1. Field
Embodiments generally relates to repeater circuits. More particularly, embodiments relate to the field of repeater circuits with high performance repeater mode and normal repeater mode, wherein high performance repeater mode has fast reset capability.
2. Related Art
In integrated circuit (IC) chip designs, signals (e.g., clock signals, logic signals, power signals, etc.) may propagate along “long” metal wires in comparison to minimum design sizes available in the fabrication process utilized. Propagation delay and distortion are some of the negative effects experienced by the signals propagating along the long metal wires. These negative effects can be minimized by reducing the RC constant of the metal wire. However, in some IC chip designs, the maximum reduction in the RC constant is not sufficient to meet the design specifications. Thus, other techniques are used. One approach involves inserting repeater circuits at periodic intervals along the long metal wires in order to amplify (or remove distortion) the signals as well as to reduce propagation delay (or maintain fast transition times).
Circuit with enhanced mode and normal mode is provided and described. In one embodiment, switches are set to a first switch position to operate the circuit in the enhanced mode. In another embodiment, switches are set to a second switch position to operate the circuit in the normal mode.
The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments and, together with the description, serve to explain the principles of the disclosure.
Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings. While the description is made in conjunction with these embodiments, it will be understood that they are not intended to limit the disclosure to these embodiments. On the contrary, the disclosure is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the disclosure as defined by the appended claims. Furthermore, in the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the embodiments. However, it will be recognized by one of ordinary skill in the art that the embodiments may be practiced without these specific details.
In general, repeater circuits can be classified as a high performance repeater circuit or a normal repeater circuit. Other classifications are possible.
During the layout of an IC chip design, repeater circuits are inserted at periodic intervals along long metal wires in order to amplify (or remove distortion) signals as well as to reduce propagation delay (or maintain fast transition times). Typically, there is a wide selection of repeater circuits within each of the two classifications described above. The selection of a repeater circuit may take into account the advantages and disadvantages of the available repeater circuits, as well as the environment in which the repeater circuit will be inserted.
However, once the IC chip design is fabricated, fabrication process variations can impair the operation of the selected repeater circuits in portions of the IC chip. It is possible that another type of repeater circuit would have operated properly despite the fabrication process variations.
Instead of having to choose between a high performance repeater circuit and a normal repeater circuit, the disclosure provides a repeater circuit that can selectively operate in a high performance repeater mode or in a normal repeater mode. Thus, the operation mode of the repeater circuit can be selected to provide the best performance after the effects of fabrication process variations are known. In an embodiment, the repeater circuit 100 operates in a high performance repeater mode with fast reset capability (as shown in
Continuing with
The rising edge drive circuit 210 has a NAND gate 10 coupled to the input node 5. The NAND gate 10 includes n-type Metal Oxide Field Effect Transistors (or nFET's) 12 and 14 and p-type Metal Oxide Field Effect Transistors (or pFET's) 16 and 18. Additionally, the output node 241 of the NAND gate 10 is coupled to output drive pFET 30. Moreover, the output node 241 of the NAND gate 10 is coupled to an upper delay circuit having two delay paths. A first delay path includes inverters 15A-15E and nFET 17. A second delay path includes inverter 15A and nFET 13, wherein the delay time of the first delay path is greater than the delay time of the second delay path. A rising edge reset pFET 19 is coupled to the nFET 13. Further, an upper half latch circuit 20 is coupled to nFET 13, rising edge reset pFET 19, and NAND gate 10. The upper half latch circuit 20 has nFET 22 and inverter 24.
The keeper circuit 220 includes inverters 42, 44, 46, and 48 coupled in series between the input node 5 and the output node 7.
Still referring to
Operation of the repeater circuit 100 in response to a falling edge (or transition from logic 1 to logic 0) at the input node 5 is now described. The falling edge at the input node 5 causes the output node 242 of NOR gate 50 to rise, generating the leading edge of a pulse. The rise in output node 242 of NOR gate 50 activates output drive nFET 70, causing output node 7 to fall. Moreover, the falling edge at input node 5 causes the node 243 of the keeper circuit 220 to fall, resetting the rising edge drive circuit 210 by activating the rising edge reset pFET 19.
