Circuit interrupting device with reverse wiring protection

Abstract
Resettable circuit interrupting devices, such as GFCI devices, that include reverse wiring protection, and optionally an independent trip portions and/or a reset lockout portion are provided. The reverse wiring protection operates at both the line and load sides of the device so that in the event line side wiring to the device is improperly connected to the load side, fault protection for the device remains. The trip portion operates independently of a circuit interrupting portion used to break the electrical continuity in one or more conductive paths in the device. The reset lockout portion prevents the reestablishing of electrical continuity in open conductive paths if the circuit interrupting portion is non-operational or if an open neutral condition exists.
Description
BACKGROUND

1. Field


The present application is directed to reset lockout devices including resettable circuit interrupting devices and systems such as ground fault circuit interrupters (GFCI's), arc fault circuit interrupters (AFCI's), immersion detection circuit interrupters (IDCI's), appliance leakage circuit interrupters (ALCI's), equipment leakage circuit interrupters (ELCI's), circuit breakers, contactors, latching relays and solenoid mechanisms.


2. Description of the Related Art


Many electrical wiring devices have a line side, which is connectable to an electrical power supply, and a load side, which is connectable to one or more loads and at least one conductive path between the line and load sides. Electrical connections to wires supplying electrical power or wires conducting electricity to the one or more loads are at line side and load side connections. The electrical wiring device industry has witnessed an increasing call for circuit breaking devices or systems which are designed to interrupt power to various loads, such as household appliances, consumer electrical products and branch circuits. In particular, electrical codes require electrical circuits in home bathrooms and kitchens to be equipped with ground fault circuit interrupters (GFCI), for example. Presently available GFCI devices, such as the device described in commonly owned U.S. Pat. No. 4,595,894, use an electrically activated trip mechanism to mechanically break an electrical connection between the line side and the load side. Such devices are resettable after they are tripped by, for example, the detection of a ground fault. In the device discussed in the '894 patent, the trip mechanism used to cause the mechanical breaking of the circuit (i.e., the conductive path between the line and load sides) includes a solenoid (or trip coil). A test button is used to test the trip mechanism and circuitry used to sense faults, and a reset button is used to reset the electrical connection between line and load sides.


However, instances may arise where an abnormal condition, caused by for example a lightning strike, occurs which may result not only in a surge of electricity at the device and a tripping of the device but also a disabling of the trip mechanism used to cause the mechanical breaking of the circuit. This may occur without the knowledge of the user. Under such circumstances an unknowing user, faced with a GFCI which has tripped, may press the reset button which, in turn, will cause the device with an inoperative trip mechanism to be reset without the ground fault protection available.


Further, an open neutral condition, which is defined in Underwriters Laboratories (UL) Standard PAG 943A, may exist with the electrical wires supplying electrical power to such GFCI devices. If an open neutral condition exists with the neutral wire on the line (versus load) side of the GFCI device, an instance may arise where a current path is created from the phase (or hot) wire supplying power to the GFCI device through the load side of the device and a person to ground. In the event that an open neutral condition exists, current GFCI devices, which have tripped, may be reset even though the open neutral condition may remain.


Commonly owned application Ser. No. 09/138,955, filed Aug. 24, 1998, which is incorporated herein in its entirety by reference, describes a family of resettable circuit interrupting devices capable of locking out the reset portion of the device if the circuit interrupting portion is non-operational or if an open neutral condition exists. Commonly owned application Ser. No. 09/175,228, filed Sep. 20, 1998, which is incorporated herein in its entirety by reference, describes a family of resettable circuit interrupting devices capable of locking out the reset portion of the device if the circuit interrupting portion is non-operational or if an open neutral condition exists and capable of breaking electrical conductive paths independent of the operation of the circuit interrupting portion.


Some of the circuit interrupting devices described above have a user accessible load side connection in addition to the line and load side connections. The user accessible load side connection includes one or more connection points where a user can externally connect to electrical power supplied from the line side. The load side connection and user accessible load side connection are typically electrically connected together. An example of such a circuit interrupting device is a GFCI receptacle, where the line and load side connections are binding screws and the user accessible load side connection is the plug connection. As noted, such devices are connected to external wiring so that line wires are connected to the line side connection and load side wires are connected to the load side connection. However, instances may occur where the circuit interrupting device is improperly connected to the external wires so that the load wires are connected to the line side connection and the line wires are connected to the load connection. This is known as reverse wiring. In the event the circuit interrupting device is reverse wired, fault protection to the user accessible load connection maybe eliminated, even if fault protection to the load side connection remains.


SUMMARY

The present application relates to a family of resettable circuit interrupting devices that maintains fault protection for the circuit interrupting device even if the device is reverse wired.


In one embodiment, the circuit interrupting device includes a housing and phase and neutral conductive paths disposed at least partially within the housing between line and load sides. Preferably, the phase conductive path terminates at a first connection capable of being electrically connected to a source of electricity, a second connection capable of conducting electricity to at least one load and a third connection capable of conducting electricity to at least one user accessible load. Similarly, the neutral conductive path, preferably, terminates at a first connection capable of being electrically connected to a source of electricity, a second connection capable of providing a neutral connection to the at least one load and a third connection capable of providing a neutral connection to the at least one user accessible load;


The circuit interrupting device also includes a circuit interrupting portion that is disposed within the housing and configured to cause electrical discontinuity in one or both of the phase and neutral conductive paths, between said line side and said load side upon the occurrence of a predetermined condition. A reset portion is disposed at least partially within the housing and is configured to reestablish electrical continuity in the open conductive paths.


