Circuit interrupting device with reset lockout and reverse wiring protection and method of manufacture

Abstract
Resettable circuit interrupting devices, such as GFCI devices, that include reverse wiring protection, and optionally an independent trip portions and/or a reset lockout portion are provided. The reverse wiring protection operates at both the line and load sides of the device so that in the event line side wiring to the device is improperly connected to the load side, fault protection for the device remains. The trip portion operates independently of a circuit interrupting portion used to break the electrical continuity in one or more conductive paths in the device. The reset lockout portion prevents the reestablishing of electrical continuity in open conductive paths if the circuit interrupting portion is non-operational, if an open neutral condition exists or if the device is reverse wired. Methods for ensuring a reset lock out state before shipment are provided.
Description

This application is related to application Ser. No. 09/379,140 filed Aug. 20, 1999, which is a continuation-in-part of application Ser. No. 09/369,759 filed Aug. 6, 1999, which is a continuation-in-part of application Ser. No. 09/138,955, filed Aug. 24, 1998, now U.S. Pat. No. 6,040,967, all of which are incorporated herein in their entirety by reference.


This application is related to application Ser. No. 09/204,861, filed Dec. 3, 1998, which is a division of application Ser. No. 08/768,689 filed Dec. 18, 1996, each of which is incorporated herein in its entirety by reference.


This application is related to commonly owned application Ser. No. To Be Determined, filed Mar. 20, 2001, entitled Reset Lockout for Sliding Latch GFCI, by inventors Frantz Germain, Stephen Stewart, David Herzfeld, Steven Campolo, Nicholas DiSalvo and William R. Ziegler, having which is a continuation-in-part of application Ser. No. 09/688,481 filed Oct. 16, 2000, all of which are incorporated herein in their entirety by reference.


BACKGROUND

1. Field


The present application is directed to resettable circuit interrupting devices including without limitation ground fault circuit interrupters (GFCI's), arc fault circuit interrupters (AFCI's), immersion detection circuit interrupters (IDCI's), appliance leakage circuit interrupters (ALCI's), equipment leakage circuit interrupters (ELCI's), circuit breakers, contactors, latching relays and solenoid mechanisms. More particularly, the present application is directed to circuit interrupting devices that include a circuit interrupting portion that can break electrically conductive paths between a line side and a load side of the device and between a line side and a user load. Certain embodiments of the present application are directed to circuit interrupting devices including a reset lock out portion capable of preventing the device from resetting if the circuit interrupting portion is not functioning, if an open neutral condition exists or if the device is mis-wired. Certain embodiments of the present application are directed to methods of manufacturing circuit interrupting devices to be initially in a tripped condition. Certain embodiments of the present application are directed to methods of manufacturing circuit interrupting devices to be initially in a reset lock out condition.


2. Description of the Related Art


Many electrical wiring devices have a line side, which is connectable to an electrical power supply, and a load side, which is connectable to one or more loads and at least one conductive path between the line and load sides. Electrical connections to wires supplying electrical power or wires conducting electricity to the one or more loads are at line side and load side connections. The electrical wiring device industry has witnessed an increasing call for circuit breaking devices or systems which are designed to interrupt power to various loads, such as household appliances, consumer electrical products and branch circuits. In particular, electrical codes require electrical circuits in home bathrooms and kitchens to be equipped with ground fault circuit interrupters (GFCI), for example. Presently available GFCI devices, such as the device described in commonly owned U.S. Pat. No. 4,595,894, use an electrically activated trip mechanism to mechanically break an electrical connection between the line side and the load side. Such devices are resettable after they are tripped by, for example, the detection of a ground fault. In the device discussed in the '894 patent, the trip mechanism used to cause the mechanical breaking of the circuit (i.e., the conductive path between the line and load sides) includes a solenoid (or trip coil). A test button is used to test the trip mechanism and circuitry used to sense faults, and a reset button is used to reset the electrical connection between line and load sides.


However, instances may arise where an abnormal condition, caused by for example a lightning strike, occurs which may result not only in a surge of electricity at the device and a tripping of the device but also a disabling of the trip mechanism used to cause the mechanical breaking of the circuit. This may occur without the knowledge of the user. Under such circumstances an unknowing user, faced with a GFCI which has tripped, may press the reset button which, in turn, will cause the device with an inoperative trip mechanism to be reset without the ground fault protection available.


Further, an open neutral condition, which is defined in Underwriters Laboratories (UL) Standard PAG 943A, may exist with the electrical wires supplying electrical power to such GFCI devices. If an open neutral condition exists with the neutral wire on the line (versus load) side of the GFCI device, an instance may arise where a current path is created from the phase (or hot) wire supplying power to the GFCI device through the load side of the device and a person to ground. In the event that an open neutral condition exists, current GFCI devices, which have tripped, may be reset even though the open neutral condition may remain.


Commonly owned application Ser. No. 09/138,955, filed Aug. 24, 1998, now U.S. Pat. No. 6,040,967, which is incorporated herein in its entirety by reference, describes a family of resettable circuit interrupting devices capable of locking out the reset portion of the device if the circuit interrupting portion is non-operational or if an open neutral condition exists.


Some of the circuit interrupting devices described above have a user accessible load side connection in addition to the line and load side connections. The user accessible load side connection includes one or more connection points where a user can externally connect to electrical power supplied from the line side. The load side connection and user accessible load side connection are typically electrically connected together. An example of such a circuit interrupting device is a GFCI receptacle, where the line and load side connections are binding screws and the user accessible load side connection is the plug connection to an internal receptacle. As noted, such devices are connected to external wiring so that line wires are connected to the line side connection and load side wires are connected to the load side connection. However, instances may occur where the circuit interrupting device is improperly connected to the external wires so that the load wires are connected to the line side connection and the line wires are connected to the load connection. This is known as reverse wiring. In the event the circuit interrupting device is reverse wired, fault protection to the user accessible load connection may be eliminated, even if fault protection to the load side connection remains.


Furthermore, studies related to GFCI devices indicate that perhaps 10-20% or more of all GFCI devices installed were found to be inoperable by the user. However, after those devices were returned to the manufacturer, most were found to be operational. Accordingly, it has been suggested that the devices were reverse wired by the user (line—load side reversal). Furthermore, regulatory codes and industry standards codes such as those by Underwriters Laboratories (UL) may require that GFCI devices be manufactured with a warning label advising the user to correctly wire the line and load terminals of the device. However, even such warnings may not be adequate as suggested by the studies above. Furthermore, a reasonably foolproof mis-wiring prevention scheme may obviate the need for such a warning label.


Conventional GFCI devices may utilize a user load such as a face receptacle. Typically GFCIs are four terminal devices, two phase or AC leads for connection to AC electrical power and two LOAD leads for connection to downstream devices. If a conventional GFCI is properly wired, the GFCI provides ground fault protection for devices downstream and the incorporated receptacle. However, if a conventional GFCI is reverse wired, unprotected power is provided to the receptacle face at all times. For example, when a conventional GFCI is reverse wired, the face receptacle is “upstream” from the current imbalance sensor coil. Accordingly, if the conventional GFCI is in either the tripped or normal state, the face receptacle is provide unprotected power.


In spite of detailed instructions that come packaged with most GFCIs and identification of AC and LOAD terminals, GFCIs are sometimes mis-wired. One reason that this problem exists is that in new construction, both the input line and downstream cables appear identical when the installer is connecting a new ground fault circuit interrupter. This is especially a problem in new construction where there is no power available in order to test which cable is leading current into the device.


The problem may be compounded when it is considered that many typical duplex receptacle GFCIs have a test button that will trip and shut off the power when pushed to verify operations of internal functions in the GFCI. However, use of the test button does not indicate whether the built in duplex receptacle is protected. Typical users may not be aware of this. Users simply test the device after installation and verify that the unit trips upon pressing the test button by way of an audible click, for example. This gives the user a false sense that all is well. What is actually happening when the GFCI is reverse wired is that the GFCI disconnects power from and protects everything downstream, but does not protect the receptacle contacts of the GFCI itself. The device will trip depending on the condition of internal components and irrespective of how the GFCI was wired. It does not matter that the GFCI was reverse wired when it was tested.


Certain references described devices that attempt to warn the user of a reverse wiring condition. For example, one approach utilizes a GFCI with reverse line polarity lamp indicator to indicate proper installation of the GFCI. See, for example, U.S. Pat. No. 4,412,193 issued to Bienwald et al. on Oct. 25, 1983 and assigned to the owner of the present invention. However, a push button needs to be manually pressed in accordance with instructions in order to detect whether the GFCI is mis-wired.


In another example, U.S. Pat. No. 5,477,412 issued to Neiger et al. on Dec. 19, 1995 and owned by the assignee of the present invention, is directed to a ground fault circuit interrupter incorporating mis-wiring prevention circuitry. Mis-wiring sense circuitry automatically triggers the generation of visual and audible alarms in the event of mis-wiring conditions. The circuit employs an alarm inhibiting technique that incorporates sense circuitry connected to the AC terminals on one side of the internal GFCI switches or relays and alarm generation circuitry connected to the load terminal on the opposite side.


Commonly owned application Ser. No. 09/204,861, filed Dec. 3, 1998, which is incorporated herein in its entirety by reference, describes a device to test for reverse wiring and provide an indication of reverse wiring.


SUMMARY

The present application relates to a resettable circuit interrupting devices that maintain fault protection for the circuit interrupting device even if the device is reverse wired.


In one embodiment, the circuit interrupting device includes a housing and phase and neutral conductive paths disposed at least partially within the housing between line and load sides. Preferably, the phase conductive path terminates at a first connection capable of being electrically connected to a source of electricity, a second connection capable of conducting electricity to at least one load and a third connection capable of conducting electricity to at least one user accessible load. Similarly, the neutral conductive path, preferably, terminates at a first connection capable of being electrically connected to a source of electricity, a second connection capable of providing a neutral connection to the at least one load and a third connection capable of providing a neutral connection to the at least one user accessible load;


The circuit interrupting device also includes a circuit interrupting portion that is disposed within the housing and configured to cause electrical discontinuity in one or both of the phase and neutral conductive paths, between said line side and said load side upon the occurrence of a predetermined condition. A reset portion is disposed at least partially within the housing and is configured to reestablish electrical continuity in the open conductive paths.


Preferably, the phase conductive path includes a plurality of contacts that are capable of opening to cause electrical discontinuity in the phase conductive path and closing to reestablish electrical continuity in the phase conductive path, between said line and load sides. The neutral conductive path also includes a plurality of contacts that are capable of opening to cause electrical discontinuity in the neutral conductive path and closing to reestablish electrical continuity in the neutral conductive path, between said line and load sides. In this configuration, the circuit interrupting portion causes the plurality of contacts of the phase and neutral conductive paths to open, and the reset portion causes the plurality of contacts of the phase and neutral conductive paths to close.