Moreover, the rise in output node 242 of NOR gate 50 causes the first delay path (inverters 55A-55E) and the second delay path (inverter 55A) to fall, activating pFET 59 and pFET 53 respectively. Activation of both pFETS 59 and 53 initiates latching the lower half latch circuit 60 to logic high (or 1). Thus, the lower half latch circuit 60 causes the output node 242 of NOR gate 50 to fall, generating the trailing edge of the pulse. The fall in output node 242 of NOR gate 50 deactivates output drive nFET 70. The keeper circuit 220 weakly maintains the output node 7 at logic low (or 0), due to the small size of the transistors of the keeper circuit 220.
Additionally, the fall in output node 242 of NOR gate 50 causes the first delay path (inverters 55A-55E) and the second delay path (inverter 55A) to rise. Since the delay time of the second delay path (inverter 55A) is shorter, pFET 53 is deactivated shortly after the trailing edge of the pulse by the inverter 55A. In effect, the longer first delay path (inverters 55A-55E) is bypassed. Further, the rise in the second delay path (inverter 55A) releases the lower half latch circuit 60, terminating the pulse and enabling reset of the falling edge drive circuit 230 during operation of the repeater circuit 100 in response to a rising edge (or transition from logic 0 to logic 1) at the input node 5. Hence, the repeater circuit 100 is immediately ready to respond to the rising edge (or transition from logic 0 to logic 1) at the input node 5. Finally, the first delay path (55A-55E) deactivates the pFET 59.
Operation of the repeater circuit 100 in response to a rising edge (or transition from logic 0 to logic 1) at the input node 5 is now described. The rising edge at the input node 5 causes the output node 241 of NAND gate 10 to fall, generating the leading edge of a pulse. The fall in output node 241 of NAND gate 10 activates output drive pFET 30, causing output node 7 to rise. Moreover, the rising edge at input node 5 causes the node 243 of the keeper circuit 220 to rise, resetting the falling edge drive circuit 230 by activating the falling edge reset nFET 57.
Moreover, the fall in output node 241 of NAND gate 10 causes the first delay path (inverters 15A-15E) and the second delay path (inverter 15A) to rise, activating nFET 17 and nFET 13 respectively. Activation of both nFETS 17 and 13 initiates latching the upper half latch circuit 20 to logic low (or 0). Thus, the upper half latch circuit 20 causes the output node 241 of NAND gate 10 to rise, generating the trailing edge of the pulse. The rise in output node 241 of NAND gate 10 deactivates output drive pFET 30. The keeper circuit 220 weakly maintains the output node 7 at logic high (or 1), due to the small size of the transistors of the keeper circuit 220.
Additionally, the rise in output node 241 of NAND gate 10 causes the first delay path (inverters 15A-15E) and the second delay path (inverter 15A) to fall. Since the delay time of the second delay path (inverter 15A) is shorter, nFET 13 is deactivated shortly after the trailing edge of the pulse by the inverter 15A. In effect, the longer first delay path (inverters 15A-15E) is bypassed. Further, the fall in the second delay path (inverter 15A) releases the upper half latch circuit 20, terminating the pulse and enabling reset of the rising edge drive circuit 210 during operation of the repeater circuit 100 in response to a falling edge (or transition from logic 1 to logic 0) at the input node 5. Hence, the repeater circuit 100 is immediately ready to respond to the falling edge (or transition from logic 1 to logic 0) at the input node 5. Finally, the first delay path (15A-15E) deactivates the nFET 17.
Referring to
Similar, switches 73, 74, and 75 are set to the second switch position, disabling several components of the falling edge drive circuit 230. The inoperative components are shown in a lighter color. In particular, nFET 54, pFET 58, inverters 55A-55E, pFET 59, pFET 53, falling edge reset nFET 57, pFET 62, and inverter 64 are bypassed or disabled.
