The disclosure relates generally to layout of a circuit member and, more particularly, to a circuit member layout with enhanced performance.
Modular jack (“modjack”) receptacle connectors mounted to printed circuit boards (“PCBs”) are well known in the telecommunications industry. These connectors are often used for electrical connection between two electrical communication devices. With the ever-increasing operating frequencies and data rates of data and communication systems and the increased levels of encoding used to transmit information, the electrical characteristics of such connectors are of increasing importance. In particular, it is desirable that these modjack connectors do not negatively affect the signals transmitted and where possible, noise is removed from the system.
When used as Ethernet connectors, modjacks generally receive an input signal from one electrical device and then communicate a corresponding output signal to a second device coupled thereto. Magnetic circuitry can be used to provide conditioning and isolation of the signals as they pass from the first device to the second and typically such circuitry uses components such as a transformer and a choke. The transformer often is toroidal in shape and includes a primary and secondary wire coupled together and wrapped around a toroid so as to provide magnetic coupling between the primary and secondary wires while ensuring electrical isolation. Chokes are also commonly used to filter out unwanted noise, such as common-mode noise, and can be a toroidal ferrite used in differential signaling applications. Modjacks having such magnetic circuitry are typically referred to in the trade as magnetic jacks.
In some instances, the wires from one transformer and choke subassembly may impact the performance of adjacent subassemblies. As system data rates have increased, systems have become increasingly sensitive to cross-talk between ports and even between channels within a port. Magnetic subassemblies that operate within a predetermined range of electrical tolerances at one data rate (such as 1 Gbps) may be out of tolerance or inoperable at higher date rates (such as 10 Gbps). Accordingly, improving the isolation between the channels of the magnetic jacks has become desirable in order to permit a corresponding increase in the data rate of signals that pass through the system. Cross-talk and electro-magnetic radiation and interference between channels may impact the performance of the magnetic jack (and thus the entire system) as system speeds and data rates increase. Improvements in shielding and isolation between channels as well as simplifying the manufacturing process of a magnetic jack is thus desirable.
An electrical connector includes a dielectric housing with a mating face and a module receiving face. The mating face includes a plurality of openings with each opening being configured to receive a mateable connector in a mating direction. The module receiving face is configured for receiving a plurality of filtering modules. Each filtering module has a housing, a magnetics assembly and a plurality of electrically conductive contacts. The magnetics assembly includes first, second, third and fourth transformer cores with each transformer core having a plurality of wires wrapped therearound to define respective first, second, third and fourth transformers. Two of the plurality of wires of each transformer define first and second signal conductors and two of the plurality of wires of each transformer are electrically connected and define a centertap of the transformer. The housing includes a first set of conductive pins extending from a lower surface configured for interconnection to a circuit board upon which the electrical connector may be mounted. The first set of conductive pins are arranged in first and second parallel, offset rows to define a staggered array of pins. The first and second signal conductors from each transformer are connected to pins in the first and second offsets rows. The centertap of the first transformer is electrically connected to a predetermined pin in the first row, the centertap of the second transformer is electrically connected to a predetermined pin in the second row, the centertap of the third transformer is electrically connected to a predetermined pin in the first row and the centertap of the fourth transformer is electrically connected to a predetermined pin in the second row. A circuit member having an enhanced layout upon which such connector may be mounted may also be provided.
An electrical connector may include a dielectric housing with a mating face and a module receiving face. The mating face includes a plurality of openings with each opening being configured to receive a mateable connector in a mating direction. The module receiving face is configured for receiving a plurality of filtering modules. Each filtering module has a housing and a magnetics assembly. The magnetics assembly includes transformer cores that have a plurality of wires wrapped therearound to define a transformer. Two of the plurality of wires of each transformer define first and second signal conductors and two of the plurality of wires are electrically connected and define a centertap of the transformer. The housing includes a first set of conductive pins extending from a surface of the housing and arranged in a linear array and that define a repeating pattern of first, second and third pins. The first signal conductor from each transformer is connected to one of the first conductive pins, the second signal conductor from each transformer is connected to one of the second conductive pins and the centertap from each transformer is connected to one of the third conductive pins.