One embodiment for the circuit interrupting portion uses an electro-mechanical circuit interrupter to cause electrical discontinuity in the phase and neutral conductive paths, and sensing circuitry to sense the occurrence of the predetermined condition. For example, the electro-mechanical circuit interrupter include a coil assembly, a movable plunger attached to the coil assembly and a banger attached to the plunger. The movable plunger is responsive to energizing of the coil assembly, and movement of the plunger is translated to movement of said banger. Movement of the banger causes the electrical discontinuity in the phase and/or neutral conductive paths.


The circuit interrupting device may also include reset lockout portion that prevents the reestablishing of electrical continuity in either the phase or neutral conductive path or both conductive paths, unless the circuit interrupting portion is operating properly. That is, the reset lockout prevents resetting of the device unless the circuit interrupting portion is operating properly. In embodiments where the circuit interrupting device includes a reset lockout portion, the reset portion may be configured so that at least one reset contact is electrically connected to the sensing circuitry of the circuit interrupting portion, and that depression of a reset button causes at least a portion of the phase conductive path to contact at least one reset contact. When contact is made between the phase conductive path and the at least one reset contact, the circuit interrupting portion is activated so that the reset lockout portion is disabled and electrical continuity in the phase and neutral conductive paths can be reestablished.


The circuit interrupting device may also include a trip portion that operates independently of the circuit interrupting portion. The trip portion is disposed at least partially within the housing and is configured to cause electrical discontinuity in the phase and/or neutral conductive paths independent of the operation of the circuit interrupting portion. In one embodiment, the trip portion includes a trip actuator accessible from an exterior of the housing and a trip arm preferably within the housing and extending from the trip actuator. The trip arm is preferably configured to facilitate mechanical breaking of electrical continuity in the phase and/or neutral conductive paths, if the trip actuator is actuated. Preferably, the trip actuator is a button. However, other known actuators are also contemplated.


In an embodiment, the circuit interrupter is manufactured having a bridge circuit separately disconnecting a load side and a user load when the circuit interrupter trips. In another embodiment, two single-pole, single throw switching devices are used to switch each power line from the load and the user load respectively. In another embodiment, the circuit interrupter is manufactured in a reset lock out state. In another embodiment, a removable or fixedly connected trip force device is utilized to force a trip upon installation. In another embodiment, an indicator provides an indication of reverse wiring. In another embodiment, a separate trip force device is connected to the circuit interrupter before it is delivered into the stream of commerce. In a method embodiment, the circuit interrupter is set to a reset lock out state before being delivered into the stream of commerce.





BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the present application are described herein with reference to the drawings in which similar elements are given similar reference characters, wherein:



FIG. 1 is a perspective view of one embodiment of a ground fault circuit interrupting device according to the present application;



FIG. 2 is side elevational view, partly in section, of a portion of the GFCI device shown in FIG. 1, illustrating the GFCI device in a set or circuit making position;



FIG. 3 is an exploded view of internal components of the circuit interrupting device of FIG. 1;



FIG. 4 is a plan view of portions of electrical conductive paths located within the GFCI device of FIG. 1;



FIG. 5 is a partial sectional view of a portion of a conductive path shown in FIG. 4;



FIG. 6 is a partial sectional view of a portion of a conductive path shown in FIG. 4;



FIG. 7 is a side elevational view similar to FIG. 2, illustrating the GFCI device in a circuit breaking or interrupting position;



FIG. 8 is a side elevational view similar to FIG. 2, illustrating the components of the GFCI device during a reset operation;



FIGS. 9-11 are schematic representations of the operation of one embodiment of the reset portion of the present application, illustrating a latching member used to make an electrical connection between line and load connections and to relate the reset portion of the electrical connection with the operation of the circuit interrupting portion;



FIG. 12 is a schematic diagram of a circuit for detecting ground faults and resetting the GFCI device of FIG. 1;



FIG. 13 is a perspective view of an alternative embodiment of a ground fault circuit interrupting device according to the present application;



FIG. 14 is side elevational view, partly in section, of a portion of the GFCI device shown in FIG. 13, illustrating the GFCI device in a set or circuit making position;



FIG. 15 is a side elevational view similar to FIG. 14, illustrating the GFCI device in a circuit breaking position;



FIG. 16 is a side elevational view similar to FIG. 14, illustrating the components of the GFCI device during a reset operation;



FIG. 17 is an exploded view of internal components of the GFCI device of FIG. 13;



FIG. 18 is a schematic diagram of a circuit for detecting ground faults and resetting the GFCI device of FIG. 13;



FIG. 19 is side elevational view, partly in section, of components of a portion of the alternative embodiment of the GFCI device shown in FIG. 13, illustrating the device in a set or circuit making position;



FIG. 20 is a side elevational view similar to FIG. 19, illustrating of the device in a circuit breaking position;



FIG. 21 is a block diagram of a circuit interrupting system according to the present application;



FIGS. 22
a-b are partial schematic diagrams of a conventional GFCI properly wired in FIG. 22a and reverse wired in FIG. 22b;



FIGS. 23
a-b are partial schematic diagrams of a GFCI according to an embodiment of the present invention properly wired in FIG. 23a and reverse wired in FIG. 23b;



FIGS. 24
a-b are partial schematic diagrams of a GFCI according to an another embodiment of the present invention having a reset lock out shown properly wired in FIG. 24a and reverse wired in FIG. 24b;



FIG. 25
a is a partial schematic diagram of a GFCI according to an another embodiment of the present invention utilizing two single pole single throw switch devices per line;



FIG. 25
b is a partial schematic diagram of a GFCI according to an another embodiment of the present invention utilizing a dual pole single throw switch device with one end shorted per line;



FIG. 26 is a partial schematic diagram of a GFCI according to an another embodiment of the present invention utilizing an indicator;



FIG. 27 is a partial schematic diagram of a test connection used to configure a GFCI according to an embodiment of the present invention;



FIGS. 28
a-c are flow charts of methods to prepare a circuit interrupting device according to embodiments of the present invention; and



FIG. 29 is a perspective view of a trip force device according to an embodiment of the present invention.





DETAILED DESCRIPTION OF EMBODIMENTS

The present application contemplates various types of circuit interrupting devices that are capable of breaking at least one conductive path at both a line side and a load side of the device. The conductive path is typically divided between a line side that connects to supplied electrical power and a load side that connects to one or more loads. As noted, the various devices in the family of resettable circuit interrupting devices include: ground fault circuit interrupters (GFCI's), arc fault circuit interrupters (AFCI's), immersion detection circuit interrupters (IDCI's), appliance leakage circuit interrupters (ALCI's) and equipment leakage circuit interrupters (ELCI's).


For the purpose of the present application, the structure or mechanisms used in the circuit interrupting devices, shown in the drawings and described hereinbelow, are incorporated into a GFCI receptacle suitable for installation in a single-gang junction box used in, for example, a residential electrical wiring system. However, the mechanisms according to the present application can be included in any of the various devices in the family of resettable circuit interrupting devices.


The GFCI receptacles described herein have line and load phase (or power) connections, line and load neutral connections and user accessible load phase and neutral connections. The connections permit external conductors or appliances to be connected to the device. These connections may be, for example, electrical fastening devices that secure or connect external conductors to the circuit interrupting device, as well as conduct electricity. Examples of such connections include binding screws, lugs, terminals and external plug connections.


In one embodiment, the GFCI receptacle has a circuit interrupting portion, a reset portion and a reset lockout. This embodiment is shown in FIGS. 1-11. In another embodiment, the GFCI receptacle is similar to the embodiment of FIGS. 1-11, except the reset lockout is omitted. Thus, in this embodiment, the GFCI receptacle has a circuit interrupting portion and a reset portion, which is similar to those described in FIGS. 1-12. In another embodiment, the GFCI receptacle has a circuit interrupting portion, a reset portion, a reset lockout and an independent trip portion. This embodiment is shown in FIGS. 13-20.


The circuit interrupting and reset portions described herein preferably use electro-mechanical components to break (open) and make (close) one or more conductive paths between the line and load sides of the device. However, electrical components, such as solid state switches and supporting circuitry, may be used to open and close the conductive paths.


Generally, the circuit interrupting portion is used to automatically break electrical continuity in one or more conductive paths (i.e., open the conductive path) between the line and load sides upon the detection of a fault, which in the embodiments described is a ground fault. The reset portion is used to close the open conductive paths.


In the embodiments including a reset lockout, the reset portion is used to disable the reset lockout, in addition to closing the open conductive paths. In this configuration, the operation of the reset and reset lockout portions is in conjunction with the operation of the circuit interrupting portion, so that electrical continuity in open conductive paths cannot be reset if the circuit interrupting portion is non-operational, if an open neutral condition exists and/or if the device is reverse wired.


In the embodiments including an independent trip portion, electrical continuity in one or more conductive paths can be broken independently of the operation of the circuit interrupting portion. Thus, in the event the circuit interrupting portion is not operating properly, the device can still be tripped.


The above-described features can be incorporated in any resettable circuit interrupting device, but for simplicity the descriptions herein are directed to GFCI receptacles.


Turning now to FIG. 1, the GFCI receptacle 10 has a housing 12 consisting of a relatively central body 14 to which a face or cover portion 16 and a rear portion 18 are removably secured. The face portion 16 has entry ports 20 and 21 for receiving normal or polarized prongs of a male plug of the type normally found at the end of a lamp or appliance cord set (not shown), as well as ground-prong-receiving openings 22 to accommodate a three-wire plug. The receptacle also includes a mounting strap 24 used to fasten the receptacle to a junction box.


A test button 26 extends through opening 28 in the face portion 16 of the housing 12. The test button is used to activate a test operation, that tests the operation of the circuit interrupting portion (or circuit interrupter) disposed in the device. The circuit interrupting portion, to be described in more detail below, is used to break electrical continuity in one or more conductive paths between the line and load side of the device. A reset button 30 forming a part of the reset portion extends through opening 32 in the face portion 16 of the housing 12. The reset button is used to activate a reset operation, which reestablishes electrical continuity in the open conductive paths.