Preferably, the phase conductive path includes a plurality of contacts that are capable of opening to cause electrical discontinuity in the phase conductive path and closing to reestablish electrical continuity in the phase conductive path, between said line and load sides. The neutral conductive path also includes a plurality of contacts that are capable of opening to cause electrical discontinuity in the neutral conductive path and closing to reestablish electrical continuity in the neutral conductive path, between said line and load sides. In this configuration, the circuit interrupting portion causes the plurality of contacts of the phase and neutral conductive paths to open, and the reset portion causes the plurality of contacts of the phase and neutral conductive paths to close.


One embodiment for the circuit interrupting portion uses an electromechanical circuit interrupter to cause electrical discontinuity in the phase and neutral conductive paths, and sensing circuitry to sense the occurrence of the predetermined condition. For example, the electromechanical circuit interrupter include a coil assembly, a movable plunger attached to the coil assembly and a banger attached to the plunger. The movable plunger is responsive to energizing of the coil assembly, and movement of the plunger is translated to movement of said banger. Movement of the banger causes the electrical discontinuity in the phase and/or neutral conductive paths.


The circuit interrupting device may also include reset lockout portion that prevents the reestablishing of electrical continuity in either the phase or neutral conductive path or both conductive paths, unless the circuit interrupting portion is operating properly. That is, the reset lockout prevents resetting of the device unless the circuit interrupting portion is operating properly. In embodiments where the circuit interrupting device includes a reset lockout portion, the reset portion may be configured so that at least one reset contact is electrically connected to the sensing circuitry of the circuit interrupting portion, and that depression of a reset button causes at least a portion of the phase conductive path to contact at least one reset contact. When contact is made between the phase conductive path and the at least one reset contact, the circuit interrupting portion is activated so that the reset lockout portion is disabled and electrical continuity in the phase and neutral conductive paths can be reestablished.


The circuit interrupting device may also include a trip portion that operates independently of the circuit interrupting portion. The trip portion is disposed at least partially within the housing and is configured to cause electrical discontinuity in the phase and/or neutral conductive paths independent of the operation of the circuit interrupting portion. In one embodiment, the trip portion includes a trip actuator accessible from an exterior of the housing and a trip arm preferably within the housing and extending from the trip actuator. The trip arm is preferably configured to facilitate mechanical breaking of electrical continuity in the phase and/or neutral conductive paths, if the trip actuator is actuated. Preferably, the trip actuator is a button. However, other known actuators are also contemplated.





BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the present application are described herein with reference to the drawings in which similar elements are given similar reference characters, wherein:



FIG. 1 is a perspective view of one embodiment of a ground fault circuit interrupting device according to the present application;



FIG. 2 is side elevational view, partly in section, of a portion of the GFCI device shown in FIG. 1, illustrating the GFCI device in a set or circuit making position;



FIG. 3 is an exploded view of internal components of the circuit interrupting device of FIG. 1;



FIG. 4 is a plan view of portions of electrical conductive paths located within the GFCI device of FIG. 1;



FIG. 5 is a partial sectional view of a portion of a conductive path shown in FIG. 4;



FIG. 6 is a partial sectional view of a portion of a conductive path shown in FIG. 4;



FIG. 7 is a side elevational view similar to FIG. 2, illustrating the GFCI device in a circuit breaking or interrupting position;



FIG. 8 is a side elevational view similar to FIG. 2, illustrating the components of the GFCI device during a reset operation;



FIGS. 9-11 are schematic representations of the operation of one embodiment of the reset portion of the present application, illustrating a latching member used to make an electrical connection between line and load connections and to relate the reset portion of the electrical connection with the operation of the circuit interrupting portion;



FIG. 12 is a schematic diagram of a circuit for detecting ground faults and resetting the GFCI device of FIG. 1;



FIG. 13 is a perspective view of an alternative embodiment of a ground fault circuit interrupting device according to the present application;



FIG. 14 is side elevational view, partly in section, of a portion of the GFCI device shown in FIG. 13, illustrating the GFCI device in a set or circuit making position;



FIG. 15 is a side elevational view similar to FIG. 14, illustrating the GFCI device in a circuit breaking position;



FIG. 16 is a side elevational view similar to FIG. 14, illustrating the components of the GFCI device during a reset operation;



FIG. 17 is an exploded view of internal components of the GFCI device of FIG. 13;



FIG. 18 is a schematic diagram of a circuit for detecting ground faults and resetting the GFCI device of FIG. 13;



FIG. 19 is side elevational view, partly in section, of components of a portion of the alternative embodiment of the GFCI device shown in FIG. 13, illustrating the device in a set or circuit making position;



FIG. 20 is a side elevational view similar to FIG. 19, illustrating of the device in a circuit breaking position; and



FIG. 21 is a block diagram of a circuit interrupting system according to the present application.





DETAILED DESCRIPTION

The present application contemplates various types of circuit interrupting devices that are capable of breaking at least one conductive path at both a line side and a load side of the device. The conductive path is typically divided between a line side that connects to supplied electrical power and a load side that connects to one or more loads. As noted, the various devices in the family of resettable circuit interrupting devices include: ground fault circuit interrupters (GFCI's), arc fault circuit interrupters (AFCI's), immersion detection circuit interrupters (IDCI's), appliance leakage circuit interrupters (ALCI's) and equipment leakage circuit interrupters (ELCI's).


For the purpose of the present application, the structure or mechanisms used in the circuit interrupting devices, shown in the drawings and described hereinbelow, are incorporated into a GFCI receptacle suitable for installation in a single-gang junction box used in, for example, a residential electrical wiring system. However, the mechanisms according to the present application can be included in any of the various devices in the family of resettable circuit interrupting devices.