An electrical connector may include a dielectric housing with a mating face and a module receiving face. The mating face includes a plurality of openings with each opening being configured to receive a mateable connector in a mating direction. The module receiving face is configured for receiving a plurality of filtering modules. Each filtering module has a housing, a magnetics assembly, a plurality of electrically conductive contacts and a module circuit board. The magnetics assembly includes at least one transformer core with a plurality of wires wrapped therearound to define a transformer. Some of the wires are electrically connected to the electrically conductive contacts and a portion of each electrically conductive contact extends into one of the openings for engaging contacts of a mateable connector. The housing includes first and second sets of conductive pins with the first set of conductive pins being mechanically and electrically connected to the wires of the magnetics assembly and the second set of pins being configured for interconnection to a circuit board upon which the electrical connector may be mounted. The module circuit board includes circuitry components to electrically connect and modify signals passing between predetermined ones of the first pins and predetermined ones of the second pins.
Various other objects, features and attendant advantages will become more fully appreciated as the same becomes better understood when considered in conjunction with the accompanying drawings in which like reference characters designate the same or similar parts throughout the several views, and in which:
The following description is intended to convey the operation of exemplary embodiments to those skilled in the art. It will be appreciated that this description is intended to aid the reader, not to limit the invention. As such, references to a feature or aspect are intended to describe a feature or aspect of an embodiment, not to imply that every embodiment must have the described characteristic. Furthermore, it should be noted that the depicted detailed description illustrates a number of features. While certain features have been combined together to illustrate potential system designs, those features may also be used in other combinations not expressly disclosed. Thus, the depicted combinations are not intended to be limiting unless otherwise noted.
It should be noted that in this description, representations of directions such as up, down, left, right, front, rear, and the like, used for explaining the structure and movement of each part of the disclosed embodiment are not intended to be absolute, but rather are relative. These representations are appropriate when each part of the disclosed embodiment is in the position shown in the figures. If the position or frame of reference of the disclosed embodiment changes, however, these representations are to be changed according to the change in the position or frame of reference of the disclosed embodiment.
Shield assembly 50 fully encloses housing 32 except for openings aligned with ports 33 and the bottom or lower surface of the housing and includes a front shield component 52 and a rear shield component 53. Additional shielding components 54 are positioned adjacent and generally surround ports 33 to complete shield assembly 50. The joinable front and rear shield components are formed with interlocking tabs 55 and openings 56 for engaging and securing the components together when the shield assembly 50 is placed into position around the magnetic jack housing 32. Each of the shield components 52, 53 includes ground pegs 57, 58, respectively, that extend into ground through-holes 102 in the circuit board 100 when mounted thereon.
As depicted in
Referring to
Subassembly module 70 includes the upper contact assembly 76 and lower contact assembly 77 for providing a stacked jack, or dual jack, functionality. The upper contact assembly 76 is mounted to an upper surface of upper circuit board 74 and provides physical and electrical interfaces, including upwardly extending contact terminals 79, for connecting to an Ethernet plug inserted within port 33 in the upper row of ports. The lower contact assembly 77 is mounted to a lower surface of upper circuit board 74 and includes downwardly extending electrically conductive contact terminals 81 for connection to an Ethernet plug inserted within a port 33 in the lower row of ports. Upper contact assembly 76 is electrically connected to the upper circuit board 74 through leads which are soldered, or electrically connected by some other means such as welding or conductive adhesive, to a row of circuit board pads 82 that are positioned along the top surface of upper circuit board 74 generally adjacent a forward edge of component housing 75. Lower contact assembly 77 is similarly mounted on a lower surface of upper circuit board 74 and is connected to second, similar row of circuit board pads 83 on a lower surface of upper circuit board 74.