Electrical connections to existing household electrical wiring are made via binding screws 34 and 36, where screw 34 is an input (or line) phase connection, and screw 36 is an output (or load) phase connection. It should be noted that two additional binding screws 38 and 40 (seen in FIG. 3) are located on the opposite side of the receptacle 10. These additional binding screws provide line and load neutral connections, respectively. A more detailed description of a GFCI receptacle is provided in U.S. Pat. No. 4,595,894, which is incorporated herein in its entirety by reference. It should also be noted that binding screws 34, 36, 38 and 40 are exemplary of the types of wiring terminals that can be used to provide the electrical connections. Examples of other types of wiring terminals include set screws, pressure clamps, pressure plates, push-in type connections, pigtails and quick-connect tabs.


Referring to FIGS. 2-6, the conductive path between the line phase connection 34 and the load phase connection 36 includes contact arm 50 which is movable between stressed and unstressed positions, movable contact 52 mounted to the contact arm 50, contact arm 54 secured to or monolithically formed into the load phase connection 36 and fixed contact 56 mounted to the contact arm 54. The user accessible load phase connection for this embodiment includes terminal assembly 58 having two binding terminals 60 which are capable of engaging a prong of a male plug inserted therebetween. The conductive path between the line phase connection 34 and the user accessible load phase connection includes, contact arm 50, movable contact 62 mounted to contact arm 50, contact arm 64 secured to or monolithically formed into terminal assembly 58, and fixed contact 66 mounted to contact arm 64. These conductive paths are collectively called the phase conductive path.


Similarly, the conductive path between the line neutral connection 38 and the load neutral connection 40 includes, contact arm 70 which is movable between stressed and unstressed positions, movable contact 72 mounted to contact arm 70, contact arm 74 secured to or monolithically formed into load neutral connection 40, and fixed contact 76 mounted to the contact arm 74. The user accessible load neutral connection for this embodiment includes terminal assembly 78 having two binding terminals 80 which are capable of engaging a prong of a male plug inserted therebetween. The conductive path between the line neutral connection 38 and the user accessible load neutral connection includes, contact arm 70, movable contact 82 mounted to the contact arm 70, contact arm 84 secured to or monolithically formed into terminal assembly 78, and fixed contact 86 mounted to contact arm 84. These conductive paths are collectively called the neutral conductive path.


Referring to FIG. 2, the circuit interrupting portion has a circuit interrupter and electronic circuitry capable of sensing faults, e.g., current imbalances, on the hot and/or neutral conductors. In a preferred embodiment for the GFCI receptacle, the circuit interrupter includes a coil assembly 90, a plunger 92 responsive to the energizing and de-energizing of the coil assembly and a banger 94 connected to the plunger 92. The banger 94 has a pair of banger dogs 96 and 98 which interact with a movable latching members 100 used to set and reset electrical continuity in one or more conductive paths. The coil assembly 90 is activated in response to the sensing of a ground fault by, for example, the sense circuitry shown in FIG. 12. FIG. 12 shows conventional circuitry for detecting ground faults that includes a differential transformer that senses current imbalances.


The reset portion includes reset button 30, the movable latching members 100 connected to the reset button 30, latching fingers 102 and reset contacts 104 and 106 that temporarily activate the circuit interrupting portion when the reset button is depressed, when in the tripped position. Preferably, the reset contacts 104 and 106 are normally open momentary contacts. The latching fingers 102 are used to engage side R of each contact arm 50,70 and move the arms 50,70 back to the stressed position where contacts 52,62 touch contacts 56,66, respectively, and where contacts 72,82 touch contacts 76,86, respectively.


The movable latching members 102 are, in this embodiment, common to each portion (i.e., the circuit interrupting, reset and reset lockout portions) and used to facilitate making, breaking or locking out of electrical continuity of one or more of the conductive paths. However, the circuit interrupting devices according to the present application also contemplate embodiments where there is no common mechanism or member between each portion or between certain portions. Further, the present application also contemplates using circuit interrupting devices that have circuit interrupting, reset and reset lockout portions to facilitate making, breaking or locking out of the electrical continuity of one or both of the phase or neutral conductive paths.


In the embodiment shown in FIGS. 2 and 3, the reset lockout portion includes latching fingers 102 which after the device is tripped, engages side L of the movable arms 50,70 so as to block the movable arms 50,70 from moving. By blocking movement of the movable arms 50,70, contacts 52 and 56, contacts 62 and 66, contacts 72 and 76 and contacts 82 and 86 are prevented from touching. Alternatively, only one of the movable arms 50 or 70 may be blocked so that their respective contacts are prevented from touching. Further, in this embodiment, latching fingers 102 act as an active inhibitor that prevents the contacts from touching. Alternatively, the natural bias of movable arms 50 and 70 can be used as a passive inhibitor that prevents the contacts from touching.


Referring now to FIGS. 2 and 7-11, the mechanical components of the circuit interrupting and reset portions in various stages of operation are shown. For this part of the description, the operation will be described only for the phase conductive path, but the operation is similar for the neutral conductive path, if it is desired to open and close both conductive paths. In FIG. 2, the GFCI receptacle is shown in a set position where movable contact arm 50 is in a stressed condition so that movable contact 52 is in electrical engagement with fixed contact 56 of contact arm 54. If the sensing circuitry of the GFCI receptacle senses a ground fault, the coil assembly 90 is energized to draw plunger 92 into the coil assembly 90 so that banger 94 moves upwardly. As the banger moves upwardly, the banger front dog 98 strikes the latch member 100 causing it to pivot in a counterclockwise direction C (seen in FIG. 7) about the joint created by the top edge 112 and inner surface 114 of finger 110. The movement of the latch member 100 removes the latching finger 102 from engagement with side R of the remote end 116 of the movable contact arm 50, and permits the contact arm 50 to return to its pre-stressed condition opening contacts 52 and 56, seen in FIG. 7.


After tripping, the coil assembly 90 is de-energized so that spring 93 returns plunger 92 to its original extended position and banger 94 moves to its original position releasing latch member 100. At this time, the latch member 100 is in a lockout position where latch finger 102 inhibits movable contact 52 from engaging fixed contact 56, as seen in FIG. 10. As noted, one or both latching fingers 102 can act as an active inhibitor that prevents the contacts from touching. Alternatively, the natural bias of movable arms 50 and 70 can be used as a passive inhibitor that prevents the contacts from touching.


To reset the GFCI receptacle so that contacts 52 and 56 are closed and continuity in the phase conductive path is reestablished, the reset button 30 is depressed sufficiently to overcome the bias force of return spring 120 and move the latch member 100 in the direction of arrow A, seen in FIG. 8. While the reset button 30 is being depressed, latch finger 102 contacts side L of the movable contact arm 50 and continued depression of the reset button 30 forces the latch member to overcome the stress force exerted by the arm 50 causing the reset contact 104 on the arm 50 to close on reset contact 106. Closing the reset contacts activates the operation of the circuit interrupter by, for example simulating a fault, so that plunger 92 moves the banger 94 upwardly striking the latch member 100 which pivots the latch finger 102, while the latch member 100 continues to move in the direction of arrow A. As a result, the latch finger 102 is lifted over side L of the remote end 116 of the movable contact arm 50 onto side R of the remote end of the movable contact arm, as seen in FIGS. 7 and 11. Contact arm 50 returns to its unstressed position, opening contacts 52 and 56 and contacts 62 and 66, so as to terminate the activation of the circuit interrupting portion, thereby de-energizing the coil assembly 90.


After the circuit interrupter operation is activated, the coil assembly 90 is de-energized so that so that plunger 92 returns to its original extended position, and banger 94 releases the latch member 100 so that the latch finger 102 is in a reset position, seen din FIG. 9. Release of the reset button causes the latching member 100 and movable contact arm 50 to move in the direction of arrow B (seen in FIG. 9) until contact 52 electrically engages contact 56, as seen in FIG. 2.


As noted above, if opening and closing of electrical continuity in the neutral conductive path is desired, the above description for the phase conductive path is also applicable to the neutral conductive path.


In an alternative embodiment, the circuit interrupting devices may also include a trip portion that operates independently of the circuit interrupting portion so that in the event the circuit interrupting portion becomes non-operational the device can still be tripped. Preferably, the trip portion is manually activated and uses mechanical components to break one or more conductive paths. However, the trip portion may use electrical circuitry and/or electro-mechanical components to break either the phase or neutral conductive path or both paths.


For the purposes of the present application, the structure or mechanisms for this embodiment are also incorporated into a GFCI receptacle, seen in FIGS. 13-20, suitable for installation in a single-gang junction box in a home. However, the mechanisms according to the present application can be included in any of the various devices in the family of resettable circuit interrupting devices.


Turning now to FIG. 13, the GFCI receptacle 200 according to this embodiment is similar to the GFCI receptacle described in FIGS. 1-12. Similar to FIG. 1, the GFCI receptacle 200 has a housing 12 consisting of a relatively central body 14 to which a face or cover portion 16 and a rear portion 18 are, preferably, removably secured.


A trip actuator 202, preferably a button, which is part of the trip portion to be described in more detail below, extends through opening 28 in the face portion 16 of the housing 12. The trip actuator is used, in this exemplary embodiment, to mechanically trip the GFCI receptacle, i.e., break electrical continuity in one or more of the conductive paths, independent of the operation of the circuit interrupting portion.


A reset actuator 30, preferably a button, which is part of the reset portion, extends through opening 32 in the face portion 16 of the housing 12. The reset button is used to activate the reset operation, which re-establishes electrical continuity in the open conductive paths, i.e., resets the device, if the circuit interrupting portion is operational.


As in the above embodiment, electrical connections to existing household electrical wiring are made via binding screws 34 and 36, where screw 34 is an input (or line) phase connection, and screw 36 is an output (or load) phase connection. It should be noted that two additional binding screws 38 and 40 (seen in FIG. 3) are located on the opposite side of the receptacle 200. These additional binding screws provide line and load neutral connections, respectively. A more detailed description of a GFCI receptacle is provided in U.S. Pat. No. 4,595,894, which is incorporated herein in its entirety by reference.


Referring to FIGS. 4-6, 14 and 17, the conductive paths in this embodiment are substantially the same as those described above. The conductive path between the line phase connection 34 and the load phase connection 36 includes, contact arm 50 which is movable between stressed and unstressed positions, movable contact 52 mounted to the contact arm 50, contact arm 54 secured to or monolithically formed into the load phase connection 36 and fixed contact 56 mounted to the contact arm 54 (seen in FIGS. 4, 5 and 17). The user accessible load phase connection for this embodiment includes terminal assembly 58 having two binding terminals 60 which are capable of engaging a prong of a male plug inserted therebetween. The conductive path between the line phase connection 34 and the user accessible load phase connection includes, contact arm 50, movable contact 62 mounted to contact arm 50, contact arm 64 secured to or monolithically formed into terminal assembly 58, and fixed contact 66 mounted to contact arm 64. These conductive paths are collectively called the phase conductive path.


