The present invention relates to a circuit system having a voltage converter having an input path, an output path, and having a plurality of phases, each phase having at least one half-bridge and at least one fuse, each branch of the half-bridge having a MOSFET.
The present invention also relates to a method for operating such a circuit system.
A circuit system is described, for example, in U.S. Pat. No. 5,499,186 A. The circuit system of this patent shows at least two half-bridges per phase.
In voltage converters, half-bridges made of switches are used in connection with a coil and a capacitor to convert a voltage into a different voltage. By switching a plurality of phases in parallel and controlling them in temporally offset fashion, the result is achieved that the load is reduced on the components, and in addition the ripple current is significantly reduced. In addition, in this way the electromagnetic compatibility is increased, and fewer losses occur, thus improving efficiency. As switches, here in most cases MOSFETs are used, which in case of error generally fail with a short circuit. In the case of a voltage converter having a plurality of phases connected in parallel, the failure of a phase results in the failure of the entire converter.
An object of the present invention is to enable an emergency operating mode for a multiphase voltage converter that fails due to a short circuit of a MOSFET.
The present invention is based on a circuit system having a voltage converter having an input path, an output path, and having a plurality of phases, each phase having at least one half-bridge and at least one fuse, and each branch of the half-bridge having a MOSFET. In accordance with the present invention, the circuit system has a first switch in the input path of the voltage converter, or also has a second switch in the output path of the voltage converter. Here it may be advantageous that, through the switches, the voltage sources at the input or also at the output of the voltage converter can be separated. In this way, an uncontrolled flow of current can be avoided on the one hand, and on the other hand in this way it is possible that, through a specific controlling of the MOSFETs of the individual phases, the fuse of the defective phase can be tripped in a targeted manner. As a result, the voltage converter can then be operated in an emergency operating mode.
An advantageous embodiment of the present invention provides that a fuse is situated in each branch of the half-bridge. Here it is advantageous that the fuses, due to their inherent resistance, present a kind of resistive symmetrization of the individual half-bridges. In addition, in this way the so-called free-burning factor, i.e., the ratio between the available current in the phase having the defective MOSFET and the tolerable nominal current, is increased. In this way, the fuses can be designed for a higher current at which they are to trip, thus reducing losses in normal operation.
According to an advantageous embodiment of the present invention, it is provided that the MOSFET is connected to the fuse at the drain side. Here it is advantageous that after the fuse has tripped, the remaining phases having intact MOSFETs can again be put into operation.
According to a further advantageous embodiment of the present invention, it is provided that the MOSFET is connected to the fuse at the source side. Here it is advantageous that after the fuse has tripped it is still possible to supply the defective MOSFET with a free-burning current. This then takes place from the drain terminal to the gate terminal, and makes it possible that, through additional measures, the gate can also be burned free, in order subsequently to enable an emergency operating mode with all phases.
In an advantageous specific embodiment, it is provided that the circuit system is set up so that the MOSFET is controlled by a driver circuit via a series resistance, and a supply voltage for the driver circuit is secured against an excess current. Here it is advantageous that, in the case of a defective MOSFET, only the driver circuit belonging to this MOSFET can be destroyed, and not the driver circuits of the remaining intact phases.
In a further advantageous specific embodiment, it is provided that a connection between the driver circuit and a regulating unit for the driver circuit has a series resistance in order to secure the regulating unit against an excess current. Here, it may be advantageous that in the case of a defective MOSFET the regulating unit is protected from being destroyed by an excess current from the driver circuit.
An advantageous specific embodiment provides that the circuit system is set up such that the MOSFET is controlled by a driver circuit via a series resistance, and that a protective circuit is situated between the driver circuit and the series resistance, the protective circuit having a parallel circuit of a first resistor and a capacitor. Here, it may be advantageous that through the protective circuit the driver circuit of the defective phase is protected against excessively high direct currents which could otherwise destroy the driver circuit.
A further advantageous specific embodiment provides that a current bleed circuit is situated between a connection of the series resistance to the protective circuit and ground, the current bleed circuit having an additional switch that can be controlled via a regulating unit. Here, it may be advantageous that via the additional switch the current from the short-circuited gate of the defective MOSFET can be bled to ground. This very quickly overloads the series resistance, causing it to melt, and thus separating the gate conductor.
