1. Field of the Invention
This invention pertains generally to circuit interrupters and, more particularly, to arc fault and/or ground fault circuit interrupters including a test circuit.
2. Background Information
Circuit interrupters include, for example, circuit breakers, contactors, motor starters, motor controllers, other load controllers and receptacles having a trip mechanism. Circuit breakers are generally old and well known in the art. Examples of circuit breakers are disclosed in U.S. Pat. Nos. 5,260,676; and 5,293,522.
Circuit breakers are used to protect electrical circuitry from damage due to an overcurrent condition, such as an overload condition or a relatively high level short circuit or fault condition. In small circuit breakers, commonly referred to as miniature circuit breakers, used for residential and light commercial applications, such protection is typically provided by a thermal-magnetic trip device. This trip device includes a bimetal which is heated and bends in response to a persistent overcurrent condition. The bimetal, in turn, unlatches a spring powered operating mechanism which opens the separable contacts of the circuit breaker to interrupt current flow in the protected power system. An armature, which is attracted by the sizable magnetic forces generated by a short circuit or fault, also unlatches, or trips, the operating mechanism.
In many applications, the miniature circuit breaker also provides ground fault protection. Typically, an electronic circuit detects leakage of current to ground and generates a ground fault trip signal. This trip signal energizes a shunt trip solenoid, which unlatches the operating mechanism, typically through actuation of the thermal-magnetic trip device.
A common type of ground fault detection circuit is the dormant oscillator detector including first and second sensor coils. The line and neutral conductors of the protected circuit pass through the first sensor coil. The output of this coil is applied through a coupling capacitor to an operational amplifier followed by a window comparator having two reference values. A line-to-ground fault causes the magnitude of the amplified signal to exceed the magnitude of the reference values and, thus, generates a trip signal. At least the neutral conductor of the protected circuit passes through the second sensor coil. A neutral-to-ground fault couples the two detector coils which causes the amplifier to oscillate, thereby resulting in the generation of the trip signal. See, for example, U.S. Pat. Nos. 5,260,676; and 5,293,522.
Recently, there has been considerable interest in also providing protection against arc faults. Arc faults are intermittent high impedance faults which can be caused, for instance, by worn insulation between adjacent conductors, by exposed ends between broken conductors, by faulty connections, and in other situations where conducting elements are in close proximity. Because of their intermittent and high impedance nature, arc faults do not generate currents of either sufficient instantaneous magnitude or sufficient average RMS current to trip the conventional circuit interrupter. Even so, the arcs can cause damage or start a fire if they occur near combustible material. It is not practical to simply lower the pick-up currents on conventional circuit breakers, as there are many typical loads which draw similar currents and would, therefore, cause nuisance trips. Consequently, separate electrical circuits have been developed for responding to arc faults. See, for example, U.S. Pat. Nos. 5,224,006; and 5,691,869.
For example, an arc fault circuit interrupter (AFCI) is a device intended to mitigate the effects of arc faults by functioning to deenergize an electrical circuit when an arc fault is detected. Non-limiting examples of AFCIs include: (1) arc fault circuit breakers; (2) branch/feeder arc fault circuit interrupters, which are intended to be installed at the origin of a branch circuit or feeder, such as a panelboard, and which may provide protection from ground faults (e.g., greater than 40 mA) and line-to-neutral faults (e.g., greater than 75 A); (3) outlet circuit arc fault circuit interrupters, which are intended to be installed at a branch circuit outlet, such as an outlet box, in order to provide protection of cord sets and power-supply cords connected to it (when provided with receptacle outlets) against the unwanted effects of arcing, and which may provide protection from line-to-ground faults (e.g., greater than 75 A) and line-to-neutral faults (e.g., 5 to 30 A, and greater than 75 A); (4) cord arc fault circuit interrupters, which are intended to be connected to a receptacle outlet, in order to provide protection to an integral or separate power supply cord; (5) combination arc fault circuit interrupters, which function as either a branch/feeder or an outlet circuit AFCI; and (6) portable arc fault circuit interrupters, which are intended to be connected to a receptacle outlet and provided with one or more outlets.
Ground fault protection circuits and arc fault protection circuits typically include separate associated test circuits for affirming their continued operability.