In sum, the switches 71, 72, 73, 74, and 75 provide flexibility in operating the repeater circuit 100 in either the high performance repeater mode with fast reset capability or the normal repeater mode.
The repeater circuit 100 of
Moreover, the fast reset capability enables the repeater circuit 100 (
The normal repeater configuration (
Thus, the repeater circuit of this disclosure enables use of a high performance repeater mode with fast reset capability configuration but allows a fall back configuration that is less aggressive (or complicated) for IC chip design consideration. In effect, the normal repeater mode configuration is a “safe” mode while the high performance repeater mode with fast reset capability configuration is an “aggressive” mode.
The foregoing descriptions of specific embodiments have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the disclosure to the precise forms disclosed, and many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the disclosure and its practical application, to thereby enable others skilled in the art to best utilize the disclosure and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the disclosure be defined by the Claims appended hereto and their equivalents.
This patent application is a Continuation of U.S. patent application Ser. No. 11/999,293 by R. Masleid et al., filed on Dec. 4, 2007, entitled “Repeater Circuit With High Performance Repeater Mode and Normal Repeater mode, Wherein High Performance Repeater Mode Has Fast Reset Capability,” which is a Continuation of U.S. patent application Ser. No. 10/879,645 by R. Masleid et al., filed on Jun. 28, 2004, entitled “Repeater Circuit With High Performance Repeater Mode and Normal Repeater mode, Wherein High Performance Repeater Mode Has Fast Reset Capability,” which is a Continuation-in-Part of U.S. patent application Ser. No. 10/864,271 by R. Masleid et al., filed on Jun. 8, 2004, entitled “Stacked Inverter Delay Chain,” and which are assigned to the assignee of the present patent application, and hereby incorporated by reference in their entirety. This patent application is related to U.S. patent application Ser. No. 10/879,879, filed on Jun. 28, 2004, entitled “Repeater Circuit with High Performance Repeater Mode and Normal Repeater Mode”, by R. Masleid et al., assigned to the same assignee of the present patent application, and hereby incorporated by reference in its entirety. This patent application is related to U.S. patent application Ser. No. 10/879,807 by R. Masleid et al., filed on Jun. 28, 2004, entitled “Circuits and Methods for Detecting and Assisting Wire Transitions,” assigned to the assignee of the present patent application, and hereby incorporated by reference in its entirety. This patent application is related to U.S. patent application Ser. No. 10/879,808 by R. Masleid et al., filed on Jun. 28, 2004, entitled “Repeater Circuit Having Different Operating and Reset Voltage Ranges, and Methods Thereof,” assigned to the assignee of the present patent application, and hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3991280 | James et al. | Nov 1976 | A |
