The present application is directed to lighting devices, and more particularly to ballast circuitry for discharge lamps. Current fed bipolar junction transistor (BJT) based inverter ballasts are widely used in the lamp-lighting industry due to their inherent parallel lamp operation and output transformer isolation features. Providing transformer isolation permits parallel lamp operation and re-lamping of the lighting system to take place without requiring the shutdown of the power inverter of the entire system. Therefore, a lamp failure in the system can be replaced when it is needed while the remaining lamps are maintained in an “on” state. This therefore also reduces the maintenance and operational costs of such systems.
An example of a current fed inverter ballast having an instant program start configuration for use with parallel lamps has been described in U.S. Pat. No. 7,193,368, titled Parallel Lamps With Instant Program start Electronic Ballast, to Chen et al., issued Mar. 20, 2007. This ballast takes advantage of the beneficial aspects of a program start ballast (e.g., longer lamp life) and combines it with the advantages of an instant start ballast (e.g., quick start time) to produce an improved lamp ballast wherein parallel lamps are driven. Another circuit of this type is set forth in U.S. application Ser. No. 11/645,939, titled Switching Control For Inverter Startup And Shutdown, to Chen et al. filed Dec. 27, 2006, which describes a current fed BJT based inverter including a low cost shutdown circuit. Both U.S. Pat. No. 7,193,368 to Chen et al., and U.S. application Ser. No. 11/645,939 to Chen et al. are both hereby incorporated by reference in their entireties.
A drawback of existing current fed BJT based ballast systems which provide output transformer isolation is that they tend to have an efficiency which is relatively low compared to non-isolated lamp lighting ballasts due to the isolation transformer and operation mode of the BJTs. Therefore, a particular issue with such BJT based electronic ballasts has to do with the optimization of their base drive to improve the operational efficiency of these devices. Attempts to optimize the base drive signals commonly results in overdriving of the base-to-emitter junction of the BJT switches. This is a particular issue where the base of the BJT is driven by a parallel diode-resistor arrangement. In such configurations, when the base-to-emitter junction is overdriven, an undesirable increase in power dissipation takes place in the BJTs, and a higher circulating current exists in the ballast resulting in lower ballast efficiency. Another drawback which occurs due to overdriving is that dead-time, i.e., the overlap between the two transistor switching times, increases, leading to a higher current crest factor. Where current crest factor is the peak current divided by the root-mean-square (rms) current of lamp. ANSI standards require current crest factor to be less than 1.7.
Further, when current fed BJTs are used in conjunction with high efficiency lamp striations are known to occur even at room temperature. Striations manifest themselves as dark bands along the length of lamps and are particularly prevalent in lamps which use a high percentage of Krypton (Kr), which is employed as a buffer gas to improve the efficacy and usefulness of the lamps. For example, high efficiency lamps, may have a content of approximately 40 percent to 70 percent of Krypton (Kr).
Concepts of the present application are intended to address these and other outstanding issues as they relate to current fed BJT based inverter ballasts.
Prior art which may be of interest to the above-identified issues and others include U.S. Pat. No. 4,682,082, titled Gas Discharge Lamp Energization Circuit, to MacAskill et al., issued on Jul. 21, 1987; U.S. Patent Application Publication No. US2006/0103328, titled Striation Control For Current Fed Electronic Ballast, to Chen et al., published on May 18, 2006; U.S. Pat. No. 6,465,972, titled Electronic Elimination of Striations In Linear Lamps, to Kachmarik et al., issued on Oct. 15, 2002; and WO2006/051459, titled ANTI-STRIATION CIRCUIT FOR A GAS DISCHARGE LAMP BALLAST, to Fang, published May 18, 2006.
A current fed bipolar junction transistor (BJT) based inverter ballast includes base drive circuits configured to drive respective BJT switches, and high-speed drive reverse peak current limiting circuits, configured to operate in conjunction with the respective base drive circuits.
Turning to
An output transformer system 20, including capacitor C5 and output winding T2-1, provides output signals to lamp network 22, which includes lamp connector winding T2-4, and lamp capacitors C6, C7 and C8. Additionally, circuitry such as power zener diodes D1 and D2 and voltage input network including resistors R1, R2 and R3, capacitor network C1, C2 and C3 and windings T1-1 and T1-2 are further incorporated in the circuit, to provide a pulsed DC current signal to the BJT control or base drive control circuits 16, 18, which in turn selectively supplies a drive signal to the BJT switches Q1, Q2.