U.S. Pat. No. 5,982,593 discloses a circuit breaker including a ground fault detector, an arc fault detector, and a test mechanism having a ground fault test circuit for testing a ground fault detector trip mechanism, and an arc fault test circuit for testing an arc fault detector trip mechanism. A state machine circuit automatically controls the test mechanism to sequentially test both of the ground fault and arc fault detector trip mechanisms. A test push button is interconnected with the state machine circuit and, when pressed, initiates sequential testing of both of the ground fault and arc fault trip mechanisms. The ground fault test circuit, when enabled by the test controller, generates a test signal to the ground fault detector to simulate a ground fault current condition by mimicking a ground fault and, thereby, testing operation of the ground fault detector. The arc fault test circuit, when enabled by the test controller, provides signals to the arc fault detector to simulate an arc fault current condition by mimicking an arc fault and, thereby, testing operation of the arc fault detector.
The test controller automatically controls the two test circuits to test both of the ground fault detector and the arc fault detector. The single test push button and test controller test both of the ground fault and arc fault trip functions by: (1) inhibiting a trip assembly; (2) enabling one of the two detectors to determine if one of the respective trip signals was generated by the enabled detector; (3) aborting the test if that trip signal was not generated and, otherwise, continuing the test by disabling the enabled detector; and (4) delaying to allow the trip signal to be removed, enabling the trip assembly, and then enabling the other detector. The ground fault detector has a non-latching trip output and is the first enabled detector.
There is a growing belief, particularly regarding ground fault circuit interrupters (GFCIs), that users rarely and inadequately initiate the ground fault self-test function. Hence, there is a need to automate the self-test function in GFCIs and in similar circuit interrupters.
There is room for improvement in circuit interrupters including test circuits.
These needs and others are met by embodiments of the invention, which provide a trip mechanism structured to cooperate with the secondary winding of a number of current sensors and the operating mechanism to trip open the separable contacts, and a test circuit for testing the number of current sensors and the trip mechanism, the test circuit being structured to apply a test signal directly to the secondary winding of each of the number of current sensors.
Other embodiments of the invention provide a test circuit structured to periodically test a number of current sensors and at least one of a ground fault analog sensing circuit and an arc fault analog sensing circuit, to activate a number of annunciators responsive to a failure of the periodic test and to cause the trip mechanism to cooperate with the operating mechanism to trip open the separable contacts responsive to the failure of the periodic test, and, otherwise, to maintain the number of annunciators inactive and maintain the separable contacts closed responsive to passage of the periodic test.
Other embodiments of the invention provide a test circuit structured to provide a first test signal to a first current sensor and a first analog sensing circuit to test a first transfer function without causing a ground fault to be detected by a ground fault detector, and a second test signal to a second current sensor and a second analog sensing circuit to test a second transfer function without causing an arc fault to be detected by an arc fault detector, in order to provide both of a first test and a second test before causing the trip mechanism to cooperate with the operating mechanism to trip open the separable contacts.
Applying a “complete system” self-test function to a combination AFCI/GFCI is problematic since it is structured to trip in response to plural unrelated fault conditions (e.g., without limitation, detection of a series arc fault; detection of a parallel arc fault; detection of a ground fault). Hence, for a “complete system” type of self-test, each fault condition would somehow need to be simulated and tested individually. However, passage of any of those self-tests would trip the AFCI/GFCI, thereby precluding the other self-tests.
Other embodiments of the invention provide a test pushbutton and a test circuit structured to provide all of (i) a first test of a first current sensor and a first analog sensing circuit, (ii) a second test of a second current sensor and a second analog sensing circuit, and (iii) a third test of a third current sensor and a third analog sensing circuit, to cause the trip mechanism to cooperate with the operating mechanism to trip open the separable contacts responsive to passage of all of the first test, the second test and the third test, and, otherwise, to maintain the separable contacts closed responsive to failure of at least one of the first test, the second test and the third test.
In accordance with one aspect of the invention, a circuit interrupter comprises: separable contacts; a neutral conductor; an operating mechanism structured to open and close the separable contacts; at least one current sensor structured to sense at least current flowing through the separable contacts, each of the at least one current sensor comprising a primary winding and a secondary winding, the primary winding being electrically connected in series with the separable contacts; a trip mechanism structured to cooperate with the secondary winding of the at least one current sensor and the operating mechanism to trip open the separable contacts; and a test circuit for testing the at least one current sensor and the trip mechanism, the test circuit being structured to apply a test signal directly to the secondary winding of each of the at least one current sensor.
The circuit interrupter may be an arc fault circuit interrupter; the current flowing through the separable contacts may include frequencies greater than about 100 kHz; and the at least one current sensor may be a current transformer structured to sense the current flowing through the separable contacts including the frequencies.
