The invention relates to a circular knitting machine having a first needle bed in the form of a needle cylinder which has grooves for first knitting needles, a first cam for controlling the first knitting needles, a second needle bed in the form of a dial which has grooves for second knitting needles, and a second cam for controlling the second knitting needles, the two needle beds fixing a vertical and a horizontal comb spacing as well as a stitch spacing.
In circular knitting machines of this type (e.g. DE 41 28 372 A1) three dimensions are fixed by the relative position of the needle cylinder and of the dial, these dimensions being described hereinafter as “axial comb spacing”, “radial comb spacing” and “stitch spacing”. The axial comb spacing is given by the spacing between the upper end fare or the stitch knocking-over edge of the needle cylinder and the grounds or bases of the grooves which are formed in the dial and which receive the dial needles, whilst the radial comb spacing is provided by the spacing between the outer end face or the stitch knocking-over edge of the dial and the bases of the grooves which are formed in the needle cylinder and which receive the cylinder needles. The two comb spacings defined in this manner finally fix the dimension described as the stitch spacing (or stitch length), which is substantially produced by the spacing between two circular lines, of which the one is provided by the outer circumferential line of the dial at the level of its groove bases and the other is provided by the outer circumferential line of the needle cylinder at the level of its groove bases.
In the production of knitwear, using both the needle cylinder and the dial, it is frequently desired to select values which deviate from the standard values, particularly large values, for the spacings mentioned, especially the stitch spacing. This applies e.g. in the use of circular knitting machines of the type described initially for the production of so-called “spacer fabrics”. This term is understood to refer to knitted goods which comprise essentially two fabric webs produced solely with the needles of the needle cylinder or respectively solely with the needles of the dial, these fabric webs being inter-connected by thin intermediate layers (e.g. DE 74 25 934 U1, DE 28 50 823 A1). These intermediate layers are formed in that, between the method steps intended for the production of the two fabric webs, a mostly thin, monofil connecting thread is inserted both into the cylinder needles and into the dial needles and is worked by the latter in the manner of tack stitches. The lengths of the sections of this connecting thread which lie between the two fabric webs and thus also the total thickness of the spacer fabric depend substantially on the size of the stitch spacing and are the larger, the further the two above-mentioned circular lines, which define the stitch spacing, are spaced apart from one another.
When standard circular knitting machines having needle cylinders and dials are used, which are suitable also for other purposes, the stitch spacing is comparatively small, since e.g. the axial comb spacing is a maximum of approx. 5.6 mm and the radial comb spacing is a maim of approx. 1 mm. Even in circular knitting machines in which the axial comb spacing is variable by axial displacement of the dial relative to the needle cylinder, as applies also to the above-mentioned known circular knitting es, the maximum axial comb spacing which can be produced is generally less than 6 mm, whilst the radial comb spacing is fixedly predetermined by the external diameter of the needle cylinder and of the dial at a value of approx. 1 mm.
The small size of the maximum axial comb spacing is, inter alia, a consequence of the latch needles usually used and of the small latch lengths or hinge lengths of latch needles. Since namely on the one hand the connecting thread, when being bound into the tuck position, has to be inserted substantially simultaneously both into the cylinder needles and into the dial needles, and on the other hand during thread take-up the cylinder and dial needles may only be raised at a maximum so far that in so doing the (“old”) stitches which are located in their hooks still remain on the open needle latches and do not slide out over the latches onto the needle shafts, the axial comb spacing is substantially limited by the latch length of the knitting needles used. Corresponding limitations arise in respect of the radial comb spacing and in the production of goods other than spacer fabrics.
In connection with the production of spacer fabrics it is already known (US 2002/0152776 A1) to enlarge the stitch spacing by selecting the two comb spacings at least twice as big and preferably three to four times as big as in standard machines. In view of the above explanations, however, this would presuppose that the cylinder needles and/or dial needles can be raised correspondingly far and to this end are provided with correspondingly long latches which despite the increased raising make possible an arrangement of the knitting needles in a tuck position.
The construction of a circular knitting machine taking into account these requirements is possible in principle, but leads to the disadvantage of a comparatively large width of the knitting systems and/or a comparatively low maximum knitting speed. Depending on the speed at which the needle cylinder and the dial are rotated relative to a stationary cylinder cam and dial cam (or the other way round), the raising and take-down curves of the cylinder cam and dial cam may not exceed a pre-selected maximum steepness in order to avoid needle breakages. This inevitably results in a certain minimum width of the individual knitting systems and leads to circular knitting machines which can have, on the circumference of a needle cylinder which has a diameter of 30 inches, at the most approx. 48 knitting systems (approx. 1.6 knitting systems per inch). If for a complete stitch row of a spacer fabric, as is frequently the case, six adjacent knitting systems are required, at the most therefore approx. 8 full stitch rows or sections of knitted fabric can be produced per revolution of the needle cylinder.