The GFCI receptacles described herein have line and load phase (or power) connections, line and load neutral connections and user accessible load phase and neutral connections. The connections permit external conductors or appliances to be connected to the device. These connections may be, for example, electrical fastening devices that secure or connect external conductors to the circuit interrupting device, as well as conduct electricity. Examples of such connections include binding screws, lugs, terminals and external plug connections.


In one embodiment, the GFCI receptacle has a circuit interrupting portion, a reset portion and a reset lockout. This embodiment is shown in FIGS. 1-12. In another embodiment, the GFCI receptacle is similar to the embodiment of FIGS. 1-12, except the reset lockout is omitted. Thus, in this embodiment, the GFCI receptacle has a circuit interrupting portion and a reset portion, which is similar to those described in FIGS. 1-12. In another embodiment, the GFCI receptacle has a circuit interrupting portion, a reset portion, a reset lockout and an independent trip portion. This embodiment is shown in FIGS. 13-20.


The circuit interrupting and reset portions described herein preferably use electromechanical components to break (open) and make (close) one or more conductive paths between the line and load sides of the device. However, electrical components, such as solid state switches and supporting circuitry, may be used to open and close the conductive paths.


Generally, the circuit interrupting portion is used to automatically break electrical continuity in one or more conductive paths (i.e., open the conductive path) between the line and load sides upon the detection of a fault, which in the embodiments described is a ground fault. The reset portion is used to close the open conductive paths.


In the embodiments including a reset lockout, the reset portion is used to disable the reset lockout, in addition to closing the open conductive paths. In this configuration, the operation of the reset and reset lockout portions is in conjunction with the operation of the circuit interrupting portion, so that electrical continuity in open conductive paths cannot be reset if the circuit interrupting portion is non-operational, if an open neutral condition exists and/or if the device is reverse wired.


In the embodiments including an independent trip portion, electrical continuity in one or more conductive paths can be broken independently of the operation of the circuit interrupting portion. Thus, in the event the circuit interrupting portion is not operating properly, the device can still be tripped.


The above-described features can be incorporated in any resettable circuit interrupting device, but for simplicity the descriptions herein are directed to GFCI receptacles.


Turning now to FIG. 1, the GFCI receptacle 10 has a housing 12 consisting of a relatively central body 14 to which a face or cover portion 16 and a rear portion 18 are removably secured. The face portion 16 has entry ports 20 and 21 for receiving normal or polarized prongs of a male plug of the type normally found at the end of a lamp or appliance cord set (not shown), as well as ground-prong-receiving openings 22 to accommodate a three-wire plug. The receptacle also includes a mounting strap 24 used to fasten the receptacle to a junction box.


A test button 26 extends through opening 28 in the face portion 16 of the housing 12. The test button is used to activate a test operation, that tests the operation of the circuit interrupting portion (or circuit interrupter) disposed in the device. The circuit interrupting portion, to be described in more detail below, is used to break electrical continuity in one or more conductive paths between the line and load side of the device. A reset button 30 forming a part of the reset portion extends through opening 32 in the face portion 16 of the housing 12. The reset button is used to activate a reset operation, which reestablishes electrical continuity in the open conductive paths.


Electrical connections to existing household electrical wiring are made via binding screws 34 and 36, where screw 34 is an input (or line) phase connection, and screw 36 is an output (or load) phase connection. It should be noted that two additional binding screws 38 and 40 (seen in FIG. 3) are located on the opposite side of the receptacle 10. These additional binding screws provide line and load neutral connections, respectively. A more detailed description of a GFCI receptacle is provided in U.S. Pat. No. 4,595,894, which is incorporated herein in its entirety by reference. It should also be noted that binding screws 34, 36, 38 and 40 are exemplary of the types of wiring terminals that can be used to provide the electrical connections. Examples of other types of wiring terminals include set screws, pressure clamps, pressure plates, push-in type connections, pigtails and quick-connect tabs.


Referring to FIGS. 2-6, the conductive path between the line phase connection 34 and the load phase connection 36 includes contact arm 50 which is movable between stressed and unstressed positions, movable contact 52 mounted to the contact arm 50, contact arm 54 secured to or monolithically formed into the load phase connection 36 and fixed contact 56 mounted to the contact arm 54. The user accessible load phase connection for this embodiment includes terminal assembly 58 having two binding terminals 60 which are capable of engaging a prong of a male plug inserted therebetween. The conductive path between the line phase connection 34 and the user accessible load phase connection includes, contact arm 50, movable contact 62 mounted to contact arm 50, contact arm 64 secured to or monolithically formed into terminal assembly 58, and fixed contact 66 mounted to contact arm 64. These conductive paths are collectively called the phase conductive path.


Similarly, the conductive path between the line neutral connection 38 and the load neutral connection 40 includes, contact arm 70 which is movable between stressed and unstressed positions, movable contact 72 mounted to contact arm 70, contact arm 74 secured to or monolithically formed into load neutral connection 40, and fixed contact 76 mounted to the contact arm 74. The user accessible load neutral connection for this embodiment includes terminal assembly 78 having two binding terminals 80 which are capable of engaging a prong of a male plug inserted therebetween. The conductive path between the line neutral connection 38 and the user accessible load neutral connection includes, contact arm 70, movable contact 82 mounted to the contact arm 70, contact arm 84 secured to or monolithically formed into terminal assembly 78, and fixed contact 86 mounted to contact arm 84. These conductive paths are collectively called the neutral conductive path.