As another aspect of the invention, a circuit interrupter comprises: separable contacts; a neutral conductor; an operating mechanism structured to open and close the separable contacts; at least one current sensor structured to sense at least current flowing through the separable contacts; a trip mechanism comprising at least one of a ground fault analog sensing circuit and an arc fault analog sensing circuit cooperating with the at least one current sensor, the trip mechanism being structured to cooperate with the at least one current sensor and the operating mechanism to trip open the separable contacts; a reset mechanism structured to cooperate with the operating mechanism to close the separable contacts after the operating mechanism trips open the separable contacts; at least one annunciator; and a test circuit structured to periodically test the at least one current sensor and the at least one of the ground fault analog sensing circuit and the arc fault analog sensing circuit, to activate the at least one annunciator responsive to a failure of a periodic test and to cause the trip mechanism to cooperate with the operating mechanism to trip open the separable contacts responsive to the failure of the periodic test, and, otherwise, to maintain the annunciator inactive and maintain the separable contacts being closed responsive to passage of the periodic test.
The test circuit may be further structured to permanently activate the at least one annunciator responsive to failure of the periodic test.
The test circuit may be further structured to periodically test the at least one current sensor and the at least one of the ground fault analog sensing circuit and the arc fault analog sensing circuit about once per day.
The test circuit may be further structured to periodically test both of (i) the ground fault analog sensing circuit and the first current transformer, and (ii) the arc fault analog sensing circuit and the second current transformer; and the test circuit may be further structured to activate a first annunciator responsive to failure of a test of the ground fault analog sensing circuit and the first current transformer and to activate a second annunciator responsive to failure of a test of the arc fault analog sensing circuit and the second current transformer.
As another aspect of the invention, a circuit interrupter comprises: separable contacts; a neutral conductor; an operating mechanism structured to open and close the separable contacts; a first current sensor structured to sense a difference between a current flowing through the separable contacts and a current flowing through the neutral conductor; a first analog sensing circuit cooperating with the first current sensor; a second current sensor structured to sense current flowing through the separable contacts; a second analog sensing circuit cooperating with the second current sensor; a trip mechanism comprising a ground fault detector cooperating with the first analog sensing circuit and an arc fault detector cooperating with the second analog sensing circuit, the trip mechanism being structured to cooperate with the first analog sensing circuit, the second analog sensing circuit and the operating mechanism to trip open the separable contacts; and a test circuit structured to provide both of (i) a first test of the first current sensor and the first analog sensing circuit and (ii) a second test of the second current sensor and the second analog sensing circuit, and to cause the trip mechanism to cooperate with the operating mechanism to trip open the separable contacts responsive to failure of at least one of the first test and the second test, and, otherwise, to maintain the separable contacts being closed responsive to passage of both of the first test and the second test, wherein the first current sensor and the first analog sensing circuit have a first transfer function, wherein the second current sensor and the second analog sensing circuit have a second transfer function, and wherein the test circuit is further structured to provide a first test signal to the first current sensor and the first analog sensing circuit to test the first transfer function without causing a ground fault to be detected by the ground fault detector, and a second test signal to the second current sensor and the second analog sensing circuit to test the second transfer function without causing an arc fault to be detected by the arc fault detector, in order to provide both of the first test and the second test before causing the trip mechanism to cooperate with the operating mechanism to trip open the separable contacts.
The current flowing through the separable contacts may have a first frequency; the first test signal may have a second frequency, which is one-half of the first frequency; and the test circuit may be further structured to input a first signal from the first analog sensing circuit and determine if the first signal is less than a negative predetermined value in order to pass the first test.
The first current sensor may be a current transformer including a coil; the test circuit may be further structured to input a second signal from the first analog sensing circuit and determine if the second signal is greater than a positive predetermined value in order to confirm that the coil is continuous and to pass the first test.
The current flowing through the separable contacts may have a first line frequency; the second test signal may have a second frequency, which is substantially greater than the first line frequency and which is greater than about 100 kHz; and the test circuit may be further structured to input a third signal from the second analog sensing circuit and determine if the third signal is greater than a positive predetermined value in order to pass the second test.