Similarly, the conductive path between the line neutral connection 38 and the load neutral connection 40 includes, contact arm 70 which is movable between stressed and unstressed positions, movable contact 72 mounted to contact arm 70, contact arm 74 secured to or monolithically formed into load neutral connection 40, and fixed contact 76 mounted to the contact arm 74 (seen in FIGS. 4, 6 and 17). The user accessible load neutral connection for this embodiment includes terminal assembly 78 having two binding terminals 80 which are capable of engaging a prong of a male plug inserted therebetween. The conductive path between the line neutral connection 38 and the user accessible load neutral connection includes, contact arm 70, movable contact 82 mounted to the contact arm 70, contact arm 84 secured to or monolithically formed into terminal assembly 78, and fixed contact 86 mounted to contact arm 84. These conductive paths are collectively called the neutral conductive path.


There is also shown in FIG. 14, mechanical components used during circuit interrupting and reset operations according to this embodiment of the present application. Although these components shown in the drawings are electro-mechanical in nature, the present application also contemplates using semiconductor type circuit interrupting and reset components, as well as other mechanisms capable of making and breaking electrical continuity.


The circuit interrupting device according to this embodiment incorporates an independent trip portion into the circuit interrupting device of FIGS. 1-12. Therefore, a description of the circuit interrupting, reset and reset lockout portions are omitted.


Referring to FIGS. 14-16 an exemplary embodiment of the trip portion according to the present application includes a trip actuator 202, preferably a button, that is movable between a set position, where contacts 52 and 56 are permitted to close or make contact, as seen in FIG. 14, and a trip position where contacts 52 and 56 are caused to open, as seen in FIG. 15. Spring 204 normally biases trip actuator 202 toward the set position. The trip portion also includes a trip arm 206 that extends from the trip actuator 202 so that a surface 208 of the trip arm 206 moves into contact with the movable latching member 100, when the trip button is moved toward the trip position. When the trip actuator 202 is in the set position, surface 208 of trip arm 202 can be in contact with or close proximity to the movable latching member 100, as seen in FIG. 14. Of course the trip button may be labeled as a standard test button.


In operation, upon depression of the trip actuator 202, the trip actuator pivots about point T of pivot arm 210 (seen in FIG. 15) extending from strap 24 so that the surface 208 of the trip arm 206 can contact the movable latching member 100. As the trip actuator 202 is moved toward the trip position, trip arm 206 also enters the path of movement of the finger 110 associated with reset button 30 thus blocking the finger 102 from further movement in the direction of arrow A (seen in FIG. 15). By blocking the movement of the finger 110, the trip arm 206 inhibits the activation of the reset operation and, thus, inhibits simultaneous activation of the trip and reset operations. Further depression of the trip actuator 202 causes the movable latching member 100 to pivot about point T in the direction of arrow C (seen in FIG. 15). Pivotal movement of the latching member 100 causes latching finger 102 of latching arm 100 to move out of contact with the movable contact arm 50 so that the arm 50 returns to its unstressed condition, and the conductive path is broken. Resetting of the device is achieved as described above. An exemplary embodiment of the circuitry used to sense faults and reset the conductive paths, is shown in FIG. 18.


As noted above, if opening and closing of electrical continuity in the neutral conductive path is desired, the above description for the phase conductive path is also applicable to the neutral conductive path.


An alternative embodiment of the trip portion will be described with reference to FIGS. 19 and 20. In this embodiment, the trip portion includes a trip actuator 202 that at is movable between a set position, where contacts 52 and 56 are permitted to close or make contact, as seen in FIG. 19, and a trip position where contacts 52 and 56 are caused to open, as seen in FIG. 20. Spring 220 normally biases trip actuator 202 toward the set position. The trip portion also includes a trip arm 224 that extends from the trip actuator 202 so that a distal end 226 of the trip arm is in movable contact with the movable latching member 100. As noted above, the movable latching member 100 is, in this embodiment, common to the trip, circuit interrupting, reset and reset lockout portions and is used to make, break or lockout the electrical connections in the phase and/or neutral conductive paths.


In this embodiment, the movable latching member 100 includes a ramped portion 100a which facilitates opening and closing of electrical contacts 52 and 56 when the trip actuator 202 is moved between the set and trip positions, respectively. To illustrate, when the trip actuator 202 is in the set position, distal end 226 of trip arm 224 contacts the upper side of the ramped portion 100a, seen in FIG. 19. When the trip actuator 202 is depressed, the distal end 226 of the trip arm 224 moves along the ramp and pivots the latching member 60 about point P in the direction of arrow C causing latching finger 102 of the latching member 100 to move out of contact with the movable contact arm 50 so that the arm 50 returns to its unstressed condition, and the conductive path is broken. Resetting of the device is achieved as described above.


The circuit interrupting device according to the present application can be used in electrical systems, shown in the exemplary block diagram of FIG. 21. The system 240 includes a source of power 242, such as ac power in a home, at least one circuit interrupting device, e.g., circuit interrupting device 10 or 200, electrically connected to the power source, and one or more loads 244 connected to the circuit interrupting device. As an example of one such system, ac power supplied to single gang junction box in a home may be connected to a GFCI receptacle having one of the above described reverse wiring fault protection, independent trip or reset lockout features, or any combination of these features may be combined into the circuit interrupting device. Household appliances that are then plugged into the receptacle become the load or loads of the system.


A circuit interrupting device having a reset lockout device and a separate user load break point may be desirable.


Referring to FIGS. 22a-b, a prior art circuit interrupting device, GFCI 300 is shown. Predetermined condition sensor 310 will open switch devices 312, 314 in order to isolate the line Phase 302 and Neutral 306 from the Load, 304 and 308 respectively. As can be appreciated, when the device is reverse wired as shown in FIG. 22b, the user load, receptacle 320 is not protected by the sensor 310.


Referring to FIGS. 23a-b, portions of a circuit interrupting device according to another embodiment of the present invention is shown (GFCI 400). The device is properly wired in FIG. 23a and reverse wired in FIG. 23b. Predetermined condition sensor 410 will open switch devices 412, 414 in order to isolate the line Phase 402 and Neutral 406 from the Load, 404 and 408 respectively. As can be appreciated, when the device is reverse wired as shown in FIG. 23b, the user load, receptacle 420 is protected by the sensor 410 when the switch devices are tripped. As can be appreciated, if the device does not include a reset lock out, it may be reset, even though it is reverse wired. As shown in FIG. 5 also, a two contact switch 414 may be utilized to separately break the line connection 402, 406 from the load side 404, 408 and a user load 420. Such a configuration can be considered to be a bridge circuit, as shown in FIG. 24a, the configuration may include conductors crossing over in a bridge configuration.


As shown in FIGS. 1-12 and the corresponding detailed description above, a mechanical reset lock out device is provided.


As can be appreciated, multiple failure modes are anticipated for circuit interrupters and they may also be designed to protect against various faults. For instance, GFCIs generally protect against ground current imbalances. They generally protect against grounded neutrals by using two sensing transformers in order to trip the device when a grounded neutral fault occurs. As can be appreciated, a GFCI may protect against open neutrals. Such protection may be provided in corded GFCIs because the wires are flexed, whereas the receptacle GFCI is a fixed installation. Accordingly, as can be appreciated, an open neutral can be protected against by utilizing a constant duty relay solenoid switch powered across the phase and neutral of the line, for example, across 38 and 34 of FIG. 18. In such an instance, if power went out by the neutral opening, the constant duty coil would fire and open the phase and neutral line conductors.


The GFCI of an embodiment of the present invention also protects against reverse wiring.


Referring to FIGS. 24a-b, portions of a circuit interrupting device according to another embodiment of the present invention is shown (GFCI 401). The device is properly wired in FIG. 24a and reverse wired in FIG. 24b. Predetermined condition sensor 410 will open switch devices 412, 414 in order to isolate the line Phase 402 and Neutral 406 from the Load, 404 and 408 respectively. As can be appreciated, when the device is reverse wired as shown in FIG. 24b, the user load, receptacle 420 is protected by the sensor 410 when the switch devices are tripped. As can be appreciated, if the device does include a reset lock out, it may not be reset, even though it is reverse wired. The reset lock out will test the device be moving contact 414 to 422 along A-B such that a circuit through current limiting resistor 424 is established and picked up be sensor 410, preferably a toroid coil. Because a two contact switch 414 is utilized to separately break the line connection 402, 406 from the load side 404, 408 and a user load 420, when reverse wired as in FIG. 24b, the reset lockout test across resistor 424 will not work because the power from the line is isolated by switch 414.


Referring to FIGS. 25a-b, circuit interrupting devices 403, 405 according to other embodiments of the invention may utilize a bridge circuit in varying configurations. For example, device 403 preferably utilized two single pole, single throw mechanical switches 430, 432 to isolate a line. Other switch devices including semiconductor switches may be used. Furthermore, device 405 utilizes a ganged double pole, single throw switch with one end tied together 444.


Referring to FIG. 26, a circuit interrupting device 407 according to another embodiment of the present invention preferably includes an indicator for providing an indication of a reverse wiring condition. As can be appreciated, the device 407 with a circuit bridge and reset lock out may have a user load 420 protected and open from the source of power. The user load may be a receptacle 420. However, it may be desirable to provide an indication of a reverse wiring condition even if the device is tripped and “safe.” Such an indication may relieve user frustration in ascertaining a problem. Accordingly, this embodiment utilizes switches 452 and 454 that operate to connect indicator 450 to the side of the circuit interrupter that normally has the load (404 and 408). Switches 452 and 454 are preferably mechanical switches ganged with switches 412 and 414 respectively. However, other switch devices such as semiconductor switches may be used. If device 407 is reverse wired as shown and the device is tripped, switches 452 and 454 will signal indicator 450 to activate. The switches preferably switch power to the indicator that is preferably includes a neon lamp. However, other indicators such as audio, visual or communication indicators may be used. Similarly, the indicator 450 may be powered from a source other than the source of power to the circuit interrupting device and may be battery powered and may receive only an activate signal from switches 452 and 454.


In embodiments of the present invention utilizing a mechanical lock out mechanism, the device may be manufactured such that the circuit interrupter is provided to a user in a reset lock out state.


Referring to FIG. 28a, a method of preparing a circuit interrupting device is provided 500. As shown, a circuit interrupting device may be manufactured 510 such that the circuit interrupting device is manufactured in a reset lock out state 520. The device manufacture is completed 522. Optionally, the reset button is tested when the device is not powered to ensure that reset is not possible 524. Thereafter the device 400 may be placed in the stream of commerce 526.


