Pulse width modulation (PWM) is used in some communications applications. PWM signals, which are also referred to as PWM sequences, may originate from analog signals that have been sampled or by other signals that have been quantized. In some applications, delta-sigma modulation (DSM) is applied to the quantized signals. In DSM, a voltage level is generated during a specific sampling period, wherein the voltage level is representative of the value of the voltage during the sampling period.
The generation of PWM sequences from DSM signals is a nonlinear process, which results in nonlinear distortions such as noise folding. The nonlinear distortions limit the inband signal to noise ratio and the out of band adjacent channel power ratio performance. Further noise is introduced into the PWM sequences if these signals are mixed with a carrier signal. Therefore, the PWM sequences are limited in many communications applications.
For canceling nonlinear distortions in pulse width modulated signals, an input signal is received. A first signal that is the modulated input signal is generated. The first signal has quantized levels representing the input signal. A pulse width modulated (PWM) sequence that is representative of the first signal is generated. A second signal that is the PWM sequence mixed with a carrier signal is generated. An error signal is generated in response to the first signal and modeled from the second signal. The error signal is added to the input signal.
Circuits and methods for cancelling or reducing nonlinearities in pulse width modulated (PWM) sequences are disclosed in this specification. The term “PWM sequence” is used herein and is synonymous with “PWM signal”. More specifically, the circuits and methods disclose modeling distortions in PWM sequences and cancelling the distortions using delta-sigma modulation (DSM).
The circuit 100 has an input 102 that receives a signal. In the embodiment of
Some of the problems with the circuit 100 of
The DSM signals are input to pulse width modulators 214 and 216 wherein the DSM signals are converted to PWM sequences. The pulse width modulators 214 and 216 operate at a frequency of MFS, where M is the number of amplitude levels of the DSM signals. The PWM sequences are upsampled by first and second sampling circuits 220 and 222. In some embodiments, the upsampling is performed by way of sample and hold techniques. In the embodiment of
The upsampling at 2Fc creates a perfect null at 2Fc, which avoids distortion fold back in-band after carrier mixing. However, the upsampling reduces the number of PWM pulse widths, thereby reducing the number of levels that the delta-sigma modulator 208 may output. It also increases quantization noise at the output of the delta-sigma modulator 208. For example, in
In some of the embodiments described herein, the circuit 200 uses discrete signals. Therefore, the DSM signal is quantized to a predetermined maximum number. For example, the DSM signal may represent the I input using a maximum of sixteen values. Accordingly, the DSM signal has between one and sixteen amplitude levels that may occur during each sampling period. It follows that the pulse lengths and polarities of the PWM sequence is quantized to the same number as the number of levels in the DSM signal. In the example above, the PWM sequence is limited to sixteen different pulse length and polarity combinations. Therefore, there are only sixteen possible error signals that need to be generated by the error generators 232 and 234. The error signals are modeled based on the mixed PWM signals. By sampling the DSM signals, the error generators 232 and 234 select the correct error signal from one of sixteen possible error signals and feed them back to the input. The result is that the distortions are cancelled using the low frequency of the DSM signals rather than a high frequency mixed PWM sequence that would have to be mixed to a low frequency.
The mixing based on discrete signals will now be described in order to provide embodiments of the error signals that are modeled by the error generators 232 and 234 and other error generators described below. An example of the mixing is shown in
The discrete-time Fourier transform (DTFT) of the mixed PWM signal of
The term 1/M is a normalization factor. Equation (1) can be simplified to equation (3) via equation (2) using Taylor Series expansion as shown below.
The DTFT of a PWM sequence is described as equation (4) as follows:
Y(ejω)=ΣnΣkp(mk,n−Mk)e−jωn Equation (4)
Equation (4) simplifies to equation (5), which is written below.