As another aspect of the invention, a circuit interrupter comprises: separable contacts; a neutral conductor; an operating mechanism structured to open and close the separable contacts; a first current sensor structured to sense a difference between a current flowing through the separable contacts and a current flowing through the neutral conductor; a first analog sensing circuit cooperating with the first current sensor; a second current sensor structured to sense current flowing through the separable contacts; a second analog sensing circuit cooperating with the second current sensor; a third current sensor structured to sense current flowing through the separable contacts; a third analog sensing circuit cooperating with the third current sensor; a trip mechanism comprising a ground fault detector, a parallel arc fault detector and a series arc fault detector; a test pushbutton; and a test circuit structured to provide all of (i) a first test of the first current sensor and the first analog sensing circuit, (ii) a second test of the second current sensor and the second analog sensing circuit, and (iii) a third test of the third current sensor and the third analog sensing circuit, to cause the trip mechanism to cooperate with the operating mechanism to trip open the separable contacts responsive to passage of all of the first test, the second test and the third test, and, otherwise, to maintain the separable contacts being closed responsive to failure of at least one of the first test, the second test and the third test.
A full understanding of the invention can be gained from the following description of the preferred embodiments when read in conjunction with the accompanying drawings in which:
As employed herein, the term “number” shall mean one or an integer greater than one (i.e., a plurality).
As employed herein, the term “processor” means a programmable analog and/or digital device that can store, retrieve, and process data; a computer; a workstation; a personal computer; a microprocessor; a microcontroller; a microcomputer; a central processing unit; a mainframe computer; a mini-computer; a server; a networked processor; or any suitable processing device or apparatus.
The invention is described in association with an arc fault/ground fault circuit breaker, although the invention is applicable to a wide range of circuit interrupters.
Referring to
For example, for ground fault detection, the current sensor 12 is a current transformer structured to sense a difference between the current flowing through the separable contacts 4 from the line terminal 28 to the load terminal 30 and a current flowing through the neutral conductor 6. Also, for series arc fault detection, the current sensor 14 is a current transformer structured to sense the current flowing through the separable contacts 4. For purposes of series arc fault detection, that current includes frequencies greater than about 100 kHz, and the current sensor 14 is structured to sense that current including those frequencies. The other current sensor 32 is a suitable shunt structured to sense the current flowing through the separable contacts 4 for purposes of parallel arc fault detection.
An analog ground fault sensing circuit 34 cooperates with the current sensor 12, an analog line current sensing circuit 36 and the summer 37 cooperate with the current sensor 32, and an analog series arc fault sensing circuit 38, which provides high frequency gain and filtering, cooperates with the current sensor 14. The analog ground fault sensing circuit 34 outputs a sensed signal 40 to a microcomputer (μC) 42 and, in particular, to channel 43 of analog-to-digital converter (ADC) 44 thereof. The analog line current sensing circuit 36 outputs a sensed signal 46 to channel 47 of the μC ADC 44. The analog series arc fault sensing circuit 38 outputs a sensed signal 48 to a peak detector circuit 50 and to an envelope detection circuit 52. The peak detector circuit 50 outputs a peak signal 54 to channel 55 of the μC ADC 44. The output 56 of the envelope detection circuit 52 is input by the negative input of a comparator 58, which uses a reference (PULSE COUNT THRESHOLD) 60 at its positive input. The output 62 of the comparator 58 is input by a counter 64 of the μC 42.
The μC 42 includes a microprocessor (μP) 66 having routines 68, 70 and 72 that respectively provide a ground fault detector cooperating with the analog ground fault sensing circuit 34, a parallel arc fault detector cooperating with the analog line current sensing circuit 36, and a series arc fault detector cooperating with the analog series arc fault sensing circuit 38 through the peak detector circuit 50, the envelope detection circuit 52, the comparator 58 and the counter 64.
As will be described, below, in connection with
The current sensor 12 and the analog ground fault sensing circuit 34 have a first transfer function 75 as will be discussed, below, in connection with
As a non-limiting example, the current sensor 14 may be structured to resonate at a certain frequency. The circuit 38 may be structured to convert the current output of the current sensor 14 to a voltage signal by a first op-amp circuit (not shown), which is then filtered by a second op-amp circuit (not shown). Hence, the combined circuit 14,38 could mis-operate in several ways: (1) the sensing coil (secondary winding 18) could be an open-circuit; (2) the coil center frequency or output at resonance could be out-of-tolerance; (3) the gain of the first op-amp circuit could be out-of-tolerance; and (4) the filter characteristics of the second op-amp circuit could be out-of-tolerance. This self-test is structured to stimulate the high frequency sensing coil at or near its resonant frequency, measure the total circuit response at the μP 66, and detect any of these failure modes, which could occur either individually or in combination.