Referring to FIG. 28b, a method of preparing a circuit interrupting device is provided 500. As shown, a circuit interrupting device may be manufactured 510 such that the circuit interrupting device is manufactured in a reset lock out state 520. The device manufacture is completed 522. Optionally, the reset button is tested when the device is not powered to ensure that reset is not possible 524. Thereafter the device 400 may be placed in the stream of commerce 526.


Referring to FIGS. 27 and 28c, a method of preparing a circuit interrupting device is provided. A lock out set apparatus such as a test mock up in order to achieve a lock out state may be used before the circuit interrupting device is delivered into the stream of commerce. For example, a GFCI circuit interrupter that has a test mechanism, a reset lock out mechanism and a bridge reverse wiring user load protection mechanism as described above may be manufactured and connected to a power source. The test mechanism may be initiated in order to set the reset lock out mechanism to the lock out state. The GFCI circuit interrupter is then delivered into the stream of commerce in the reset lock out state. As can be appreciated, Quality assurance steps may be performed and the manufacture in a tripped state may be part of a quality assurance task. As shown, a circuit interrupting device such as GFCI 400 may be connected to a test power supply 490 in order to preset the device into a reset lock out state before shipping it to users. A method of ensuring the device is shipped in the reset lock out state is described 540. During manufacture 541 of the device 400, a test button is provided 542. After manufacture, a power source 490 is connected to the device 544. The trip test is activated to trip the device, thereby setting a reset lock out state 546. Thereafter the device 400 may be placed in the stream of commerce 548. For example, a quality assurance task may be done with or about 544.


Referring to FIGS. 1 and 29, a trip force device 610 is provided. As shown, the device has a body 638 capable of exerting force on a trip force protrusion 640 when the trip force device is inserted into a receptacle of a circuit interrupting device 10. As can be appreciated, prongs 631, 632, 633 and, 634 may be inserted into a circuit interrupting device 10 such that protrusion 640 will depress test button 26. Accordingly, the device 10 will be set to trip when installed. The device 10 may be fitted with such a trip force device 610 before it is placed into the stream of commerce.


An embodiment that may be described with reference to FIG. 1, is a circuit interrupting device having a face or cover portion 16 and a test button 26. A removable test force tab (not shown) may be attached or molded into cover 16. When a user installed the circuit interrupting device 10, the device would be tripped and a reset lock out state thereby necessarily set. Thereafter, the removable test force tab may be removed and the device will only reset if the circuit interrupter is operational, an open neutral condition does not exist and the device is not reverse wired.


As can be appreciated, if a reset lock out device utilizes electronic means such as nonvolatile memory to store a state condition variable, such device may be manufactured in the reset lock out state or initialized to such a state before delivery.


As noted, although the components used during circuit interrupting and device reset operations are electro-mechanical in nature, the present application also contemplates using electrical components, such as solid state switches and supporting circuitry, as well as other types of components capable or making and breaking electrical continuity in the conductive path.


While there have been shown and described and pointed out the fundamental features of the invention, it will be understood that various omissions and substitutions and changes of the form and details of the device described and illustrated and in its operation may be made by those skilled in the art, without departing from the spirit of the invention.

Claims
  • 1. A circuit interrupter receptacle disposed to connect to a power source, the circuit interrupter receptacle comprising: a) a load side;b) at least one indicator circuit electrically connected to the load side; andc) wherein said at least one indicator circuit is disposed to be energized to output an alert if the power source is applied to the load side.
  • 2. A circuit interrupter device comprising: a) a first electrical conductor disposed to connect to a power source;b) a second electrical conductor disposed to connect the power source to a load and which is selectively electrically isolated from the first electrical conductor, wherein both of said conductors are capable of being electrically connected;c) a circuit interrupter positioned to selectively electrically disconnect the first and second electrical conductors upon the occurrence of a predetermined condition; andd) an indicator disposed to be energized if the power source is connected to the second electrical conductor.
  • 3. A method for detecting reverse wiring of a circuit interrupting device having first and second electrical conductors adapted for respective electrical connection to line and load circuits, said method comprising; moving at least one of said first and second electrical conductors to place them in a first spatial arrangement wherein said conductors are electrically connected with each other;detecting an electrical fault;upon occurrence of said electrical fault, automatically moving at least one of said first and second conductors into a second spatial arrangement in which said conductors are electrically isolated from one another; andapplying power to an indicator to indicate if the line circuit is connected to the second electrical conductor.
  • 4. The circuit interrupter receptacle as in claim 1, wherein said indicator is coupled at a first end to a load side phase line and at a second end to a load side neutral line.
  • 5. The circuit interrupter receptacle as in claim 4, wherein said indicator comprises a light.
  • 6. The circuit interrupter receptacle as in claim 5, wherein said indicator comprises a LED light.
  • 7. The circuit interrupter receptacle as in claim 5, wherein said indicator is an audible indicator.
  • 8. The circuit interrupter device as in claim 2, wherein said indicator is coupled at a first end to a load side phase line and at a second end to a load side neutral line.
  • 9. The circuit interrupter device as in claim 8, wherein said indicator comprises a light.
  • 10. The circuit interrupter receptacle as in claim 9, wherein said light comprises a LED light.
  • 11. The circuit interrupter device as in claim 8, wherein said indicator is an audible indicator.
  • 12. The method as in claim 3, wherein said step of applying power to an indicator comprises applying power to a load side, to pass power to said indicator across a load side phase line and a load side neutral line.
  • 13. the method as in claim 12, wherein said indicator comprises a light, and wherein said step of applying power to an indicator comprises lighting a light.
  • 14. The method as in claim 12, wherein said indicator comprises an audible indicator, wherein said step of applying power to an indicator comprises generating a sound after passing power to the indicator.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation application and hereby claims priority from U.S. application Ser. No. 11/419,689 filed on May 22, 2006, wherein that application is a continuation application of U.S. patent application Ser. No. 09/812,288 filed on Mar. 20, 2001, now U.S. Pat. No. 7,049,910, wherein that application is a continuation in part application and hereby claims priority from U.S. patent application Ser. No. 09/379,138 filed on Aug. 20, 1999 now U.S. Pat. No. 6,246,558, which is a continuation in part of application Ser. No. 09/369,759 filed Aug. 6, 1999 now U.S. Pat. No. 6,282,070 which is a continuation in part of application Ser. No. 09/138,955 filed on Aug. 24, 1998 now U.S. Pat. No. 6,040,967, wherein the disclosures of all of the above applications are hereby incorporated herein by reference in their entirety.