The signal of equation (5) is passed through an ideal low pass filter and the result is decimated by a factor of M, wherein a new value of ω′ is Mω, which yields equation (6) as follows:
The second term in equation (6) is omitted in the rest of the analysis because it is very small compared with the first term in equation (6). Equation (6) is applied to an error model, such as a Hammerstein model 500 as shown in
The outputs of the amplifiers 506 and 508 are inputs to a multiplexer 510. The input 502 is connected or otherwise coupled to the control of the multiplexer 510. The output of the multiplexer 510 is connected to a discrete time domain differentiator 512. For odd input, the −A branch is selected and for even input, the +A branch is selected. The differentiator 512 approximates the jω′ term from equation (6). In the time domain, the jω′ term is represented by the differentiation operation. In other embodiments, the coefficients of the jω′ term are obtained numerically, such as by a look up table. In equation (6), the coefficient of the jω′ term is the derivative of the equation Y(ejω′) evaluated at DC because this is the Taylor series approximation. Therefore, for a discrete low-frequency PWM sequence, x(n), the coefficient is determined numerically by equation (8) as:
Equation (8) is applied to a generic Hammerstein model 530 as shown in
The above-described equations and circuit components are put together to form a circuit for cancelling or otherwise reducing nonlinear distortions in a PWM sequence. An example of such a circuit 700 is shown in
The first processor 710 includes a delta-sigma modulator 718. As described above, the delta-sigma modulator 718 converts the voltage levels at the I input 704 to quantized amplitudes for a specific period wherein the amplitudes are proportional to the average voltage levels at the I input 704 during sampling periods. The delta-sigma modulator 718 includes a summer 720 that is connected to the I input 704 as described further below. The output of the summer 720 is connected to a quantizer 722 wherein the output of the quantizer 722 is the output of the delta-sigma modulator 718. The output of the summer 720 is also connected to a second summer 724. The output of the summer 724 is connected to a filter 726, which, in some embodiments, is a linear filter and/or a low-pass linear filter. The output of the filter 726 is connected to the summer 720. The filter performs quantization noise shaping. A circuit 730 representing a Hammerstein model is connected between the output of the delta-sigma modulator 718 and the summer 720. The circuit 730 follows either model shown in FIG. 5 or 6 and the equations related thereto. In other embodiments, other models using different equations may be used.
The output of the delta-sigma modulator 718 is connected to a pulse width modulator 734. The pulse width modulator 734 converts the DSM signals, which have been quantized to a level of M possible amplitudes, to PWM sequences. The output of the pulse width modulator 734 is connected to a mixer 736, which performs quadrature mixing on the PWM sequences as described above.
The Q processor 712 is identical to the I processor 710 and includes a pulse width modulator 740 and a mixer 742. The mixer 742 performs quadrature mixing on the PWM signals from the pulse width modulator 740. In some embodiments, the two data streams or sequences are ninety degrees out of phase. The processed I and Q signals are added together by a summer 744.
The circuit 730 models the distortions in the PWM sequences and feeds the distortions back to the input of the delta-sigma modulator 718. The feedback reduces or eliminates the distortions from being present in the PWM sequences generated by the pulse width modulator 734 and the subsequent signal processing. Therefore, when the PWM sequences are mixed, such as with the carrier signal, the distortions will not be present.
A method for canceling nonlinear distortions in pulse width modulated (PWM) sequences is illustrated at 760 in
Another embodiment of a circuit 800 for reducing nonlinearities is shown in
In some embodiments of the circuits described above, the error signals generated by the circuits 232, 234, 730, 814, and 820 are not directly subtracted from the input signals. Rather, the error signals are added to state variables in the delta-sigma modulators. In embodiments where other modulators are used, the error signals are added to state variables in those modulators.
While certain embodiments of circuits and methods have been described in detail herein as an aid to understanding of applicants' inventive concepts, it is to be understood that the inventive concepts may be otherwise variously embodied and employed and that the appended claims are intended to be construed to include such variations, except insofar as limited by the prior art.
Number | Name | Date | Kind |
---|---|---|---|
5027119 | Toyomaki | Jun 1991 | A |
5548286 | Craven | Aug 1996 | A |
6657566 | Risbo et al. | Dec 2003 | B1 |
7209878 | Chen | Apr 2007 | B2 |
7298305 | Melanson | Nov 2007 | B2 |
8633842 | Azadet et al. | Jan 2014 | B2 |
20120069931 | Gandhi et al. | Mar 2012 | A1 |
20130156089 | Hezar et al. | Jun 2013 | A1 |
Number | Date | Country |
---|---|---|
WO 9737433 | Oct 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20150070088 A1 | Mar 2015 | US |