4498021 | Uya | Feb 1985 | A |
4700089 | Fujii et al. | Oct 1987 | A |
4739252 | Malaviya et al. | Apr 1988 | A |
4760279 | Saito et al. | Jul 1988 | A |
5039893 | Tomisawa | Aug 1991 | A |
5128560 | Chern et al. | Jul 1992 | A |
5166555 | Kano | Nov 1992 | A |
5227679 | Woo | Jul 1993 | A |
5264738 | Veendrick et al. | Nov 1993 | A |
5297086 | Nasu et al. | Mar 1994 | A |
5410278 | Itoh et al. | Apr 1995 | A |
5414312 | Wong | May 1995 | A |
5455521 | Dobbelaere | Oct 1995 | A |
5467038 | Motley et al. | Nov 1995 | A |
5497105 | Oh et al. | Mar 1996 | A |
5525616 | Platt et al. | Jun 1996 | A |
5568103 | Nakashima et al. | Oct 1996 | A |
5587665 | Jiang | Dec 1996 | A |
5594360 | Wojciechowski et al. | Jan 1997 | A |
5610548 | Masleid | Mar 1997 | A |
5614845 | Masleid | Mar 1997 | A |
5656963 | Masleid et al. | Aug 1997 | A |
5677650 | Kwasniewski et al. | Oct 1997 | A |
5680359 | Jeong et al. | Oct 1997 | A |
5698994 | Tsuji | Dec 1997 | A |
5739715 | Rawson | Apr 1998 | A |
5764110 | Ishibashi et al. | Jun 1998 | A |
5767700 | Lee | Jun 1998 | A |
5777501 | AbouSeido | Jul 1998 | A |
5778214 | Taya et al. | Jul 1998 | A |
5791715 | Nebel | Aug 1998 | A |
5793715 | Alon et al. | Aug 1998 | A |
5796313 | Eitan | Aug 1998 | A |
5797105 | Nakaya et al. | Aug 1998 | A |
5811893 | Soyck | Sep 1998 | A |
5880608 | Mehta et al. | Mar 1999 | A |
5894419 | Galambos et al. | Apr 1999 | A |
5926050 | Proebsting | Jul 1999 | A |
5963043 | Nassif | Oct 1999 | A |
5963074 | Arkin | Oct 1999 | A |
5969543 | Erickson et al. | Oct 1999 | A |
5977763 | Loughmiller et al. | Nov 1999 | A |
5982211 | Ko | Nov 1999 | A |
6011403 | Gillette | Jan 2000 | A |
6025738 | Masleid | Feb 2000 | A |
6028490 | Komatsu | Feb 2000 | A |
6031403 | Gersbach | Feb 2000 | A |
6069506 | Miller, Jr. et al. | May 2000 | A |
6087886 | Ko | Jul 2000 | A |
6111447 | Ternullo, Jr. | Aug 2000 | A |
6114840 | Farrell et al. | Sep 2000 | A |
6127872 | Kumata | Oct 2000 | A |
6154099 | Suzuki et al. | Nov 2000 | A |
6154100 | Okamoto | Nov 2000 | A |
6160755 | Norman et al. | Dec 2000 | A |
6172545 | Ishii | Jan 2001 | B1 |
6172943 | Yuzuki | Jan 2001 | B1 |
6188260 | Stotz et al. | Feb 2001 | B1 |
6198334 | Tomobe et al. | Mar 2001 | B1 |
6204710 | Goetting et al. | Mar 2001 | B1 |
6229747 | Cho et al. | May 2001 | B1 |
6242936 | Ho et al. | Jun 2001 | B1 |
6242937 | Lee et al. | Jun 2001 | B1 |
6262601 | Choe et al. | Jul 2001 | B1 |
6275091 | Saeki | Aug 2001 | B1 |
6281706 | Wert et al. | Aug 2001 | B1 |
6285230 | Na | Sep 2001 | B1 |
6294930 | Goetting et al. | Sep 2001 | B1 |
6321282 | Horowitz et al. | Nov 2001 | B1 |
6323706 | Stark et al. | Nov 2001 | B1 |
6366115 | DiTommaso | Apr 2002 | B1 |
6373291 | Hamada et al. | Apr 2002 | B1 |
6407571 | Furuya et al. | Jun 2002 | B1 |
6426641 | Koch et al. | Jul 2002 | B1 |
6426652 | Greenhill et al. | Jul 2002 | B1 |
6455901 | Kameyama et al. | Sep 2002 | B2 |
6459319 | Sako | Oct 2002 | B2 |
6466063 | Chen | Oct 2002 | B2 |
6476632 | La Rosa et al. | Nov 2002 | B1 |
6489796 | Tomishima | Dec 2002 | B2 |
6535014 | Chetlur et al. | Mar 2003 | B2 |