US Referenced Citations (633)
Number Name Date Kind
1967110 Bergvall Jun 1930 A
1770398 Gallop Jul 1930 A
1870810 Hoard Aug 1932 A
2001563 Bany May 1935 A
2269171 Benander Jan 1942 A
2309433 Anderson Jan 1943 A
2320123 Farnham May 1943 A
2485367 Dillow Oct 1949 A
2540496 Sperrazza Feb 1951 A
2826652 Piplack Mar 1958 A
2926327 Metelli Feb 1960 A
2993148 Pywell Jul 1961 A
2999189 Gerrard Sep 1961 A
3042840 Eadie, Jr. Jul 1962 A
3158785 Gagniere et al. Nov 1964 A
3222631 Cohen Dec 1965 A
3233151 Fisher Feb 1966 A
3238492 Houston Mar 1966 A
3252086 Lundstrom May 1966 A
3259802 Steen Jul 1966 A
3309571 Gilker Mar 1967 A
3392790 Bestland et al. Jul 1968 A
3538477 Walters et al. Nov 1970 A
3609647 Castellano Sep 1971 A
3611044 Osterhout et al. Oct 1971 A
3617662 Miller Nov 1971 A
3668471 Ambler et al. Jun 1972 A
3668474 Knox Jun 1972 A
3702418 Obenhaus Nov 1972 A
3731154 Torosian May 1973 A
3733520 Schei May 1973 A
3766434 Sherman Oct 1973 A
3769549 Bangert, Jr. Oct 1973 A
3775726 Gress Nov 1973 A
3813579 Doyle et al. May 1974 A
3846649 Lehmann et al. Nov 1974 A
3864649 Doyle Feb 1975 A
3872354 Nestor et al. Mar 1975 A
3891894 Scarpino Jun 1975 A
3904859 Poncelet Sep 1975 A
3913046 Davis et al. Oct 1975 A
3932790 Muchnick Jan 1976 A
3949336 Dietz Apr 1976 A
3984765 Rocci, Jr. Oct 1976 A
3986763 Sparrow Oct 1976 A
3990758 Petterson Nov 1976 A
4001804 Irving Jan 1977 A
4002951 Halbeck Jan 1977 A
4010431 Virani et al. Mar 1977 A
4010432 Klein et al. Mar 1977 A
4013929 Dietz et al. Mar 1977 A
4016488 Stevens Apr 1977 A
4024436 Adams May 1977 A
4031431 Gross Jun 1977 A
4034266 Virani et al. Jul 1977 A
4034360 Schweitzer, Jr. Jul 1977 A
4051544 Vibert Sep 1977 A
4063299 Munroe Dec 1977 A
4072382 Reschke Feb 1978 A
4084203 Dietz et al. Apr 1978 A
4086549 Slater et al. Apr 1978 A
4094569 Dietz Jun 1978 A
4109226 Bowling et al. Aug 1978 A
4114123 Grenier Sep 1978 A
4148536 Petropoulsos et al. Apr 1979 A
4159499 Bereskin Jun 1979 A
4163882 Baslow Aug 1979 A
4168104 Buschow Sep 1979 A
4194231 Klein Mar 1980 A
4223365 Moran Sep 1980 A
4237435 Cooper et al. Dec 1980 A
4250501 Pokrandt Feb 1981 A
4271337 Barkas Jun 1981 A
4280092 Wells, Jr. et al. Jul 1981 A
4288768 Arnhold et al. Sep 1981 A
4298864 Mahnke et al. Nov 1981 A
4316230 Hansen et al. Feb 1982 A
4344100 Davidson et al. Aug 1982 A
4377837 Matsko et al. Mar 1983 A
4379607 Bowden, Jr. Apr 1983 A
4386338 Doyle et al. May 1983 A
4409574 Misencik et al. Oct 1983 A
4412193 Bienwald et al. Oct 1983 A
4435032 Abramson et al. Mar 1984 A
4442470 Misencik Apr 1984 A
4447844 Schossow et al. May 1984 A
4455654 Bhaskar et al. Jun 1984 A
4515945 Ranken et al. May 1985 A
4518945 Doyle et al. May 1985 A
4521824 Morris et al. Jun 1985 A
4538040 Ronemus et al. Aug 1985 A
4544219 Barkas Oct 1985 A
4567456 Legatti Jan 1986 A
4568899 May et al. Feb 1986 A
4568997 Bienwald et al. Feb 1986 A
4574260 Franks Mar 1986 A
4574324 Packard Mar 1986 A
4578732 Draper et al. Mar 1986 A
4579405 Hirooka Apr 1986 A
4587588 Goldstein May 1986 A
4595894 Doyle et al. Jun 1986 A
4603932 Heverly Aug 1986 A
4618907 Leopold Oct 1986 A
4626953 Nilssen Dec 1986 A
4630015 Gernhardt et al. Dec 1986 A
4631624 Dvorak et al. Dec 1986 A
4641216 Morris et al. Feb 1987 A
4641217 Morris et al. Feb 1987 A
4686600 Morris et al. Aug 1987 A
4697173 Stokes Sep 1987 A
4707759 Bodkin Nov 1987 A
4714858 Sanders Dec 1987 A
4719437 Yun Jan 1988 A
4722693 Rose Feb 1988 A
4742422 Tigges May 1988 A
4751608 Schultz Jun 1988 A
4771196 Mead et al. Sep 1988 A
4802052 Brant et al. Jan 1989 A
4810070 Suda et al. Mar 1989 A
4814641 Dufresne Mar 1989 A
4816957 Irwin Mar 1989 A
4851951 Foster, Jr. Jul 1989 A
4867693 Gizienski et al. Sep 1989 A
4867694 Short Sep 1989 A
4879098 Oberhardt et al. Nov 1989 A
4897049 Miller et al. Jan 1990 A
4901183 Lee Feb 1990 A
4930047 Peterson May 1990 A
4936789 Ugalde Jun 1990 A
4949070 Wetzel Aug 1990 A
4956743 Hasegawa Sep 1990 A
4967308 Morse Oct 1990 A
4979070 Bodkin Dec 1990 A
5006075 Bowden, Jr. Apr 1991 A
5051732 Robitaille Sep 1991 A
5102345 Stanwick et al. Apr 1992 A
5136458 Durivage et al. Aug 1992 A
5144516 Sham Sep 1992 A
5148344 Rao et al. Sep 1992 A
5161240 Johnson Nov 1992 A
5179491 Runyan Jan 1993 A
5185687 Beihoff et al. Feb 1993 A
5198955 Willner Mar 1993 A
5202662 Bienwald et al. Apr 1993 A
5214560 Jensen May 1993 A
5218331 Morris et al. Jun 1993 A
5223810 Van Haaren Jun 1993 A
5224006 MacKenzie et al. Jun 1993 A
5229730 Legatti et al. Jul 1993 A
5239143 Valenzona Aug 1993 A
5239438 Echtler Aug 1993 A
5270900 Alden et al. Dec 1993 A
5272438 Stumme Dec 1993 A
5277607 Thumma et al. Jan 1994 A
5280404 Bagsdale Jan 1994 A
5281331 Golan Jan 1994 A
5293522 Fello et al. Mar 1994 A
5294374 Martinez et al. Mar 1994 A
5309310 Baer et al. May 1994 A
5320545 Brothers Jun 1994 A
5345058 Jones et al. Sep 1994 A
5347248 Herbert Sep 1994 A
5363047 Dresti et al. Nov 1994 A
5363269 McDonald Nov 1994 A
5374199 Chung Dec 1994 A
5383085 Boy et al. Jan 1995 A
5383759 Lin Jan 1995 A
5383799 Fladung Jan 1995 A
5386183 Cronvich et al. Jan 1995 A
5391085 Tigner Feb 1995 A
5394374 Ishimura et al. Feb 1995 A
5397930 Nilssen Mar 1995 A
5418678 McDonald May 1995 A
5432455 Blades Jul 1995 A
5434509 Blades Jul 1995 A
5448443 Muelleman Sep 1995 A
5459630 Mackenzie et al. Oct 1995 A
5475609 Apothaker Dec 1995 A
5477412 Neiger et al. Dec 1995 A
5481235 Heise et al. Jan 1996 A
5510760 Marcou et al. Apr 1996 A
5515218 DeHaven May 1996 A
5517165 Cook May 1996 A
5518132 Chen May 1996 A
5519561 Mrenna et al. May 1996 A
5536980 Kawate et al. Jul 1996 A
5541800 Misencik Jul 1996 A
5551884 Burkhart, Sr. Sep 1996 A
5555150 Newman, Jr. Sep 1996 A
5559663 Tanaka et al. Sep 1996 A
5561505 Lewis Oct 1996 A
5561605 Zuercher et al. Oct 1996 A
5563756 Ignasiak Oct 1996 A
5576580 Hosoda et al. Nov 1996 A
5590012 Dolar, II Dec 1996 A
5594398 Marcou et al. Jan 1997 A
5594613 Woodworth et al. Jan 1997 A
5596308 Bock Jan 1997 A
5600524 Neiger et al. Feb 1997 A
5617284 Paradise Apr 1997 A
5617288 Zaretsky Apr 1997 A
5625285 Virgilio Apr 1997 A
5628394 Benke et al. May 1997 A
5631798 Seymour et al. May 1997 A
5635690 Knecht et al. Jun 1997 A
5637000 Osterbrock et al. Jun 1997 A
5638243 Torezan et al. Jun 1997 A
5642052 Earle Jun 1997 A
5642248 Campolo et al. Jun 1997 A
5654857 Gershen Aug 1997 A
5655648 Rosen et al. Aug 1997 A
5661623 McDonald et al. Aug 1997 A
5665648 Little Sep 1997 A
5680287 Gernhardt et al. Oct 1997 A
5682101 Brooks et al. Oct 1997 A
5689180 Carlson Nov 1997 A
5694260 Houston Dec 1997 A
5694280 Zhou Dec 1997 A
5702259 Lee Dec 1997 A
5706155 Neiger et al. Jan 1998 A
5710399 Castonguay et al. Jan 1998 A
5715125 Neiger et al. Feb 1998 A
5717165 Cohen et al. Feb 1998 A
5719363 Händler Feb 1998 A
5729417 Neiger et al. Mar 1998 A
5781393 Tabib-Azar et al. Jul 1998 A
5784753 Kaczmarz et al. Jul 1998 A
5786974 Zaretsky Jul 1998 A
5793587 Boteler Aug 1998 A
5805397 MacKenzie Sep 1998 A
5805398 Rae Sep 1998 A
5808397 Kotani Sep 1998 A
5815352 MacKenzie Sep 1998 A
5815363 Chu Sep 1998 A
5818237 Zuercher et al. Oct 1998 A
5825329 Veghte et al. Oct 1998 A
5825598 Dickens et al. Oct 1998 A
5825599 Rosenbaum Oct 1998 A
5825602 Tosaka et al. Oct 1998 A
5834940 Brooks et al. Nov 1998 A
5835321 Elms et al. Nov 1998 A
5839092 Erger et al. Nov 1998 A
5839909 Calderara et al. Nov 1998 A
5844759 Hirsh et al. Dec 1998 A
5844765 Kato et al. Dec 1998 A
5846092 Feldman et al. Dec 1998 A
5847909 Hopkins et al. Dec 1998 A
5847913 Turner et al. Dec 1998 A
5849878 Cantor et al. Dec 1998 A
5875087 Spencer et al. Feb 1999 A
5877925 Singer Mar 1999 A
5892669 Shin Apr 1999 A
5901027 Ziegler et al. May 1999 A
5902140 Cheung et al. May 1999 A
5906517 Crane et al. May 1999 A
5915981 Mehta Jun 1999 A
5917686 Chan et al. Jun 1999 A
5920451 Fasano et al. Jul 1999 A
5933063 Keung et al. Aug 1999 A
5940256 Mackenzie et al. Aug 1999 A
5943198 Hirsh et al. Aug 1999 A
