This application claims the benefit of Chinese Patent Application No. 201710447956.X filed on Jun. 14, 2017, the entire disclosure of which is incorporated herein by reference.
The present disclosure relates to the field of display technologies, and more particularly to a circuit, system and method for adjusting a luminance of a backlight.
As an integral part of a liquid crystal display, a backlight module typically includes a backlight and a driving circuit for driving the backlight. For large size liquid crystal displays, the backlight typically includes multiple partitions each including a plurality of light emitting diodes (LEDs) as the light sources. In operation, there may be differences in the luminance of different partitions of the backlight.
In accordance with an aspect of the present disclosure, a circuit for adjusting a luminance of a backlight is provided. The backlight comprises a plurality of partitions independent of each other. Each of the partitions comprises a plurality of light emitting diodes (LEDs) arranged in an array and connected in series. The circuit comprises: a plurality of LED drivers each configured to supply a respective drive current to the plurality of LEDs of a respective one of the plurality of partitions; and a plurality of programmable voltage generators configured to receive respective control commands and to supply respective reference voltages to the plurality of LED drivers based on the respective control commands. Each of the LED drivers is further configured to set a level of the drive current supplied by the LED driver in response to the reference voltage supplied to the LED driver.
In some embodiments, each of the LED drivers has a first terminal for outputting an internal reference voltage and a second terminal for receiving the reference voltage supplied to the LED driver. Each of the programmable voltage generators comprises a resistor and a digital potentiometer that are connected in series between the first terminal and a ground terminal via the second terminal. The digital potentiometer is configured to set the reference voltage supplied by the programmable voltage generator by changing a resistance of the digital potentiometer in response to the control command received by the programmable voltage generator.
In some embodiments, the resistor is connected between the first terminal and the second terminal, and the digital potentiometer is connected between the second terminal and the ground terminal.
In some embodiments, the digital potentiometer is connected between the first terminal and the second terminal, and the resistor is connected between the second terminal and the ground terminal.
In some embodiments, the plurality of programmable voltage generators comprises at least one programmable voltage source configured to generate the respective reference voltages in response to the respective control commands.
In accordance with another aspect of the present disclosure, a system for adjusting a luminance of a backlight is provided. The backlight comprises a plurality of partitions independent of each other. Each of the partitions comprises a plurality of light emitting diodes (LEDs) arranged in an array and connected in series. The system comprises: a luminance meter configured to measure respective luminances of the plurality of partitions of the backlight; a controller configured to generate respective control commands based on the measured respective luminances and a target luminance; and a circuit comprising: a plurality of LED drivers each configured to supply a respective drive current to the plurality of LEDs of a respective one of the plurality of partitions; and a plurality of programmable voltage generators configured to receive the respective control commands and to supply respective reference voltages to the plurality of LED drivers based on the respective control commands. Each of the LED drivers is further configured to set a level of the drive current supplied by the LED driver in response to the reference voltage supplied to the LED driver.
In some embodiments, the controller is further configured to: receive a first input indicative of the measured respective luminances and a second input indicative of the target luminance; determine whether the measured respective luminances are same as the target luminance; and responsive to a determination that at least one of the measured respective luminances is different from the target luminance, generating, for the plurality of programmable voltage generators, the respective control commands based on differences between the measured respective luminances and the target luminance, the respective control commands being configured to instruct the plurality of programmable voltage generators to adjust the respective reference voltages supplied to the plurality of LED drivers such that respective luminances of the plurality of partitions are substantially equal to the target luminance.
In some embodiments, the circuit is local to the backlight, the controller is located remotely from the backlight, and the system further comprises a signal converter configured to program the respective control commands generated by the controller into the plurality of programmable voltage generators.
In some embodiments, the luminance meter comprises a charge coupled device (CCD) based optical illuminometer.
In accordance with still another aspect of the present disclosure, a method for adjusting a luminance of a backlight is provided. The backlight comprises a plurality of partitions independent of each other. Each of the partitions comprises a plurality of light emitting diodes (LEDs) arranged in an array and connected in series. The method comprises: measuring respective luminances of the plurality of partitions of the backlight; generating respective control commands based on the measured respective luminances and a target luminance; and adjusting a drive current supplied to the plurality of LEDs of at least one of the plurality of partitions based on the respective control commands such that the respective luminances of the plurality of partitions are substantially equal to the target luminance.
In some embodiments, the generating the respective control commands comprises: receiving a first input indicative of the measured respective luminances and a second input indicative of the target luminance; determining whether the measured respective luminances are equal to the target luminance; and responsive to a determination that at least one of the measured respective luminances is different from the target luminance, generating the respective control commands based on differences between the measured respective luminances and the target luminance.
According to still another aspect of the present disclosure, a backlight is provided comprising: a plurality of partitions independent of each other, each of the partitions comprising a plurality of light emitting diodes (LEDs) arranged in an array and connected in series; and a circuit as described above.
In accordance with still another aspect of the present disclosure, a display device is provided, comprising a backlight as described above.
These and other aspects of the present disclosure will be apparent from and elucidated with reference to the embodiment(s) described hereinafter.
The drawings are provided for a further understanding of the present disclosure and form a part of this disclosure. In the drawing:
It will be understood that, although the terms first, second, third etc. may be used herein to describe various elements, components and/or sections, these elements, components and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component or section from another. Thus, a first element, component or section discussed below could be termed a second element, component or section without departing from the teachings of the present disclosure.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element is referred to as being “connected to” or “coupled to” another element, it can be directly connected or coupled to the other element, or intervening elements may be present. In contrast, when an element is referred to as being “directly connected to” or “directly coupled to” another element, there are no intervening elements present.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and/or the present specification and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Embodiments of the present disclosure are described in detail below with reference to the accompanying drawings.