According to an advantageous embodiment, it is provided that the current bleed circuit has a diode per protective circuit, the diode being situated between the connection of the series resistance to the protective circuit and the additional switch, and the diode being connected at the cathode side to the additional switch. Here, it may be advantageous that only a single additional switch per phase is necessary, with which the series resistance of the defective MOSFET can be burned free. Moreover, per phase only a single additional switch has to be controlled by the regulating unit. This has the result that fewer components are required, saving costs and space.
According to a further advantageous embodiment, it is provided that a second resistance is situated between the additional switch and ground. Here, it may be advantageous that the second resistance acts as a current feedback, and thus presents a constant current source enabling the gate to be burned free with a defined power level. This has the result that the additional switch can be designed specifically for this power level.
Moreover, the present invention relates to a method for operating a circuit system. According to an example embodiment of the present invention, in an abnormal operating state the following method steps are carried out:
A: recognition of a defect of a low-side MOSFET or of a defect of a high-side MOSFET in a branch of a half-bridge of a phase;
B: stopping the controlling of all MOSFETs;
C: opening the second switch when there is a defect of the low-side MOSFET, or opening the first switch when there is a defect of the high-side MOSFET;
D: controlling the MOSFETs of the phases in which all MOSFETs are intact, in such a way that a current flows in the defective phase that is sufficiently large to trip the fuse.
Here, it may be advantageous that, through the named sequence of method steps, a fuse in a phase having a short-circuited MOSFET can be burned free in a targeted manner. In addition, through method steps B and C the voltage converter can be put out of operation and protected against an uncontrolled flow of current, so that destruction of components can be avoided.
An advantageous embodiment of the method according to the present invention provides that after method step D there follows a method step E in which the opened first switch or the opened second switch is closed, and in which the MOSFETs of the phases in which all MOSFETs are intact are controlled as in a normal operating state. Here, it may be advantageous that the voltage converter having a plurality of phases connected in parallel can be operated in an emergency operating mode, the defective phase being no longer operated.
An advantageous embodiment of the method according to the present invention provides that after method step D there follows a method step F in which the additional switch is closed. Here, it may be advantageous that through the closing of the additional switch the current that flows in the short-circuited MOSFET is bled to ground via the series resistance of the gate of the MOSFET. In this way, the series resistance of the gate is overloaded and melts. The MOSFET is thus separated from the circuit system by two of three connections.
According to an advantageous embodiment of the method according to the present invention, it is provided that after method step F there follows a method step G in which the opened first switch or the opened second switch is closed, and in which the MOSFETs of all phases are controlled, the phase having the defect being operated at a lower power level than in normal operation, and the phases in which all MOSFETs are intact being operated as in normal operation. Here, it may be advantageous that the voltage converter having a plurality of phases connected in parallel can be operated in an emergency operating mode in which all phases can be used.
In an alternative exemplary embodiment not shown graphically, supply voltage Uv is secured against excess current from one of the driver circuits 70. In this way, damage to driver circuits 70 of all phases 15 due to an excess current flowing in a driver circuit 70 in one of the phases 15 can be avoided. Alternatively, the supply voltage can also be made switchable. In a further alternative, a series resistance is situated between regulating unit 72 and driver circuit 70. In this way, regulating unit 72 can be protected against an excess current from one of the driver circuits 70. In these alternative specific embodiments, protective circuit 90 and current bleed circuit 120, shown in
In an alternative exemplary embodiment, not shown graphically, fuses 60 in each branch of half-bridges 20 are connected at the drain side to the MOSFETs. In this way, in the case of a defective MOSFET it is not also necessary to burn free the gate in order to make it possible to set the phases 15 having intact MOSFETs 30 back into operation. In a further alternative exemplary embodiment, no second resistance 150 is situated in current bleed circuit 120. As a result, the current feedback is omitted, and thus additional switch 140 has to be a safe FET, a small-signal end stage, or a simple MOSFET that can drive a sufficiently large current.
In an alternative exemplary embodiment not shown graphically, method step F of
A basic presupposition for the circuit system and the associated method for operating this circuit system is that voltage converter 10 has at least three phases 15 having at least one half-bridge 20 per phase 15, or has at least two phases 15 having at least two half-bridges 20 per phase 15. This is necessary in order to obtain a sufficiently large free-burning factor in order to trip fuse 60 in the branch of half-bridge 20 having defective MOSFET 30.
Number | Date | Country | Kind |
---|---|---|---|
10 2013 226 795.9 | Dec 2013 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/074273 | 11/11/2014 | WO | 00 |