The present invention is directed to a circuit such as a transponder and more particularly to such a circuit which incorporates a capacitor connection to ground for improved susceptibility to electrostatic discharge (ESD).
ESD (Electrostatic discharge) is a powerful source of current that can fatally damage electronic circuits. A typical ESD event can send several amperes of current driven by thousands of volts into electronic systems. There are many elements contributing to ESD problems including the product mechanical structure, humidity, material electrical conductivity and dielectric constant, electronic component ESD susceptibility, and manufacturing process environment. ESD symptoms are complex and hard to characterize.
RFID tags are particularly sensitive to ESD. For example, the high temperature rail tag (AT5133) has suffered a significant product failure (up to 30%) due to ESD damage.
The electrical characteristics of the key components are following:
The electrical field (Ed) within dielectric material is given by
Ed=Eo/Er
where Eo is the free space electrical field, and Er is the dielectric constant. Therefore the potential drop (Vd) across dielectric material with thickness (T) is given by
Vd=Ed*T=Eo*T/Er.
In other words, the potential drop is proportional to the thickness and inversely proportional to the dielectric constant. When the design target ESD susceptibility of 16 KV is applied to the top case using an ESD discharger (Schaffner Model NSG438), the voltage drop can be calculated as shown in Table I below:
The above table shows that the potential drop across the PCB is 581 Volts. Since the
ASIC ground pin is connected to the PCB bottom, the ASIC will encounter the whole 581 Volts and be damaged because of the low 200 Volts rating of the ASIC. The ASIC would not survive the 16 KV ESD.
It is therefore an object of the invention to provide an RFID transponder or other circuit with improved resistance to ESD.
To achieve the above and other objects, the present invention is directed to a modification of the circuit of
A preferred embodiment will be set forth in detail with reference to the drawings, in which:
A preferred embodiment of the present invention will now be set forth in detail with reference to the drawings.
The IEC 61000-4-2 ESD recommends the ESD test signal for the human body model shown in
First, the ESD test signal has the most energy at around 9 MHz. Beyond that, the energy level drops very significantly (i.e. more than 10 dB).
Second, the ASIC impedance is about 400 Ω (20 Ω-j400 Ω) when the RFID tag is operating at 900 MHz with an RF power level (i.e. −7 dBm) below −5 dBm.
Third, the ASIC impedance is reduced to below 50 Ω with the RF power and the bias current increases representing ESD conditions.
These above three important characteristics invite a new method to improve the ESD susceptibility by inserting a 5.6 pF capacitor (ESD CAP) 800 between the ground pin of the ASIC 110 and the circuit ground 112, as shown in
The table above shows that ASIC impedance changes very little from 20 Ω-j 400 Ω to 20 Ω-j432 Ω, while the potential drop across the ASIC is reduced from 580 volts to about 10 volts, which is far below the ASIC rating of 200 volts. Meantime, the potential drop across the ESD capacitor (581−10=571 Volts) is about the potential drop (581 Volts) across the PCB.
The RFID sensitivity degrades by 0.3 dB, which can be improved by adjusting from 165 Ω to 196 Ω for a resister that is one of the matching components.
The numbers of the potential stack-up and the ASIC potential drop are expected values based on the calculation to explain the physics explaining ESD. Therefore, the actual measurement numbers could be somewhat different due to the complex nature of ESD and the measurement difficulties of the electrical parameters including material characteristics.
The measurement results of the RFID tags (5 units) built with the ESD capacitor show that the new method has improved the ESD susceptibility by factor of three from 5 KV to 16 KV while maintaining the original sensitivity of −8 dBm for the RFID tag.
In an actual working environment, the ESD source and the ground are not visible, and the field strength direction from the source to the ground would be much different from the simple model used for the above analysis. However, the most of the potential drop will be built up across the ESD capacitor rather than across the ASIC for the same reason described so far, no matter what the field strength direction would be.
While a preferred embodiment has been set forth in detail above, those skilled in the art who have reviewed the present disclosure will readily appreciate that other embodiments can be realized within the scope of the present invention. For example, numerical values are illustrative rather than limiting. In particular, the value of the capacitor is determined by the characteristics of the ASIC used and the particular operating characteristics in which the device will be used. Therefore, the present invention should be construed as limited only by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4383242 | Sassover et al. | May 1983 | A |
5498972 | Haulin | Mar 1996 | A |
5557209 | Crook et al. | Sep 1996 | A |
5825628 | Garbelli et al. | Oct 1998 | A |
6118379 | Kodukula et al. | Sep 2000 | A |
6121880 | Scott et al. | Sep 2000 | A |
6215401 | Brady et al. | Apr 2001 | B1 |
6275157 | Mays et al. | Aug 2001 | B1 |
6480396 | Ninomiya | Nov 2002 | B2 |
6678169 | Ninomiya | Jan 2004 | B2 |
6803655 | Fujio et al. | Oct 2004 | B2 |
7068518 | Ueno et al. | Jun 2006 | B2 |
7466560 | Hayashi et al. | Dec 2008 | B2 |
7501947 | Youn | Mar 2009 | B2 |
7594105 | Ohsaka | Sep 2009 | B2 |