Hence, by injecting the test signals 24,26 directly to the secondary windings 18 and below the corresponding fault detection levels of the routines 68,72, this permits the test circuit 22 to evaluate the transfer function gain of the first and second transfer functions, rather than causing a direct trip. This advantageously permits both of the first test and the second test to be conducted before causing the trip mechanism 20 to cooperate with the operating mechanism 8 to trip open the separable contacts 4. For example, fault detection usually involves detection of a fault condition, which persists for some period of time. In order to prevent tripping on the test signals 24,26, these signals could either fail to meet the fault condition criteria or persist for less than the specified trip time period, or both. Hence, this permits the evaluation of multiple functions.
As will be seen, below, in connection with
The transfer function of the circuit 36 is defined by Equations 1 and 2:
V
S
=I
LOAD
*R
S (Eq. 1)
wherein:
V
OUT=−(ILOAD*RS)*(R/R2)−(5d−2.5)*(R/R1) (Eq. 2)
wherein:
The circuit 100 advantageously permits the μP 66 to control the test signal 102 without employing a digital to analog converter.
In the interrupt routine 302, at 316, interrupts are processed including checking for errors in interrupt sequencing. Next, at 318, the line current and analog ground are acquired by reading the ADC channel corresponding to ADC input 47 (
One technique for sensing the AC line current is to use a linear analog circuit (not shown), which produces a voltage that is proportional to and preserves the polarity of the AC line current. When the example μP 66 processes this current information, an additional mechanism is needed to convert the current-proportional voltage signal into a digital format.
One particular technique for sensing AC line current is to use a suitable analog circuit with positive and negative power supplies to sense the current and to drive a bipolar analog-to-digital converter, which can convert analog voltage signals of either positive or negative polarity into digital numbers of corresponding polarity.
As an alternative technique, a suitable analog current sensing circuit with a single polarity voltage supply (e.g., 0 VDC to +5 VDC) can be used, in which the analog circuitry is referenced to a “virtual analog ground” midway between the rails of the single polarity voltage supply (e.g., at about +2.5 VDC). The output of the analog current sensing circuit, such as 36, can be used to drive one channel of a multichannel unipolar analog-to-digital converter, such as 44, which converter is integrated into the μC 42. The “virtual analog ground” is sampled by an additional channel 319 of the unipolar ADC 44. Then, the μP 66 derives a digital number proportional to the current and with the correct current polarity by calculating the difference between the sampled value of the analog current sensing circuit 36 and the sampled value of the “virtual analog ground”.
Next, at 320, it is determined if the present interrupt occurs on a multiple of 22.5°. If so, then at 322 the ground fault current is acquired by reading the ADC channel corresponding to ADC input 43 (
A line-to-neutral voltage zero crossing detector (ZCD) 325 (
If there was a line-to-neutral voltage zero crossing interrupt at 324, then the counter 64 (
Next, at 330, a switch statement is executed in order to direct further execution based upon the value of the variable (interrupt_counter), which corresponds to the ten interrupts as were discussed above. If case 332 determines that the variable (interrupt_counter) is zero, then, at 334, the hardware configuration is refreshed including a reset of output 335 (TEST_GF_HF) (
Referring to
The variable (self_test_state_counter), which ranges from six to zero, and the variable (interrupt_counter), which ranges from zero to 9, define a test cycle over six (when self_test_state_counter equals zero, execution of the self-test routine 303 is bypassed) half-cycles of the line-to-neutral voltage. If case 402 determines that the variable (self_test_state_counter) is six, then, at 404, it is determined if the variable (interrupt_counter) is one. If so, then, at 406, a variable (self_test.passed_tests) is initialized to a predetermined value (SELF_TEST_BITMASK_UNUSED) (e.g., without limitation, 0b10000000 or only bit 7 is true). Next, the first part of the ground fault sensing self-test is executed by setting the output (TEST_GF_HF) 335 true at 410. Although this output 335 is used by both the ground fault sensing self-test and the series arc fault sensing self-test, here, the output 335, as will be described, essentially provides a relatively low frequency (e.g., without limitation, 30 Hz for a 60 Hz line frequency) signal 411 (
Otherwise, if the test failed at 404, then at 412, it is determined if the variable (interrupt_counter) is three. If so, then the first part of the ground fault sensing self-test is verified at time 415 (
If the test failed at 402, then at 422, it is determined if the variable (self_test_state_counter) is five. If so, then at 424, it is determined if the variable (interrupt_counter) is one. If so, then the second part of the ground fault sensing self-test is executed by setting the output (TEST_GF_HF) 335 true at 428. This output was momentarily reset low (as shown at time 429 of