Referring to
Each housing half 75a, 75b is formed with a large box-like receptacle or opening 86 that receives the filtering magnetics 120 therein. The receptacles 86 of the two housing halves 75a, 75b face in opposite directions and have an internal elongated shield member 190 positioned between the housing halves to electrically isolate the two receptacles. The surface of each housing half facing the elongated shield member 190 includes a projection 87 and a similarly sized socket 88 positioned such that when the two housing halves 75a, 75b are assembled together, the projection of each housing half will be inserted into the socket of the other housing half. The elongated shield member 190 includes a pair of holes 192 aligned with the projections 87 and receptacles 88 such that upon assembling the housing halves 75a, 75b and shield member 190, each projection 87 will extend through one of the holes 192 and into its socket 88 in order to secure shield member 190 in position relative to the housing halves.
After the transformer and choke assemblies 121 have been inserted into the receptacles 86 and the wires soldered to pins 92, 93, a shock absorbing, insulative foam insert 94 is inserted into each receptacle 86 over the transformer and choke assemblies 121 to secure them in place. An insulative cover 95 is secured to each housing half 75a, 75b to enclose receptacle 86 and secure foam insert 94 therein and to provide insulation or shielding between pins 93 and an adjacent inter-module shield 60.
As best seen in
The tails 91 that extend from each housing half 75a, 75b are positioned in two linear arrays or rows 201, 202 that are staggered relative to each other by one half the distance or pitch between adjacent tails. When combined, the two rows form a staggered array of tails 91 that can be seen as a series of triangular arrays of pins. Inasmuch as each housing half 75a, 75b includes a staggered array of tails, two sets of staggered tails 91 can be seen extending from the bottom of housing 75, one on each side of the tails 193 of shield member 190. The staggered tails extend through the holes 78a in lower circuit board 78 as best seen in
Housing halves 75a, 75b include a linear array of spaced apart wire alignment fingers 86a, 86b (
The magnetics 120 provide impedance matching, signal shaping and conditioning, high voltage isolation and common-mode noise reduction. This is particularly beneficial in Ethernet systems that utilize cables having unshielded twisted pair (“UTP”) transmission lines, as these line are more prone to picking up noise than shielded transmission lines. The magnetics help to filter out the noise and provide good signal integrity and electrical isolation. The magnetics include four transformer and choke subassemblies 121 associated with each port 33. The choke is configured to present high impedance to common-mode noise but low impedance for differential-mode signals. A choke is provided for each transmit and receive channel and each choke can be wired directly to the RJ-45 connector.
Elongated shield member 190 is a generally rectangular plate and includes seven downwardly depending solder tails 193 configured for insertion and soldering in holes 78c in lower circuit board 78. Tails 193 are long enough to extend past lower circuit board 78 and are subsequently inserted into holes (not shown) in circuit board 100 and soldered thereto. Two upwardly extending solder tails 194, 195 extend from a top surface or edge 196 of shield member 190 and are configured for insertion and soldering in through-holes 74a in upper circuit board 74. Shield member 190 is configured to shield the transformers 130 and chokes 140 as well as other circuit components of each housing half from those of its adjacent housing half in order to shield the circuitry of the lower port from that of its vertically aligned upper port.
As described above, the magnetics 120 associated with each port 33 of the connector include four transformer and choke subassemblies 121. Referring to
As shown in
As depicted in
It should be noted that transformer and choke subassemblies depicted in
Lower circuit board 78 includes a linear array 203 of plated-through holes 78c along its longitudinal axis “L” (
Referring to
The second group of three linear through-holes 78b-4, 78b-5 and 78b-6 is connected to the inverted triangular group 232 of three through-holes 78a-4, 78a-5 and 78a-6. Since the triangular group 232 is inverted as compared to triangular group 231, in order to maintain substantially similar functionality, the circuitry used to connect to the inverted triangular group 232 of through-holes 78a is similar but not identical to the circuitry used to connect group 230 to group 231. Once tails 91 and pins 92 are soldered to board 78, tails 91 are electrically connected to pins 92 by the circuitry that includes the circuit traces, inductors and capacitors. The inductors and capacitors are sized and configured so as to provide filtering of the signals as they pass between tails 91 and pins 92. If desired, other functionality could be included on circuit board 78 to provide additional or other modifications to signals passing between tails 91 and pins 92.
