way; D(x)×P(i)mod φ(x).
Shift registers 10 and 12 are loaded in parallel with operands A(x) and C(x). Register E(x) is initialized to 0.
Operands A(x) and C(x) are shifted by k positions. The k most significant bits of operands A(x) and C(x) are extracted and sent as addresses to tables 14 and 16, respectively. The two n-bit words stored in these tables at those addresses are read out.
The contents of register 28 are shifted by k positions. The k most significant bits are extracted whereas k “0” bits are inserted in the k least significant positions of the register. The k most significant bits of partial result E(x) are sent as an address to table 26. The corresponding n bit word stored therein is read out.
The three n bit words read out from tables 14, 16 and 20, respectively are added to the current contents of parallel register 28.
If operands or factors A(x) and C(x) have not been completely scanned a further shift operation is carried out as described in the foregoing. When such scanning is completed, register 28 contains the final result.
Consequently, the partial products A×B and C×D are not computed separately by the inner product functions unit of the invention. Instead, the inner product unit computes a mix of partial results and then accumulates them to form the final result. It is not possible to point out any internal component of the inner product unit where the two mentioned multiplications are carried out separately.
Instead of executing one partial addition with the factor B in the main loop of the multiplication, two partial additions—with the factors B(x) and D(x)—are executed in parallel and the partial result thus obtained is reduced.
Consequently, the architecture shown in
The arrangement shown in
In the arrangement of
In the block diagram of
Essentially, in the arrangement of
Table 32, designated TAB BD(x) contains all the sums two-by-two, in all possible ways, of the digital words of the look-up tables 14 and 16 of
Operation of the embodiment shown in
Also in this case, factors A(x) and C(x) are shifted by k positions. The k most significant bits of A(x) and C(x) are extracted and concatenated to obtain a 2k bit word. This word is sent as an address to table 32 and the corresponding n bit word stored therein is read out.
In this case the two n bit words read out from table 32 and table 26 (this latter word being identified as previously described in connection with the embodiment of
It will be appreciated that by resorting to the arrangement of
The arrangement of
Again, the same reference numerals already used in
The embodiment of
In operation, table TAB BDφ(x) in memory 36 is first initialized and the h-th word, with 0≦h≦23k−1 of table 36 is obtained as a consolidated combined digital word in the following way: (word of index i of TAB BD(x))+(word of index j of TAB φ(x)), where integers i, j with 0≦i≦22k−1 e 0≦j≦2k−1 are related to h in the following way: h=i+j×22k.
As in the previous embodiments, factors A(x) and C(x) loaded in registers 10 and 12 are shifted by k positions. As in the embodiment of
The contents of register 28 is shifted by k positions. The k most significant bits are extracted while introducing k “0” bits in the k least significant positions of the register. The k most significant bits of the 2k bit words obtained by extracting and concatenating factors A(x) and C(x) are concatenated thus obtaining 3k bit words. This 3k bit words is sent as an address to table 36 and the corresponding n bit digital word stored therein is read to be added to the current contents of register 28.
Again, once factors A(x) and C(x) have been finally scanned, register 28 contains the final result.
In the arrangement of
All the arrangements shown in
In generals terms, table 26 (
Tables 11 and 16 of
However, certain cases may occur where factors B(x) and D(x) are fixed, or change only quite rarely (this may be the case if the representation of the finite field is changed or if the system is subject to reconfiguration). Under these circumstances, all tables 14, 16, 32 and 36 can be implemented in the form of ROMs or EPROMs, which generally have a lower cost than RAMs.
It will be appreciated that factors B(x) and D(x) play a role in computing the inner (scalar) product when they are used to initialize the various tables; after this they no longer play any role in computation. Conversely, factors A(x) and C(x) play no role in table initialization, but are stored in the respective registers 10, 12 to be used during calculation.
In the embodiment of
The solution disclosed can be easily extended to calculating inner products of vectors including more than two elements. Also, the arrangement of the invention is also adapted for use as multiplier of scalar entities, while permitting use also as a current finite field multiplier.
In the embodiment shown in
The present invention has been described with reference to the preferred embodiments. However, the present invention is not limited to those embodiments. Various changes and modifications may be made within the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4873688 | Maki et al. | Oct 1989 | A |
5822336 | Weng et al. | Oct 1998 | A |
6049815 | Lambert et al. | Apr 2000 | A |
6141420 | Vanstone et al. | Oct 2000 | A |
6349318 | Vanstone et al. | Feb 2002 | B1 |
6366940 | Ono et al. | Apr 2002 | B1 |
6377969 | Orlando et al. | Apr 2002 | B1 |
6389442 | Yin et al. | May 2002 | B1 |
6523054 | Kamijo | Feb 2003 | B1 |
6581084 | Romain et al. | Jun 2003 | B1 |
6662346 | Yu et al. | Dec 2003 | B1 |
6701336 | Shen et al. | Mar 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20030068037 A1 | Apr 2003 | US |