Referring to FIG. 2, the circuit interrupting portion has a circuit interrupter and electronic circuitry capable of sensing faults, e.g., current imbalances, on the hot and/or neutral conductors. In a preferred embodiment for the GFCI receptacle, the circuit interrupter includes a coil assembly 90, a plunger 92 responsive to the energizing and de-energizing of the coil assembly and a banger 94 connected to the plunger 92. The banger 94 has a pair of banger dogs 96 and 98 which interact with a movable latching members 100 used to set and reset electrical continuity in one or more conductive paths. The coil assembly 90 is activated in response to the sensing of a ground fault by, for example, the sense circuitry shown in FIG. 12. FIG. 12 shows


conventional circuitry for detecting ground faults that includes a differential transformer that senses current imbalances.


The reset portion includes reset button 30, the movable latching members 100 connected to the reset button 30, latching fingers 102 and reset contacts 104 and 106 that temporarily activate the circuit interrupting portion when the reset button is depressed, when in the tripped position. Preferably, the reset contacts 104 and 106 are normally open momentary contacts. The latching fingers 102 are used to engage side R of each contact arm 50,70 and move the arms 50,70 back to the stressed position where contacts 52,62 touch contacts 56,66, respectively, and where contacts 72,82 touch contacts 76,86, respectively.


The movable latching members 102 are, in this embodiment, common to each portion (i.e., the circuit interrupting, reset and reset lockout portions) and used to facilitate making, breaking or locking out of electrical continuity of one or more of the conductive paths. However, the circuit interrupting devices according to the present application also contemplate embodiments where there is no common mechanism or member between each portion or between certain portions. Further, the present application also contemplates using circuit interrupting devices that have circuit interrupting, reset and reset lockout portions to facilitate making, breaking or locking out of the electrical continuity of one or both of the phase or neutral conductive paths.


In the embodiment shown in FIGS. 2 and 3, the reset lockout portion includes latching fingers 102 which after the device is tripped, engages side L of the movable arms 50,70 so as to block the movable arms 50,70 from moving. By blocking movement of the movable arms 50,70, contacts 52 and 56, contacts 62 and 66, contacts 72 and 76 and contacts 82 and 86 are prevented from touching. Alternatively, only one of the movable arms 50 or 70 may be blocked so that their respective contacts are prevented from touching. Further, in this embodiment, latching fingers 102 act as an active inhibitor that prevents the contacts from touching. Alternatively, the natural bias of movable arms 50 and 70 can be used as a passive inhibitor that prevents the contacts from touching.


Referring now to FIGS. 2 and 7-11, the mechanical components of the circuit interrupting and reset portions in various stages of operation are shown. For this part of the description, the operation will be described only for the phase conductive path, but the operation is similar for the neutral conductive path, if it is desired to open and close both conductive paths. In FIG. 2, the GFCI receptacle is shown in a set position where movable contact arm 50 is in a stressed condition so that movable contact 52 is in electrical engagement with fixed contact 56 of contact arm 54. If the sensing circuitry of the GFCI receptacle senses a ground fault, the coil assembly 90 is energized to draw plunger 92 into the coil assembly 90 so that banger 94 moves upwardly. As the banger moves upwardly, the banger front dog 98 strikes the latch member 100 causing it to pivot in a counterclockwise direction C (seen in FIG. 7) about the joint created by the top edge 112 and inner surface 114 of finger 110. The movement of the latch member 100 removes the latching finger 102 from engagement with side R of the remote end 116 of the movable contact arm 50, and permits the contact arm 50 to return to its pre-stressed condition opening contacts 52 and 56, seen in FIG. 7.


After tripping, the coil assembly 90 is de-energized so that spring 93 returns plunger 92 to its original extended position and banger 94 moves to its original position releasing latch member 100. At this time, the latch member 100 is in a lockout position where latch finger 102 inhibits movable contact 52 from engaging fixed contact 56, as seen in FIG. 10. As noted, one or both latching fingers 102 can act as an active inhibitor that prevents the contacts from touching. Alternatively, the natural bias of movable arms 50 and 70 can be used as a passive inhibitor that prevents the contacts from touching.


To reset the GFCI receptacle so that contacts 52 and 56 are closed and continuity in the phase conductive path is reestablished, the reset button 30 is depressed sufficiently to overcome the bias force of return spring 120 and move the latch member 100 in the direction of arrow A, seen in FIG. 8. While the reset button 30 is being depressed, latch finger 102 contacts side L of the movable contact arm 50 and continued depression of the reset button 30 forces the latch member to overcome the stress force exerted by the arm 50 causing the reset contact 104 on the arm 50 to close on reset contact 106. Closing the reset contacts activates the operation of the circuit interrupter by, for example simulating a fault, so that plunger 92 moves the banger 94 upwardly striking the latch member 100 which pivots the latch finger 102, while the latch member 100 continues to move in the direction of arrow A. As a result, the latch finger 102 is lifted over side L of the remote end 116 of the movable contact arm 50 onto side R of the remote end of the movable contact arm, as seen in FIGS. 7 and 11. Contact arm 50 returns to its unstressed position, opening contacts 52 and 56 and contacts 62 and 66, so as to terminate the activation of the circuit interrupting portion, thereby de-energizing the coil assembly 90.


After the circuit interrupter operation is activated, the coil assembly 90 is de-energized so that so that plunger 92 returns to its original extended position, and banger 94 releases the latch member 100 so that the latch finger 102 is in a reset position, seen din FIG. 9. Release of the reset button causes the latching member 100 and movable contact arm 50 to move in the direction of arrow B (seen in FIG. 9) until contact 52 electrically engages contact 56, as seen in FIG. 2.