It should be noted that through holes 78b are configured in a repeating array of a first signal S1 from a transformer and choke subassembly 121, a second signal S2 from the same transformer and choke subassembly and a centertap CT from the same transformer and choke subassembly. This pattern repeats along the length of both rows of through holes 78b.
Through holes 78a are interconnected to through holes 78b through circuitry of circuit board 78 but the position of first signal S1, the second signal S2 and the centertap CT of each transformer and choke subassembly 121 alternates for each adjacent transformer and choke subassembly. More specifically, a first signal S1 from a first transformer and choke subassembly is connected to through hole 78b-1 and travels through board 78 to through hole 78a-1 in the outer row 201 of through holes 78a. A second signal S2 from the same transformer and choke subassembly is connected to through hole 78b-2 and travels through board 78 to through hole 78a-2 in the inner row 202 of through holes 78a. A centertap CT from the same transformer and choke subassembly is connected to through hole 78b-3 and travels through board 78 to through hole 78a-3 in the outer row 201 of through holes 78a. A first signal S1 from a second transformer and choke subassembly is connected to through hole 78b-4 and travels through board 78 to through hole 78a-4 in the inner row 202 of through holes 78a. A second signal S2 from the same (second) transformer and choke subassembly is connected to through hole 78b-5 and travels through board 78 to through hole 78a-5 in the outer row 201 of through holes 78a. A centertap CT from the same (second) transformer and choke subassembly is connected to through hole 78b-6 and travels through board 78 to through hole 78a-6 in the inner row 201 of through holes 78a.
The disclosed configuration improves the electrical performance and isolation of the individual transformers by providing a separate pin 92, 93 connected to each centertap rather than having centertaps share pins. The isolation between signal pairs is improved by having the centertaps positioned between pins connected to the signal pairs which also reduces the amount that any of the wires (such as the centertaps) cross over the wires of other transformer and choke subassemblies 121. Finally, the use of tails 91 together with pins 92 and lower board 78 permits the addition of filtering and other signal modifications along the circuitry between tails 91 and pins 92.
Referring to
The footprint of
Referring to
Upper and lower conductive layers 74-1 and 74-6 include L-shaped conductive ground pads 73 generally adjacent the forward end 204 of upper circuit board 74. Conductive ground pads 73 are inter-connected to the ground reference circuitry of conductive layers 74-2, 74-3, 74-4 and 74-5 by conductive vias. The various conductive layers of circuit board 74 provide identical functionality to upper contact assembly 76 and lower contact assembly 77 so that the electrical performance of the upper and lower ports of modular jack 30 are identical.
Although the disclosure provided has been described in terms of an illustrated embodiment, it is to be understood that the disclosure is not to be interpreted as limiting. Various alterations and modifications will no doubt become apparent to those skilled in the art after having read the above disclosure. For example, the modular jack is depicted as a right angle connector but may also have a vertical orientation. Accordingly, numerous other embodiments, modifications and variations within the scope and spirit of the appended claims will occur to persons of ordinary skill in the art from a review of this disclosure.
This patent application is a divisional of U.S. Ser. No. 13/508,249, filed Aug. 28, 2012, which is incorporated by reference in its entirety and which is a national phase of PCT Application No. PCT/US2010/055441, filed Nov. 4, 2010, which in turn claims the benefit of U.S. Provisional Patent Application No. 61/258,983, filed Nov. 6, 2009, U.S. Provisional Patent Application No. 61/267,128, filed Dec. 7, 2009, and U.S. Provisional Patent Application No. 61/267,207, filed Dec. 7, 2009, all of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61258983 | Nov 2009 | US | |
61267128 | Dec 2009 | US | |
61267207 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13508249 | Aug 2012 | US |
Child | 14792666 | US |