6538471 | Stan et al. | Mar 2003 | B1 |
6538522 | Aipperspach et al. | Mar 2003 | B1 |
6545519 | Carballo | Apr 2003 | B1 |
6570407 | Sugisawa et al. | May 2003 | B1 |
6573777 | Saint-Laurent et al. | Jun 2003 | B2 |
6577157 | Cheung et al. | Jun 2003 | B1 |
6577176 | Masleid et al. | Jun 2003 | B1 |
6621318 | Burr | Sep 2003 | B1 |
6657504 | Deal et al. | Dec 2003 | B1 |
6664837 | Oh et al. | Dec 2003 | B1 |
6690242 | Fang et al. | Feb 2004 | B2 |
6697929 | Cherkauer et al. | Feb 2004 | B1 |
6724214 | Manna et al. | Apr 2004 | B2 |
6731140 | Masleid et al. | May 2004 | B2 |
6731179 | Abadeer et al. | May 2004 | B2 |
6759863 | Moore | Jul 2004 | B2 |
6762638 | Correale, Jr. et al. | Jul 2004 | B2 |
6762966 | LaRosa et al. | Jul 2004 | B1 |
6768363 | Yoo et al. | Jul 2004 | B2 |
6774734 | Christensen et al. | Aug 2004 | B2 |
6798230 | Taylor et al. | Sep 2004 | B1 |
6815971 | Wang et al. | Nov 2004 | B2 |
6815977 | Sabbavarapu et al. | Nov 2004 | B2 |
6831494 | Fu et al. | Dec 2004 | B1 |
6879200 | Komura et al. | Apr 2005 | B2 |
6882172 | Suzuki et al. | Apr 2005 | B1 |
6885210 | Suzuki | Apr 2005 | B1 |
6903564 | Suzuki | Jun 2005 | B1 |
6924669 | Itoh et al. | Aug 2005 | B2 |
7046063 | Kuang et al. | May 2006 | B2 |
7053660 | Itoh et al. | May 2006 | B2 |
7053680 | Masleid et al. | May 2006 | B2 |
7119580 | Masleid et al. | Oct 2006 | B2 |
7142018 | Masleid et al. | Nov 2006 | B2 |
7173455 | Masleid et al. | Feb 2007 | B2 |
7239170 | Suen et al. | Jul 2007 | B2 |
7271638 | Takai et al. | Sep 2007 | B2 |
7295041 | Masleid et al. | Nov 2007 | B1 |
7304503 | Masleid et al. | Dec 2007 | B2 |
7336103 | Masleid et al. | Feb 2008 | B1 |
20010000426 | Sung et al. | Apr 2001 | A1 |
20010028278 | Ooishi | Oct 2001 | A1 |
20010030561 | Asano et al. | Oct 2001 | A1 |
20010052623 | Kameyama et al. | Dec 2001 | A1 |
20020056016 | Horowitz et al. | May 2002 | A1 |
20020178415 | Saraf | Nov 2002 | A1 |
20030005775 | Washeleski et al. | Jan 2003 | A1 |
20030011413 | Masleid | Jan 2003 | A1 |
20030042960 | Gomm | Mar 2003 | A1 |
20030057775 | Yamashita et al. | Mar 2003 | A1 |
20030160630 | Earle | Aug 2003 | A1 |
20030189465 | Abadeer et al. | Oct 2003 | A1 |
20030231713 | Masleid et al. | Dec 2003 | A1 |
20040041590 | Bernstein et al. | Mar 2004 | A1 |
20040104731 | Vollertsen | Jun 2004 | A1 |
20040119501 | Sabbavarapu et al. | Jun 2004 | A1 |
20040119503 | Jamshidi et al. | Jun 2004 | A1 |
20040124900 | Brox | Jul 2004 | A1 |
20040148111 | Gauthier et al. | Jul 2004 | A1 |
20040257115 | Bertram et al. | Dec 2004 | A1 |
20050184720 | Bernstein et al. | Aug 2005 | A1 |
20050212547 | Suzuki | Sep 2005 | A1 |
20050248368 | Bertram et al. | Nov 2005 | A1 |
Number | Date | Country |
---|---|---|
1398639 | Mar 2004 | EP |
03089624 | Apr 1991 | JP |
04091516 | Mar 1992 | JP |
Number | Date | Country | |
---|---|---|---|
20090309631 A1 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11999293 | Dec 2007 | US |
Child | 12546960 | US | |
Parent | 10879645 | Jun 2004 | US |
Child | 11999293 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10864271 | Jun 2004 | US |
Child | 10879645 | US |