As noted above, if opening and closing of electrical continuity in the neutral conductive path is desired, the above description for the phase conductive path is also applicable to the neutral conductive path.


In an alternative embodiment, the circuit interrupting devices may also include a trip portion that operates independently of the circuit interrupting portion so that in the event the circuit interrupting portion becomes non-operational the device can still be tripped. Preferably, the trip portion is manually activated and uses mechanical components to break one or more conductive paths. However, the trip portion may use electrical circuitry and/or electromechanical components to break either the phase or neutral conductive path or both paths.


For the purposes of the present application, the structure or mechanisms for this embodiment are also incorporated into a GFCI receptacle, seen in FIGS. 13-20, suitable for installation in a single-gang junction box in a home. However, the mechanisms according to the present application can be included in any of the various devices in the family of resettable circuit interrupting devices.


Turning now to FIG. 13, the GFCI receptacle 200 according to this embodiment is similar to the GFCI receptacle described in FIGS. 1-12. Similar to FIG. 1, the GFCI receptacle 200 has a housing 12 consisting of a relatively central body 14 to which a face or cover portion 16 and a rear portion 18 are, preferably, removably secured.


A trip actuator 202, preferably a button, which is part of the trip portion to be described in more detail below, extends through opening 28 in the face portion 16 of the housing 12. The trip actuator is used, in this exemplary embodiment, to mechanically trip the GFCI receptacle, i.e., break electrical continuity in one or more of the conductive paths, independent of the operation of the circuit interrupting portion.


A reset actuator 30, preferably a button, which is part of the reset portion, extends through opening 32 in the face portion 16 of the housing 12. The reset button is used to activate the reset operation, which re-establishes electrical continuity in the open conductive paths, i.e., resets the device, if the circuit interrupting portion is operational.


As in the above embodiment, electrical connections to existing household electrical wiring are made via binding screws 34 and 36, where screw 34 is an input (or line) phase connection, and screw 36 is an output (or load) phase connection. It should be noted that two additional binding-screws 38 and 40 (seen in FIG. 3) are located on the opposite side of the receptacle 200. These additional binding screws provide line and load neutral connections, respectively. A more detailed description of a GFCI receptacle is provided in U.S. Pat. No. 4,595,894, which is incorporated herein in its entirety by reference.


Referring to FIGS. 4-6, 14 and 17, the conductive paths in this embodiment are substantially the same as those described above. The conductive path between the line phase connection 34 and the load phase connection 36 includes, contact arm 50 which is movable between stressed and unstressed positions, movable contact 52 mounted to the contact arm 50, contact arm 54 secured to or monolithically formed into the load phase connection 36 and fixed contact 56 mounted to the contact arm 54 (seen in FIGS. 4, 5 and 17). The user accessible load phase connection for this embodiment includes terminal assembly 58 having two binding terminals 60 which are capable of engaging a prong of a male plug inserted therebetween. The conductive path between the line phase connection 34 and the user accessible load phase connection includes, contact arm 50, movable contact 62 mounted to contact arm 50, contact arm 64 secured to or monolithically formed into terminal assembly 58, and fixed contact 66 mounted to contact arm 64. These conductive paths are collectively called the phase conductive path.


Similarly, the conductive path between the line neutral connection 38 and the load neutral connection 40 includes, contact arm 70 which is movable between stressed and unstressed positions, movable contact 72 mounted to contact arm 70, contact arm 74 secured to or monolithically formed into load neutral connection 40, and fixed contact 76 mounted to the contact arm 74 (seen in FIGS. 4, 6 and 17). The user accessible load neutral connection for this embodiment includes terminal assembly 78 having two binding terminals 80 which are capable of engaging a prong of a male plug inserted therebetween. The conductive path between the line neutral connection 38 and the user accessible load neutral connection includes, contact arm 70, movable contact 82 mounted to the contact arm 70, contact arm 84 secured to or monolithically formed into terminal assembly 78, and fixed contact 86 mounted to contact arm 84. These conductive paths are collectively called the neutral conductive path.


There is also shown in FIG. 14, mechanical components used during circuit interrupting and reset operations according to this embodiment of the present application. Although these components shown in the drawings are electromechanical in nature, the present application also contemplates using semiconductor type circuit interrupting and reset components, as well as other mechanisms capable of making and breaking electrical continuity.


The circuit interrupting device according to this embodiment incorporates an independent trip portion into the circuit interrupting device of FIGS. 1-12. Therefore, a description of the circuit interrupting, reset and reset lockout portions are omitted.


Referring to FIGS. 14-16 an exemplary embodiment of the trip portion according to the present application includes a trip actuator 202, preferably a button, that is movable between a set position, where contacts 52 and 56 are permitted to close or make contact, as seen in FIG. 14, and a trip position where contacts 52 and 56 are caused to open, as seen in FIG. 15. Spring 204 normally biases trip actuator 202 toward the set position. The trip portion also includes a trip arm 206 that extends from the trip actuator 202 so that a surface 208 of the trip arm 206 moves into contact with the movable latching member 100, when the trip button is moved toward the trip position. When the trip actuator 202 is in the set position, surface 208 of trip arm 202 can be in contact with or close proximity to the movable latching member 100, as seen in FIG. 14.