5943199 Aromin Aug 1999 A
5946179 Fleege et al. Aug 1999 A
5946180 Simpson Aug 1999 A
5950812 Tanacan et al. Sep 1999 A
5956218 Berthold Sep 1999 A
5963406 Neiger et al. Oct 1999 A
5963408 Neiger et al. Oct 1999 A
5969920 Mackenzie Oct 1999 A
5978191 Bonniau et al. Nov 1999 A
5982593 Kimblin et al. Nov 1999 A
5986860 Scott Nov 1999 A
5999384 Chen et al. Dec 1999 A
6014297 Clarey et al. Jan 2000 A
6016244 Gershen et al. Jan 2000 A
6021034 Chan et al. Feb 2000 A
6040778 Hopkins et al. Mar 2000 A
6040967 DiSalvo Mar 2000 A
6040969 Winch et al. Mar 2000 A
6052265 Zaretsky et al. Apr 2000 A
6052266 Aromin Apr 2000 A
6069781 Wingate et al. May 2000 A
6086391 Chiu Jul 2000 A
6088205 Neiger et al. Jul 2000 A
6088206 Chan et al. Jul 2000 A
6094128 Bennett et al. Jul 2000 A
6111210 Allison Aug 2000 A
6111733 Neiger et al. Aug 2000 A
6128169 Neiger et al. Oct 2000 A
6149446 Yu Nov 2000 A
6156971 May Dec 2000 A
6160692 Zaretsky Dec 2000 A
6163188 Yu Dec 2000 A
6169405 Baltzer et al. Jan 2001 B1
6172865 Boy et al. Jan 2001 B1
6180899 Passow Jan 2001 B1
6191589 Clunn Feb 2001 B1
6204743 Greenberg et al. Mar 2001 B1
6211770 Coyle Apr 2001 B1
6217353 Yu-Tse Apr 2001 B1
6218844 Wong et al. Apr 2001 B1
6224401 Yu May 2001 B1
6226161 Neiger et al. May 2001 B1
6232857 Mason, Jr. et al. May 2001 B1
6238224 Shao May 2001 B1
6242993 Fleege et al. Jun 2001 B1
6246556 Haun et al. Jun 2001 B1
6246558 DiSalvo et al. Jun 2001 B1
6252407 Gershen Jun 2001 B1
6252488 Ziegler et al. Jun 2001 B1
6253121 Cline et al. Jun 2001 B1
6255923 Mason, Jr. et al. Jul 2001 B1
6259340 Fuhr et al. Jul 2001 B1
6259996 Fuhr et al. Jul 2001 B1
6262550 Kliman et al. Jul 2001 B1
6262871 Nemir et al. Jul 2001 B1
6266219 Macbeth et al. Jul 2001 B1
6275044 Scott Aug 2001 B1
6281604 Koh Aug 2001 B1
6282070 Ziegler et al. Aug 2001 B1
6288882 DiSalvo et al. Sep 2001 B1
6292337 Legatti et al. Sep 2001 B1
6299487 Lopata et al. Oct 2001 B1
6309248 King Oct 2001 B1
6313641 Brook Nov 2001 B1
6317056 Klumpp et al. Nov 2001 B1
6324043 Turner Nov 2001 B1
6339525 Neiger et al. Jan 2002 B1
6342998 Bencivenga et al. Jan 2002 B1
6359745 Thomas, III et al. Mar 2002 B1
6370001 Macbeth Apr 2002 B1
6373257 Macbeth et al. Apr 2002 B1
6381112 DiSalvo Apr 2002 B1
6381113 Legatti Apr 2002 B1
6407893 Neiger et al. Jun 2002 B1
6417581 Hall et al. Jul 2002 B2
6417671 Hall et al. Jul 2002 B1
6421214 Packard et al. Jul 2002 B1
6421218 Vo et al. Jul 2002 B1
6421618 Kliman et al. Jul 2002 B1
6422880 Chiu Jul 2002 B1
6426632 Clunn Jul 2002 B1
6426634 Clunn et al. Jul 2002 B1
6433977 MacBeth Aug 2002 B1
6433978 Neiger et al. Aug 2002 B1
6437700 Herzfeld et al. Aug 2002 B1
6437953 DiSalvo et al. Aug 2002 B2
6442007 Li Aug 2002 B1
D462660 Huang et al. Sep 2002 S
6456471 Haun et al. Sep 2002 B1
6462318 Furuuchi et al. Oct 2002 B2
6470803 Liu et al. Oct 2002 B1
6522510 Finlay et al. Feb 2003 B1
6525541 Leopold Feb 2003 B1
6532424 Haun et al. Mar 2003 B1
6537088 Huang Mar 2003 B2
6537089 Montague Mar 2003 B1
6538862 Mason, Jr. et al. Mar 2003 B1
6538863 Macbeth Mar 2003 B1
6545574 Seymour et al. Apr 2003 B1
6558928 Landegren May 2003 B1
6570392 Macbeth May 2003 B2
6577484 Macbeth Jun 2003 B1
6580344 Li Jun 2003 B2
6590172 Gadre et al. Jul 2003 B1
6590753 Finlay Jul 2003 B1
6606232 Vo et al. Aug 2003 B1
6608547 Greier et al. Aug 2003 B1
6611406 Neiger et al. Aug 2003 B2
6621388 Macbeth Sep 2003 B1
6628486 Macbeth Sep 2003 B1
6636403 McLoughlin et al. Oct 2003 B2
6639769 Neiger et al. Oct 2003 B2
6642823 Passow Nov 2003 B2
6642832 Pellon et al. Nov 2003 B2
6646838 Ziegler et al. Nov 2003 B2
6657834 DiSalvo Dec 2003 B2
6657839 De Oliveira Dec 2003 B2
6670870 Macbeth Dec 2003 B2
6670872 Kurzmann Dec 2003 B2
6671145 Germain et al. Dec 2003 B2
6674289 MacBeth Jan 2004 B2
6683158 Springer et al. Jan 2004 B2
6692270 Bencivenga et al. Feb 2004 B2
6693779 DiSalvo Feb 2004 B2
6697238 Bonilla et al. Feb 2004 B2
6717782 DiSalvo et al. Apr 2004 B2
6720872 Engel et al. Apr 2004 B1
6724590 Radosavljevic Apr 2004 B1
6731483 Mason, Jr. et al. May 2004 B2
6734680 Conard May 2004 B1
6734769 Germain et al. May 2004 B1
6744254 Clarey et al. Jun 2004 B2
6749449 Mortun et al. Jun 2004 B2
6767228 Katz Jul 2004 B2
6767245 King Jul 2004 B2
6766630 Huang Aug 2004 B2
6771152 Germain et al. Aug 2004 B2
6785104 Tallman et al. Aug 2004 B2
6786745 Huang Sep 2004 B1
6788173 Germain et al. Sep 2004 B2
6789209 Suzuki et al. Sep 2004 B1
6807035 Baldwin et al. Oct 2004 B1
6807036 Baldwin Oct 2004 B2
6813126 DiSalvo et al. Nov 2004 B2
6828886 Germain et al. Dec 2004 B2
6829124 Leopold et al. Dec 2004 B2
6831819 Nemir et al. Dec 2004 B2
6842095 MacBeth Jan 2005 B2
6850394 Kim Feb 2005 B2
6856498 Finlay et al. Feb 2005 B1
6864763 Brown et al. Mar 2005 B2
6864766 DiSalvo et al. Mar 2005 B2
6864769 Germain et al. Mar 2005 B2
6873158 MacBeth Mar 2005 B2
6873231 Germain et al. Mar 2005 B2
6876528 MacBeth Apr 2005 B2
6893275 Ng et al. May 2005 B2
6896530 Nishio et al. May 2005 B2
6900972 Chan et al. May 2005 B1
6920025 Nelson Jul 2005 B2
6930574 Gao Aug 2005 B2
6932631 Huang Aug 2005 B2
6937027 Ulrich et al. Aug 2005 B2
6937451 Ulrich et al. Aug 2005 B2
6937452 Chan et al. Aug 2005 B2
6943558 Hale et al. Sep 2005 B2
6944001 Ziegler et al. Sep 2005 B2
6949994 Germain et al. Sep 2005 B2
6958895 Radosavljevic et al. Oct 2005 B1
6963260 Germain et al. Nov 2005 B2
6969801 Radosavljevic et al. Nov 2005 B2
6972572 Mernyk et al. Dec 2005 B2
6975192 Disalvo Dec 2005 B2
6975492 DiSalvo Dec 2005 B2
6979212 Gorman Dec 2005 B1
6980005 Finlay, Sr. et al. Dec 2005 B2
6982856 Bernstein Jan 2006 B2
6986674 Gorman Jan 2006 B1
6998856 Sterling Feb 2006 B2
6998945 Huang et al. Feb 2006 B2
6999561 Tidwell et al. Feb 2006 B2
7003435 Kolker et al. Feb 2006 B2
7009474 Germain et al. Mar 2006 B2
7012500 Chan et al. Mar 2006 B2
7019952 Huang et al. Mar 2006 B2
7026895 Germain et al. Apr 2006 B2
7031125 Germain et al. Apr 2006 B2
7042687 Radosavljevic et al. May 2006 B2
7042688 Chan et al. May 2006 B2
7049910 Campolo et al. May 2006 B2
7049911 Germain et al. May 2006 B2
7079363 Chung Jul 2006 B2
7082021 Chan et al. Jul 2006 B2
7084725 Richter et al. Aug 2006 B2
7088205 Germain et al. Aug 2006 B2
7088206 Germain et al. Aug 2006 B2
7091633 Castagnet et al. Aug 2006 B2
7091871 Howell et al. Aug 2006 B2
7098761 Germain et al. Aug 2006 B2
7099129 Neiger et al. Aug 2006 B2
7114968 Healy Oct 2006 B2
7129413 Rao et al. Oct 2006 B1
7133266 Finlay Nov 2006 B1
7149065 Baldwin et al. Dec 2006 B2
7161780 Germain et al. Jan 2007 B2
7161786 Bencivenga et al. Jan 2007 B2
7164563 Chan et al. Jan 2007 B2
7173428 Hurwicz Feb 2007 B2
7173799 Weeks et al. Feb 2007 B1
7177126 Ulrich et al. Feb 2007 B2
7177129 Arenz et al. Feb 2007 B2
7179992 Packard et al. Feb 2007 B1
7180299 Mernyk et al. Feb 2007 B2
7187526 Disalvo Mar 2007 B2
7195500 Huang et al. Mar 2007 B2
7196886 Chan et al. Mar 2007 B2
7209330 DiSalvo Apr 2007 B2
7212386 Finlay et al. May 2007 B1
7215521 Bernstein May 2007 B2
7227435 Germain et al. Jun 2007 B2
7239491 Morgan et al. Jul 2007 B1
7242566 Yegin et al. Jul 2007 B2
7253629 Richards et al. Aug 2007 B1
7259568 Mernyk et al. Aug 2007 B2
7265956 Huang Sep 2007 B2
7268559 Chen et al. Sep 2007 B1
7282921 Sela et al. Oct 2007 B2
7285723 Lindenstraus et al. Oct 2007 B2
7289306 Huang Oct 2007 B2
7295415 Huang et al. Nov 2007 B2
7307821 Wang Dec 2007 B2
7312963 Radosavljevic et al. Dec 2007 B1
7315227 Huang et al. Jan 2008 B2
7315437 Bonilla et al. Jan 2008 B2
7317600 Huang et al. Jan 2008 B2
7333920 Kolker et al. Feb 2008 B2
7336458 Ziegler et al. Feb 2008 B2
7355117 Castaldo et al. Apr 2008 B2
7355497 Germain et al. Apr 2008 B2
7365621 Germain et al. Apr 2008 B2
7372678 Disalvo et al. May 2008 B2
7375935 Chan et al. May 2008 B2
7378927 Disalvo et al. May 2008 B2
7400477 Campolo et al. Jul 2008 B2
7400479 Di Salvo Jul 2008 B2
7414499 Germain Aug 2008 B2
7439833 Germain et al. Oct 2008 B2