Otherwise, if the test failed at 422, then execution resumes at 440 of
If the test failed at 422 of
Otherwise, if the test failed at 442, then at 452, it is determined if the variable (interrupt_counter) is six. If so, then the stimulus for the line frequency current sensing (parallel arc fault) self-test is removed by removing any simulated current from the μP PWM output 305 (
If the test failed at 440, then execution resumes at 460 of
If the test failed at 464, then at 476, it is determined if the variable (interrupt_counter) is three or five. If so, then the high frequency current sensing (series arc fault) self-test is executed by applying, at 480, simulated high frequency current pulses to the high frequency gain and filtering circuit 38 of
If the test failed at 476, then the response of the high frequency current sensing (series arc fault) self-test is verified starting at 484. There, it is determined if the first high frequency peak detector self-test (from the stimulus at time 485 of
If the test failed at 460, then execution resumes at 494 of
If the test failed at 496, then at 504, it is determined if the variable (interrupt_counter) is three. If so, then the self-test procedure is concluded by determining whether all portions of the self-test sequence have passed. This is determined, at 508, if the variable (self_test.passed_tests) is equal to a predetermined value (SELF_TEST_SUCCESSFUL) (e.g., without limitation, 0b11111111 or all bits 7-0 being set true) to indicate successful completion of all of the sub-tests. If so, then at 510, a variable (last cause of trip) is stored in non-volatile memory (e.g., without limitation, EEPROM 511 of
As a result, if all aspects of the circuit interrupter hardware successfully meet their respective self-test criteria, then the μP 66 issues the trip signal 74 to trip the circuit interrupter 2. Otherwise, if any aspect of this hardware fails the corresponding self-test criteria, then the μP 66 does not issue the trip signal 74. In either case, the EEPROM 511 indicates either a trip due to the success of the self-test, or else the cause of the failure to trip as a result of the self-test, which is the failure of one or more of the various sub-tests.
If the tests failed at 500 or 504, or after 502, 512 or 514, then the case ends at 516. If the test failed at 494, then the switch of 400 of
As an alternative to the manual self-test request routine 200 of
The periodic self-test request routine 600 of
On the other hand, if any number of the self-tests failed, then at 509′, a suitable annunciator 510′ (e.g., without limitation, a visible indicator, such as an LED, is illuminated; an audible indicator, such as a buzzer, is sounded) is set to indicate that there was a failure. Alternatively, a visible indicator, such as an LED, may normally be illuminated (when power is applied) and may be extinguished to indicate that there was a failure. Next, at 511′, the variable (self_test.passed_tests) of
The routine 303′ and the annunciator 510′ permit the circuit interrupter 2′ to trip with a suitable visual and/or audible indication and with the ability to be reset by the reset mechanism 9 a plurality of times. Preferably, the annunciator 510′ provides a continuous and permanent indication of any self-test failure. For example, if the annunciator 510′ is an LED, then the LED is permanently illuminated (when power is applied) after the first of any such self-test failure. Alternatively, if the LED is normally illuminated, then the LED is permanently extinguished after the first of any such self-test failure. This permits the user of the circuit interrupter 2′ to have sufficient time to make arrangements to replace an end-of-life circuit interrupter, with the knowledge that arc fault and/or ground fault protection has been lost. This is contrasted with complete and permanent removal of power (where a reset operation by the reset mechanism 9 is not permitted), which would require the user to reconnect critical loads to other power circuits with extension cords or by physically moving the load.
The annunciator 510′ may include a first annunciator (e.g., without limitation, first LED) corresponding to the ground fault analog sensing circuit 34 and the current sensor 12, and a second annunciator (e.g., without limitation, second LED) corresponding to the arc fault analog sensing circuit 38 and the current sensor 14. Here, step 509′ sets the first LED responsive to failure of any number of the ground fault sub-tests, and sets the second LED responsive to failure of any number of the arc fault sub-tests.
The disclosed arc fault/ground fault circuit interrupter 2 provides a background self-test function that is initiated periodically (
An approach used for the combination (parallel arc fault/series arc fault detection) AFCI electronics is to test each critical analog sensing section for functionality and to use a ROM checksum of μC 42 to verify that the ROM (not shown) contents are correct. This is contrasted with a prior “complete system” self-test philosophy in analog ASIC-based parallel AFCIs and in GFCIs, in which a circuit simulates a fault condition that is detected by a fault detection algorithm, which trips the circuit interrupter.
While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the invention which is to be given the full breadth of the claims appended and any and all equivalents thereof.