A difference in luminance between different partitions of the backlight can affect the uniformity of the luminance of the backlight as a whole, thereby affecting the display effect of a display as the final product. In view of this, the present disclosure proposes to open an interface for adjusting the luminance of the backlight to a user of the backlight (e.g., a display manufacturer) to enable the user to modify original settings of the backlight according to his or her own needs. This facilitates eliminating factory defects of the backlight and improving display quality of the display as the final product.
The display device 210 may take the form of the display device 100 of
The luminance meter 220 is configured to measure respective luminances of the plurality of partitions B1 . . . Bn. Examples of the luminance meter 220 include various charge coupled device (CCD) based optical illuminometers that are commercially available. Other types of luminance meters are also possible.
The controller 230 is configured to generate the respective control commands CMD1 . . . CMDn based on the measured respective luminances and a target luminance. Specifically, the controller 230 receives a first input IN1 indicative of the measured respective luminances and a second input IN2 indicative of the target luminance. In some embodiments, the controller 230 may receive the first input IN1 via a data transfer interface or a human machine interface. The controller 230 may also receive the second input IN2 entered by the user via the human machine interface. Alternatively, the second input IN2 can be pre-built in a memory accessible by the controller 230. The controller 230 then determines if the measured respective luminances are equal to the target luminance. Next, in response to a determination that at least one of the measured respective luminances is different from the target luminance, the controller 230 generates, for the plurality of programmable voltage generators 2121 . . . 212n, the respective control commands CMD1 . . . CMDn based on the differences between the measured respective luminances and the target luminance. The respective control commands CMD1 . . . CMDn are configured to instruct the programmable voltage generators 2121 . . . 212n to adjust the respective reference voltages VREF1 . . . VREFn supplied to the LED drivers 2111 . . . 211n such that the respective luminances of the plurality of partitions B1 . . . Bn are substantially equal to the target luminance.
It will be understood that the terms “equal” and “substantially equal” as used herein do not necessarily mean exactly the same, but rather allow a certain tolerance, such as ±5%. The term “controller” is used herein to describe a variety of different devices related to the operation of a backlight. The controller 230 can be implemented in a number of ways (e.g., using dedicated hardware) to perform the various functions discussed herein. A “processor” is an example of the controller 230 that employs one or more microprocessors that can be programmed using software (e.g., microcode) to perform the various functions discussed herein. The controller 230 can be implemented with or without a processor, and can also be implemented as a combination of dedicated hardware that performs some functions and a processor that performs other functions (e.g., one or more programmed microprocessors and associated circuits). Examples of the controller components that may be employed in various different embodiments of the present disclosure include, but are not limited to, conventional microprocessors, application specific integrated circuits (ASICs), and field programmable gate arrays (FPGAs).
In various implementations, the controller 230 can be associated with one or more storage media (collectively referred to herein as “memory”, for example, volatile and nonvolatile computer memories, floppy disks, compact disks, optical disks, tapes etc., such as RAMs, PROMs, EPROMs, and EEPROMs). In some implementations, the storage medium can be encoded with one or more programs that, when executed on one or more processors, perform at least some of the functions discussed herein. A variety of different storage media may be fixed in the processor or may be transportable such that the one or more programs stored thereon can be loaded into the processor to implement various aspects discussed herein. The term “program” or “computer program” is used herein in a generic sense to refer to any type of computer code (e.g., software or microcode) that can be employed to program one or more processors.
In some embodiments, the circuit including the LED drivers 2111 . . . 211n and the programmable voltage generators 2121 . . . 212n are local to the backlight, such as integrated with the LEDs of the backlight, and the controller 230 is located remotely from the backlight, for example, separate from the display device 210. In such an embodiment, the system 200 further includes a signal converter 240 configured to program the respective control commands CMD1 . . . CMDn generated by the controller 230 into the programmable voltage generators 2121 . . . 212n. An example of the signal converter 240 is a programmer. In some embodiments, the controller 230 can also be local to the backlight or the display device 210, in which case the signal converter 240 is optional because the control commands CMD1 . . . CMDn can be programmed directly to the programmable voltage generators 2121 . . . 212n.
The LED driver 2111 can be any commercially available LED driver chip capable of adjusting the output current ILED1 according to the reference voltage VREF1, such as the switch mode LED driver chip HV9911 from Supertex™. In the example of
The programmable voltage generator 2121 is used to provide the LED driver 2111 with a variable reference voltage VREF1. In the example of
At step 410, respective luminances of the plurality of partitions of the backlight are measured. This can be performed by the luminance meter 220 of
At step 420, respective control commands are generated based on the measured respective luminances and a target luminance. This can be performed by the controller 230 of
At step 430, a drive current supplied to the plurality of LEDs of at least one of the plurality of partitions is adjusted according to the respective control commands such that respective luminances of the plurality of partitions are substantially equal to the target luminance. As described above, this can be performed by the programmable voltage generators 2121 . . . 212n and the LED drivers 2111 . . . 211n of
It will be understood that in practice steps 410-430 may need to be performed repeatedly until the respective luminances of the plurality of partitions are substantially equal to the target luminance.
The foregoing are specific embodiments of the disclosure, but the scope of the present disclosure is not limited thereto. Variations or modifications of the disclosed embodiments can be made by those skilled in the art without departing from the scope of the disclosure. Therefore, the scope of the disclosure should be subject to the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
201710447956.X | Jun 2017 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2018/090615 | 6/11/2018 | WO | 00 |