For a more detailed discussion regarding operation of a comparable circuit, reference may be made to commonly assigned U.S. Pat. No. 6,989,637, titled Voltage Controlled Start-Up Circuit for Electronic Ballast, to Chen et al., issued Jan. 24, 2006, hereby incorporated by reference in its entirety.
An issue with circuit 10 of
The concepts of the present application allow an optimization of the base drive to the BJT switches by provision of a high-speed drive with peak current limiting circuit which is shown and will be described in connection with
The newly added changes to the circuit can also be implemented to control the switching speed of BJT switches Q1, Q2 to provide a rich, even harmonic voltage waveform to the lamp or lamps. This even harmonic waveform acts to diminish or eliminate visible striations that may otherwise be found on the lamp or lamps controlled by the new ballast.
Turning more particularly to ballast circuit 10 of
Incorporation of capacitors C9 and C10 makes it possible to reduce the value of the resistance provided by resistor R4 of the first control circuit 16, and the value of the resistance provided by resistor R5 of second control circuit 18. By inclusion of capacitors C9 and C10, and thereby a reduction of the values of resistors R4 and R5, the on/off time of the BJT switches Q1 and Q2 are increased, thereby achieving higher inverter efficiency by approximately 1 to 3 percent of inverter operation.
An issue, however, which arises due to adding the caps C9 and C10 is the potential of a higher peak of the base to emitter current at turn-on of the BJTs Q1 and Q2. Such a higher peak current can result in a failure of BJTs Q1, Q2. Therefore, to protect against this undesirable result, ballast circuit 10 is further designed with resistor R6 in first control circuit 16 and resistor R7 in second control circuit 18. These resistors, placed in series with capacitors C9 and C10, respectively, operate to reduce the peak current of the respective control circuits 16 and 18, thereby protecting BJTs Q1, Q2 from receiving destructively high peak currents at Q1 and/or Q2 turn-on/off. At the same time, inclusion of resistors R6 and R7 improves the inverter efficiency and lowers the current crest factor for the lamp.
In one embodiment of circuit 10 of
Turning to
It is to be appreciated in
Addition of capacitors C9 and C10, causes the current needed during turn-on and turn-off of the BJT switches to be provided when the sinusoidal drive winding (e.g., from drive windings T2-2, T2-3) voltages are low, i.e., at crossover. Further, in addition to reducing the dead time when both BJTs are in an “on” state, this design also reduces switching losses. Such an arrangement reduces the circulating current, and therefore as a result the efficiency of the inverter increases. Because the peak of the lamp's current is directly related to the dead time, the smaller the overlap of the BJTs, the lower the crest factor. Increasing the ballast efficiency and, therefore, the lighting system efficiency.
While the values of specific components of the present newly described circuit will depend in part on particular implementations, including operating frequency of the ballast, in at least one embodiment, resistors R4 and R5 may be in the range of 30-100 ohms and particularly 40 ohms. Resistors R6 and R7 may be in the range of 1-10 ohms, particularly 5 ohms, and capacitors C9, C10 may be in the range of 47 nanofarads to 0.22 microfarads. Imbalancing resistor R8 may be in the range of 1-5 ohms.
As previously discussed,
The invention has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the invention be construed as including all such modifications and alterations.
Number | Name | Date | Kind |
---|---|---|---|
4525648 | De Bijl et al. | Jun 1985 | A |
4682082 | MacAskill et al. | Jul 1987 | A |
5124619 | Moisin et al. | Jun 1992 | A |
5424615 | Kang | Jun 1995 | A |
5438243 | Kong | Aug 1995 | A |
6465972 | Kachmarik et al. | Oct 2002 | B1 |
7099132 | Moisin | Aug 2006 | B2 |
7193368 | Chen et al. | Mar 2007 | B2 |
20060050542 | Chan et al. | Mar 2006 | A1 |
20060103317 | Chen et al. | May 2006 | A1 |
20060103328 | Chen et al. | May 2006 | A1 |
20070025123 | Kim et al. | Feb 2007 | A1 |
Number | Date | Country |
---|---|---|
WO2006051459 | May 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090108766 A1 | Apr 2009 | US |