In operation, upon depression of the trip actuator 202, the trip actuator pivots about point T of pivot arm 210 (seen in FIG. 15) extending from strap 24 so that the surface 208 of the trip arm 206 can contact the movable latching member 100. As the trip actuator 202 is moved toward the trip position, trip arm 206 also enters the path of movement of the finger 110 associated with reset button 30 thus blocking the finger 102 from further movement in the direction of arrow A (seen in FIG. 15). By blocking the movement of the finger 110, the trip arm 206 inhibits the activation of the reset operation and, thus, inhibits simultaneous activation of the trip and reset operations. Further depression of the trip actuator 202 causes the movable latching member 100 to pivot about point T in the direction of arrow C (seen in FIG. 15). Pivotal movement of the latching member 100 causes latching finger 102 of latching arm 100 to move out of contact with the movable contact arm 50 so that the arm 50 returns to its unstressed condition, and the conductive path is broken. Resetting of the device is achieved as described above. An exemplary embodiment of the circuitry used to sense faults and reset the conductive paths, is shown in FIG. 18.


As noted above, if opening and closing of electrical continuity in the neutral conductive path is desired, the above description for the phase conductive path is also applicable to the neutral conductive path.


An alternative embodiment of the trip portion will be described with reference to FIGS. 19 and 20. In this embodiment, the trip portion includes a trip actuator 202 that at is movable between a set position, where contacts 52 and 56 are permitted to close or make contact, as seen in FIG. 19, and a trip position where contacts 52 and 56 are caused to open, as seen in FIG. 20. Spring 220 normally biases trip actuator 202 toward the set position. The trip portion also includes a trip arm 224 that extends from the trip actuator 202 so that a distal end 226 of the trip arm is in movable contact with the movable latching member 100. As noted above, the movable latching member 100 is, in this embodiment, common to the trip, circuit interrupting, reset and reset lockout portions and is used to make, break or lockout the electrical connections in the phase and/or neutral conductive paths.


In this embodiment, the movable latching member 100 includes a ramped portion 100a which facilitates opening and closing of electrical contacts 52 and 56 when the trip actuator 202 is moved between the set and trip positions, respectively. To illustrate, when the trip actuator 202 is in the set position, distal end 226 of trip arm 224 contacts the upper side of the ramped portion 10a, seen in FIG. 19. When the trip actuator 202 is depressed, the distal end 226 of the trip arm 224 moves along the ramp and pivots the latching member 60 about point P in the direction of arrow C causing latching finger 102 of the latching member 100 to move out of contact with the movable contact arm 50 so that the arm 50 returns to its unstressed condition, and the conductive path is broken. Resetting of the device is achieved as described above.


The circuit interrupting device according to the present application can be used in electrical systems, shown in the exemplary block diagram of FIG. 21. The system 240 includes a source of power 242, such as ac power in a home, at least one circuit interrupting device, e.g., circuit interrupting device 10 or 200, electrically connected to the power source, and one or more loads 244 connected to the circuit interrupting device. As an example of one such system, ac power supplied to single gang junction box in a home may be connected to a GFCI receptacle having one of the above described reverse wiring fault protection, independent trip or reset lockout features, or any combination of these features may be combined into the circuit interrupting device. Household appliances that are then plugged into the receptacle become the load or loads of the system.


As noted, although the components used during circuit interrupting and device reset operations are electromechanical in nature, the present application also contemplates using electrical components, such as solid state switches and supporting circuitry, as well as other types of components capable or making and breaking electrical continuity in the conductive path.


While there have been shown and described and pointed out the fundamental features of the invention, it will be understood that various omissions and substitutions and changes of the form and details of the device described and illustrated and in its operation may be made by those skilled in the art, without departing from the spirit of the invention.