7463124 Disalvo et al. Dec 2008 B2
7492558 Germain et al. Feb 2009 B2
7502212 Disalvo Mar 2009 B2
7542252 Chan et al. Jun 2009 B2
7545244 Disalvo et al. Jun 2009 B2
7551047 Sokolow et al. Jun 2009 B2
7558034 Bonasia et al. Jul 2009 B2
7586719 Bernstein Sep 2009 B2
7612973 Germain Nov 2009 B2
7697252 Chan et al. Apr 2010 B2
7715158 Bonasia May 2010 B2
20010015686 McLoughlin Aug 2001 A1
20010055187 McLoughlin et al. Dec 2001 A1
20020003686 Disalvo Jan 2002 A1
20020006022 Di Salvo et al. Jan 2002 A1
20020008597 Otsuka et al. Jan 2002 A1
20020030953 Ziegler et al. Mar 2002 A1
20020064779 Landegren et al. May 2002 A1
20020067582 Germain et al. Jun 2002 A1
20020071228 Campolo et al. Jun 2002 A1
20020078511 Blair et al. Jun 2002 A1
20020097546 Weinberger Jul 2002 A1
20020135957 Chan et al. Sep 2002 A1
20020135959 Germain et al. Sep 2002 A1
20020135960 Bernstein Sep 2002 A1
20020181175 Baldwin Dec 2002 A1
20030005783 Chen et al. Jan 2003 A1
20030016477 Li Jan 2003 A1
20030072113 Wong et al. Apr 2003 A1
20030080837 MacBeth May 2003 A1
20030085783 MacBeth May 2003 A1
20030121765 Savicki, Jr. et al. Jul 2003 A1
20030151478 Radosavljevic et al. Aug 2003 A1
20040004801 Bonilla et al. Jan 2004 A1
20040037018 Kim Feb 2004 A1
20040070895 Gershen et al. Apr 2004 A1
20040070899 Gershen et al. Apr 2004 A1
20040090722 Ulrich et al. May 2004 A1
20040095696 Ziegler et al. May 2004 A1
20040125519 Germain et al. Jul 2004 A1
20040184207 DiSalvo et al. Sep 2004 A1
20040203270 Wang Oct 2004 A1
20040223272 Germain et al. Nov 2004 A1
20040223279 Bonilla et al. Nov 2004 A1
20040252425 Baldwin et al. Dec 2004 A1
20050002137 Germain et al. Jan 2005 A1
20050002138 Germain et al. Jan 2005 A1
20050012575 Huang et al. Jan 2005 A1
20050013066 Germain et al. Jan 2005 A1
20050013067 Germain et al. Jan 2005 A1
20050013069 Aromin Jan 2005 A1
20050030685 DiSalvo Feb 2005 A1
20050036250 Asano Feb 2005 A1
20050063109 Baldwin Mar 2005 A1
20050063110 DiSalvo et al. Mar 2005 A1
20050063535 Walbeck et al. Mar 2005 A1
20050104734 Graube May 2005 A1
20050140476 Gao Jun 2005 A1
20050191902 Kim et al. Sep 2005 A1
20050280962 Chan et al. Dec 2005 A1
20050286183 Germain Dec 2005 A1
20050286184 Campolo Dec 2005 A1
20060007610 Chan et al. Jan 2006 A1
20060007611 Ziegler et al. Jan 2006 A1
20060018062 Wu et al. Jan 2006 A1
20060022777 Germain et al. Feb 2006 A1
20060125622 Baldwin et al. Jun 2006 A1
20060132266 Disalvo Jun 2006 A1
20060139132 Porter et al. Jun 2006 A1
20060171085 Keating Aug 2006 A1
20060181373 Germain et al. Aug 2006 A1
20060181820 Elms Aug 2006 A1
20060198071 Campolo et al. Sep 2006 A1
20060262468 Richter et al. Nov 2006 A1
20060268472 Winch Nov 2006 A1
20060273859 Germain et al. Dec 2006 A1
20060285262 Neiger Dec 2006 A1
20070014058 Chan et al. Jan 2007 A1
20070014068 Huang et al. Jan 2007 A1
20070025032 Bradley et al. Feb 2007 A1
20070041134 Huang et al. Feb 2007 A1
20070049077 Germain Mar 2007 A1
20070049079 Nalwad et al. Mar 2007 A1
20070053118 Germain et al. Mar 2007 A1
20070086127 Huang Apr 2007 A1
20070091520 Angelides et al. Apr 2007 A1
20070111569 Germain et al. May 2007 A1
20070114053 Castaldo et al. May 2007 A1
20070126539 DiSalvo Jun 2007 A1
20070165342 Elms Jul 2007 A1
20070208520 Zhang et al. Sep 2007 A1
20070211397 Sokolow et al. Sep 2007 A1
20070227506 Perryman et al. Oct 2007 A1
20070262780 Mernyk et al. Nov 2007 A1
20070268635 Bonasia et al. Nov 2007 A1
20070274012 Bonasia et al. Nov 2007 A1
20070279814 Bonilla et al. Dec 2007 A1
20080002313 DiSalvo et al. Jan 2008 A1
20080007879 Zaretsky et al. Jan 2008 A1
20080013227 Mernyk et al. Jan 2008 A1
20080013237 Moadel et al. Jan 2008 A1
20080013239 Kopelman Jan 2008 A1
20080022153 Wang et al. Jan 2008 A1
20080024170 Kerr et al. Jan 2008 A1
20080123227 Bonasia May 2008 A1
20080156512 Castaldo et al. Jul 2008 A1
20080186642 Campolo et al. Aug 2008 A1
20080248662 Bazayev et al. Oct 2008 A1
20080272925 Griffin et al. Nov 2008 A1
20090040667 DiSalvo et al. Feb 2009 A1
20090046406 Chan et al. Feb 2009 A1
20090052098 Disalvo et al. Feb 2009 A1
20090086389 Huang et al. Apr 2009 A1
20090086390 Huang Apr 2009 A1
20090128264 DiSalvo et al. May 2009 A1
20090161271 Huang et al. Jun 2009 A1
20090273866 Chan et al. Nov 2009 A1
20090286411 Bazayev et al. Nov 2009 A1
20090296288 Kempler Dec 2009 A1
20100001819 Porter et al. Jan 2010 A9
20100007447 Mernyk Jan 2010 A1
20100013491 Hooper et al. Jan 2010 A1
20100134932 Campolo et al. Jun 2010 A1
20100226053 Kamor et al. Sep 2010 A1
20100259347 Ziegler et al. Oct 2010 A1
Foreign Referenced Citations (140)
Number Date Country
172577 Nov 1998 AT
173113 Nov 1998 AT
191098 Apr 2000 AT
3745985 Jun 1985 AU
7761187 Mar 1988 AU
580026 Dec 1988 AU
598022 Jun 1990 AU
2039492 Jan 1993 AU
665551 Jan 1996 AU
2802395 Jan 1996 AU
2802495 Jan 1996 AU
2802595 Jan 1996 AU
2802695 Jan 1996 AU
3904395 Jan 1996 AU
693225 Jun 1998 AU
694280 Jul 1998 AU
698917 Nov 1998 AU
759587 Jul 2003 AU
775072 Oct 2004 AU
1218445 Feb 1987 CA
1248569 Jan 1989 CA
1311827 Dec 1992 CA
2074287 Jan 1993 CA
2175514 Nov 1996 CA
2224927 Jun 1998 CA
2265204 Dec 1999 CA
2383738 Jul 2000 CA
2363743 May 2002 CA
2515004 Aug 2004 CA
2503933 Oct 2005 CA
2536648 May 2006 CA
2425810 Apr 2007 CA
1156517 Aug 1997 CN
1161102 Oct 1997 CN
1759511 Apr 2006 CN
1759513 Apr 2006 CN
1778026 May 2006 CN
28 21 138 Nov 1978 DE
3490593 Jan 1986 DE
3 431 581 Mar 1986 DE
8490189 Aug 1986 DE
3776039 D1 Feb 1992 DE
69505535 Apr 1999 DE
69505818 Apr 1999 DE
69230817 Dec 2000 DE
346185 Oct 1985 DK
0 081 661 Jun 1983 EP
0164407 Dec 1985 EP
0258198 Mar 1988 EP
0310798 Apr 1989 EP
0 526 071 Feb 1993 EP
0769198 Apr 1997 EP
0769199 Apr 1997 EP
21345 May 1977 ES
469787 Jan 1979 ES
8601583 Feb 1986 ES
2030096 Oct 1992 ES
2391549 Dec 1978 FR
227930 Jan 1925 GB
830018 Mar 1960 GB
2163310 Feb 1986 GB
2189099 Oct 1987 GB
2207823 Feb 1989 GB
2247354 Feb 1992 GB
2251741 Jul 1992 GB
2 290 181 Dec 1995 GB
2 292 491 Feb 1996 GB
2305014 Mar 1997 GB
2305014 Nov 1998 GB
2396489 Jun 2004 GB
156495 Oct 1995 HK
1014609 May 2000 HK
1008369 Jul 2000 HK
1001802 Dec 2000 HK
1002209 Dec 2000 HK
56291 Jun 1991 IE
73729 Feb 1989 IL
1178448 Sep 1987 IT
61500585 Mar 1986 JP
61 259428 Nov 1986 JP
10502488 Mar 1988 JP
1097342 Apr 1989 JP
5266782 Oct 1993 JP
H6-86250 Dec 1994 JP
7001977 Jan 1995 JP
10074444 Mar 1998 JP
10502487 Mar 1998 JP
2759022 May 1998 JP
2000-312434 Nov 2000 JP
920005577 Jul 1992 KR
149682 Oct 1998 KR
01012157 Aug 2004 MX
06001849 Sep 2006 MX
8420312 Nov 1985 NL
922806 Jan 1993 NO
210426 Jan 1989 NZ
239076 Jul 1996 NZ
280909 Jul 1996 NZ
280910 Jul 1996 NZ
288702 Aug 1998 NZ
288704 Aug 1998 NZ
79611 Jan 1985 PT
8503520 Jul 1985 SE
457587 Jan 1989 SE
392185 Jun 2000 TW
8502724 Jun 1985 WO
9601484 Jan 1996 WO
9601487 Jan 1996 WO
9601488 Jan 1996 WO
9601489 Jan 1996 WO
WO 9601484 Jan 1996 WO
PCTUS9919319 Aug 1999 WO
0017728 Mar 2000 WO
0011696 Mar 2000 WO
WO 0011696 Mar 2000 WO
WO0014842 Mar 2000 WO
0045366 Aug 2000 WO
PCTUS0022955 Aug 2000 WO
WO 0045366 Aug 2000 WO
WO 0045366 Aug 2000 WO
0115183 Mar 2001 WO
WO 0115183 Mar 2001 WO
PCTUS0132562 Oct 2001 WO
0233720 Apr 2002 WO
0233720 Apr 2002 WO
WO 0233720 Apr 2002 WO
2004070751 Aug 2004 WO
2004070752 Aug 2004 WO
2004070901 Aug 2004 WO
2004070906 Aug 2004 WO
2004066327 Aug 2004 WO
2004070901 Aug 2004 WO
20040066327 Aug 2004 WO
WO 2004070751 Aug 2004 WO
WO 2004070752 Aug 2004 WO
2005062917 Jul 2005 WO
PCTUS2006060489 Nov 2006 WO
WO 2007137180 Nov 2007 WO
2009097469 Aug 2009 WO
9205490 Oct 1994 ZA
Related Publications (1)
Number Date Country
20080186642 A1 Aug 2008 US
Continuations (2)
Number Date Country
Parent 11419689 May 2006 US
Child 12013577 US
Parent 09812288 Mar 2001 US
Child 11419689 US
Continuation in Parts (3)
Number Date Country
Parent 09379138 Aug 1999 US
Child 09812288 US
Parent 09369759 Aug 1999 US
Child 09379138 US
Parent 09138955 Aug 1998 US
Child 09369759 US