Claims
  • 1. A circuit interrupting device comprising: a housing with a mounting strap adapted to fasten the housing into an electrical wiring box;said housing having a front face with at least one user-accessible electrical load socket;at least one installer-accessible electrical line wiring terminal;at least one installer-accessible electrical load wiring terminal;a first electrical conductor disposed at least partially inside said housing and electrically connected to said installer-accessible electrical line wiring terminal;a second electrical conductor disposed at least partially inside said housing and electrically connected to said installer-accessible electrical load wiring terminal;a third electrical conductor disposed at least partially inside said housing and electrically connected to said at least one user-accessible electrical load socket;the first, second and third electrical conductors having a first spatial arrangement wherein said conductors are all electrically connected with each other and a second spatial arrangement where said first, second and third electrical conductors are all electrically isolated from each other, said first conductor comprises a movable bridge capable of electrically connecting said first, second and third conductors to each other;an electrical fault sensor and an electro-mechanical actuator connected and disposed to control a change in the spatial arrangement of said conductors from said first spatial arrangement to said second spatial arrangement upon the occurrence of an electrical fault; andan electrical reset switch coupled to a reset button accessible through said front face of said housing.
  • 2. A circuit interrupting device as in claim 1 wherein said electro-mechanical actuator includes a movable plunger disposed to control a change in the spatial arrangement of said first, second and third conductors from said second arrangement to said first arrangement in response to said electrical reset switch completing an electrical circuit that causes activation of said electro-mechanical actuator only if electrical power is supplied to said installer-accessible electrical line wiring terminal.
  • 3. A circuit interrupting device as in claim 1 wherein at least two of said conductors are electrically connected to respectively corresponding external electrical circuits and said electrical fault sensor is connected to sense an electrical fault in at least one of said external circuits.
  • 4. A circuit interrupting device as in claim 1 further comprising: a latch disposed to prevent a change from said second arrangement; andwherein said reset button is a spring-loaded manually operable user-accessible circuit reset button which is mechanically coupled to said reset switch which is, in turn, electrically coupled to an electro-mechanical actuator having a movable plunger disposed to move the latch thereby allowing a return spring force of the spring-loaded button to change the spatial arrangement of said conductors to said first spatial arrangement upon manual user actuation and release of said spring-loaded reset button.
  • 5. A method for insuring safe operation of a circuit interrupting device comprising a housing with a mounting strap adapted to fasten the housing into an electrical wiring box, a front face with at least one user-accessible electrical load terminal, at least one installer-accessible electrical line wiring terminal and at least one installer-accessible electrical load wiring terminal, said housing also having first, second and third electrical conductors disposed at least partially inside the housing and respectively connected electrically with the installer-accessible line, installer-accessible load and user-accessible load terminal, said method comprising: moving at least one of said first, second and third electrical conductors to place said first, second and third electrical conductors into a first spatial arrangement in which said conductors are all electrically connected with each other, said first conductor comprises a movable bridge capable of electrically connecting said first, second and third conductors to each other;detecting an electrical fault,upon the occurrence of said electrical fault, using an electromechanical actuator to automatically move at least one of said first, second and third conductors into a second spatial arrangement in which said conductors are all electrically isolated from one another; andprohibiting reset of said conductors back to said first spatial arrangement if electrical power is not present at said at least one installer-accessible line wiring terminal.
  • 6. A method as in claim 5 further comprising: in response to user action including activation of said electromechanical actuator using electrical power supplied from said installer-accessible line wiring terminal, moving at least one of said conductors to reset said first, second and third conductors from said second spatial arrangement to said first spatial arrangement.
  • 7. A method as in claim 5 further comprising: latching said at least one movable conductor in place to maintain said first spatial arrangement until occurrence of said fault condition whereupon said at least one conductor is unlatched and moved to establish said second spatial arrangement; andautomatically maintaining said second spatial arrangement until occurrence of user action re-setting said at least one conductor to said first spatial arrangement.
  • 8. A circuit interrupting device comprising: a first electrical conductor capable of being electrically connected to a source of electricity;a second electrical conductor capable of conducting electrical current to a load when electrically connected to said first electrical conductor;a third electrical conductor capable of being electrically connected to user accessible plugs and/or receptacles where the first, second and third electrical conductors are electrically isolated from each other;at least one movable bridge electrically connected to the first electrical conductor, said at least one movable bridge capable of electrically connecting the first, second and third electrical conductors to each other;a circuit interrupter configured to cause electrical discontinuity between said first, second and third electrical conductors upon the occurrence of a predetermined condition; anda reset portion, including a reset button, a spring which biases the button outwardly, and a plurality of contacts, configured to reestablish electrical continuity between the first, second and third electrical conductors after said predetermined condition occurs.
PRIORITY

This application is a continuation of an application having Ser. No. 10/977,929 filed on Oct. 28, 2004, now U.S. Pat. No. 7,463,124 which issued on Dec. 9, 2008, which is a continuation of an application having Ser. No. 10/827,093 filed on Apr. 19, 2004, now U.S. Pat. No. 6,864,766 which issued on Mar. 8, 2005, which is a continuation of an application having Ser. No. 10/223,284 filed on Aug. 19, 2002, now U.S. Pat. No. 6,813,126 which issued on Nov. 2, 2004, which is a continuation of an application having Ser. No. 09/879,563 filed on Jun. 11, 2001, now U.S. Pat. No. 6,437,953 which issued on Aug. 20, 2002, which is a continuation of an application having Ser. No. 09/379,138 filed on Aug. 20, 1999, now U.S. Pat. No. 6,246,558 which issued on Jun. 12, 2001, which is a continuation-in-part of an application having Ser. No. 09/369,759 filed on Aug. 6, 1999, now U.S. Pat. No. 6,282,070 which issued on Aug. 28, 2001, which is a continuation-in-part of an application having Ser. No. 09/138,955 filed on Aug. 24, 1998, now U.S. Pat. No. 6,040,967 which issued on Mar. 21, 2000.

US Referenced Citations (136)
Number Name Date Kind
2001563 Bany May 1935 A
2320123 Famham May 1943 A
2485367 Dillow Oct 1949 A
2993148 Pywell Jul 1961 A
2999189 Gerrard Sep 1961 A
3158785 Gagniere et al. Nov 1964 A
3233151 Fisher Feb 1966 A
3309571 Gilker Mar 1967 A
3538477 Walters et al. Nov 1970 A
3702418 Obenhaus Nov 1972 A
3766434 Sherman Oct 1973 A
3813579 Doyle May 1974 A
3864449 Homberg et al. Feb 1975 A
3864649 Doyle Feb 1975 A
3872354 Nestor et al. Mar 1975 A
3949336 Dietz Apr 1976 A
4001804 Irving Jan 1977 A
4002951 Halbeck Jan 1977 A
4010431 Virani Mar 1977 A
4010432 Klein Mar 1977 A
4034266 Virani Jul 1977 A
4034360 Schweitzer, Jr. Jul 1977 A
4051544 Vibert Sep 1977 A
4063299 Munroe Dec 1977 A
4109226 Bowling Aug 1978 A
4114123 Grenier Sep 1978 A
4159499 Bereskin Jun 1979 A
4163882 Baslow Aug 1979 A
4194231 Klein Mar 1980 A
4223365 Moran Sep 1980 A
4288768 Arnold et al. Sep 1981 A
4316230 Hansen Feb 1982 A
4377837 Matsko Mar 1983 A
4386338 Doyle May 1983 A
4409574 Misencik Oct 1983 A
4412193 Bienwald Oct 1983 A
4442470 Misencik Apr 1984 A
4515945 Ranken et al. May 1985 A
4518945 Doyle May 1985 A
4521824 Morris Jun 1985 A
4538040 Ronemus Aug 1985 A
4567456 Legatti Jan 1986 A
4568899 May Feb 1986 A
4574260 Franks Mar 1986 A
4578732 Draper Mar 1986 A
4587588 Goldstein May 1986 A
4595894 Doyle Jun 1986 A
4626953 Nilssen Dec 1986 A
4630015 Gernhardt Dec 1986 A
4631624 Dvorak Dec 1986 A
4641216 Morris et al. Feb 1987 A
4641217 Morris et al. Feb 1987 A
4686600 Morris et al. Aug 1987 A
4719437 Yun Jan 1988 A
4802052 Brant Jan 1989 A
4814641 Dufresne Mar 1989 A
4816957 Irwin Mar 1989 A
4851951 Foster, Jr. Jul 1989 A
4901183 Lee Feb 1990 A
4949070 Wetzel Aug 1990 A
4956743 Hasegawa Sep 1990 A
4967308 Morse Oct 1990 A
4979070 Bodkin Dec 1990 A
5144516 Sham Sep 1992 A
5148344 Rao Sep 1992 A
5161240 Johnson Nov 1992 A
5179491 Runyan Jan 1993 A
5185687 Beihoff Feb 1993 A
5202662 Bienwald Apr 1993 A
5218331 Morris Jun 1993 A
5223810 Van Haaren Jun 1993 A
5224006 MacKenzie Jun 1993 A
5229730 Legatti Jul 1993 A
5239438 Echtler Aug 1993 A
5293522 Fello et al. Mar 1994 A
5363269 McDonald Nov 1994 A
5418678 McDonald May 1995 A
5448443 Muelleman Sep 1995 A
5477412 Neiger Dec 1995 A
5510760 Marcou Apr 1996 A
5515218 DeHaven May 1996 A
5517165 Cook May 1996 A
5541800 Misencik Jul 1996 A
5576580 Hosoda et al. Nov 1996 A
5594398 Marcou Jan 1997 A
5600524 Neiger Feb 1997 A
5654857 Gershen Aug 1997 A
5655648 Rosen Aug 1997 A
5661623 McDonald et al. Aug 1997 A
5680287 Gernhardt Oct 1997 A
5694280 Zhou Dec 1997 A
5706155 Neiger Jan 1998 A
5710399 Castonguay et al. Jan 1998 A
5715125 Neiger Feb 1998 A
5729417 Neiger Mar 1998 A
5805397 Mackenzie Sep 1998 A
5815363 Chu Sep 1998 A
5825602 Tosaka Oct 1998 A
5844765 Kato Dec 1998 A
5877925 Singer Mar 1999 A
5917686 Chan Jun 1999 A
5920451 Fasano et al. Jul 1999 A
5933063 Keung Aug 1999 A
5943198 Hirsh et al. Aug 1999 A
5950812 Tanacan et al. Sep 1999 A
5956218 Berthold Sep 1999 A
6021034 Chan Feb 2000 A
6040967 DiSalvo Mar 2000 A
6052265 Zaretsky Apr 2000 A
6180899 Passow Jan 2001 B1
6204743 Greenberg et al. Mar 2001 B1
6226161 Neiger May 2001 B1
6232857 Mason, Jr. et al. May 2001 B1
6242993 Fleege et al. Jun 2001 B1
6246558 DiSalvo et al. Jun 2001 B1
6252407 Gershen Jun 2001 B1
6255923 Mason, Jr. et al. Jul 2001 B1
6259340 Fuhr et al. Jul 2001 B1
6282070 Ziegler et al. Aug 2001 B1
6288882 DiSalvo et al. Sep 2001 B1
6381112 DiSalvo Apr 2002 B1
6381113 Legatti Apr 2002 B1
6437953 DiSalvo et al. Aug 2002 B2
6545574 Seymour et al. Apr 2003 B1
6580344 Li Jun 2003 B2
6590753 Finlay Jul 2003 B1
6642823 Passow Nov 2003 B2
6657834 DiSalvo Dec 2003 B2
6807035 Baldwin et al. Oct 2004 B1
6807036 Baldwin Oct 2004 B2
6850394 Kim Feb 2005 B2
6864766 DiSalvo et al. Mar 2005 B2
6958895 Radosavljevic et al. Oct 2005 B1
7265956 Huang Sep 2007 B2
7400477 Campolo at al. Jul 2008 B2
20050140476 Gao Jun 2005 A1
Foreign Referenced Citations (12)
Number Date Country
2821138 Nov 1978 DE
3431 581 Nov 1991 DE
081661 Jun 1983 EP
21345 877 May 1978 ES
469787 Dec 1978 ES
2391549 Dec 1978 FR
227930 Jan 1925 GB
830018 Sep 1960 GB
2207823 Aug 1989 GB
2292491 Feb 1996 GB
61-259428 Nov 1986 JP
06113442 Apr 1994 JP
Related Publications (1)
Number Date Country
20090052098 A1 Feb 2009 US
Continuations (5)
Number Date Country
Parent 10977929 Oct 2004 US
Child 12176735 US
Parent 10827093 Apr 2004 US
Child 10977929 US
Parent 10223284 Aug 2002 US
Child 10827093 US
Parent 09879563 Jun 2001 US
Child 10223284 US
Parent 09379138 Aug 1999 US
Child 09879563 US
Continuation in Parts (2)
Number Date Country
Parent 09369759 Aug 1999 US
Child 09379138 US
Parent 09138955 Aug 1998 US
Child 09369759 US