It is, therefore, an object of this invention to so design the circular knitting machine of the kind specified above that the disadvantages mentioned above are avoided even if a comparatively large maximum stitch spacing is provided.
Another object underlying this invention is to so design the circular knitting machine mentioned, above that it can be operated with smaller system widths and at higher speeds.
Yet another object of this invention is to provide a circular knitting machine for producing spacer fabrics which machine has a comparatively large maximum stitch spacing and can be operated with smaller system widths and/or at higher speeds.
These and other objects of the invention are solved with a circular knitting machine comprising a cylinder having cylinder needles, a cylinder cam, a dial with needles and a dial cam. The needle cylinder and the dial fix a vertical and a horizontal comb spacing and a stitch spacing. According to the invention, the needle cylinder and the dial are set up to form a stitch spacing of at least 6 mm, and the knitting needles of the needle cylinder and/or the dial are in the form of compound needles.
The invention proceeds from the idea that, when compound needles are used it ought to be possible to raise their needle parts and thus their hooks at comparable speeds far higher with steeper cams than is possible with latch needles, and in so doing so to control the opening and closing of the hooks with the aid of the slide parts, that the old stitches if necessary form tuck stitches even when the needle parts are raised high without sliding out of the needle hooks. Experiments have confirmed that this assumption is correct and that comb spacings of 14 mm or more may be easily realised with compound needles. In addition to the advantages known per se of compound needles (e.g. DE 38 21 213 C2), there arises thus above all the advantage that the invention leads to a high-performance machine which may be equipped with 72 and more knitting systems for a needle cylinder diameter of 30 inches, and may be operated at speeds which are usual with the machines known previously. The resulting increase in efficiency is 50%.
Further advantageous features arise from the subordinate claims.
The invention is explained in greater detail below with the aid of an embodiment in conjunction with the accompanying drawings. These show:
According to
Above the needle cylinder 1 is arranged a second needle bed in the form of a dial 4, which is provided with radial grooves, not shown in detail, which extend perpendicularly with respect to the grooves of the needle cylinder 1 and in which second knitting needles in the form of dial needles 5 are mounted so as to be radially displaceable. Above the dial 4 is arranged a second cam in the form of a dial cam 6, which has cam parts which are not shown and which cooperate with butts of the dial needles 5 which are also not shown, in order to provide these with the necessary raising and taking-down movements in a radial direction.
Moreover it is clear that a plurality of knitting systems is disposed along the circumference of the needle cylinder 1 and the surface of the dial 4, these systems having the necessary cam parts for raising or taking down the cylinder needles and/or the dial needles 2, 5.
In circular knitting machines of this type, for the purposes of the present invention a value x which corresponds to the spacing between an upper end face or stitch knocking-over edge of the needle cylinder 1 and the grounds or bases of the grooves of the dial 4 which receive the dial needles 5, is designated as the vertical comb spacing, and a dimension y between the external end face or stitch knocking-over edge of the dial 4 and the bases of the grooves of the needle cylinder 1 which receive the cylinder needles 2 is designated as the horizontal comb spacing on the other had. Moreover as the stitch length or stitch spacing z is designated a dimension which is provided substantially by the spacing between two circular lines 7 and 8, of which the one is given by the outer circumferential line of the dial 4 at the level of its groove bases and the other is provided by the outer circumferential line of the needle cylinder 1 at the level of its groove bases.
Circular knitting machines of this type and their operation are generally known to the expert, e.g. from the document DE 41 28 372 A1, which is hereby incorporated by reference in the subject matter of the present disclosure to avoid repetitions.
If a spacer fabric is to be produced with the circular knitting machine according to
In two additional method steps, or respectively knitting systems S4 and S5, the stitch formation is carried out similarly to knitting systems S1 and S2. On the other hand in a sixth method step, or respectively knitting system S6, the procedure is the same as in knitting system S3 but with the difference that now a connecting thread 12 is only taken up by the cylinder or dial needles 2, 5 indicated by short dashes and worked into a tuck stitch. For a complete cycle or section of the spacer fabric, therefore, six successive knitting systems S1 to S6 are required. However numerous other types of knitting are also possible, as is known to the expert. For the explanation of further details, reference is made to documents DE 74 25 934 U1, DE 28 50 823 A1 and US 2002/0152 776 A1, which are hereby incorporated by reference in the subject matter of the present disclosure. Moreover it goes without saying that the finished spacer fabric comprises two layers or surfaces produced independently of one another which are held together by a third intermediate layer formed with the connecting threads 11, 12.
As
In contrast to this, provision is made according to the invention for at least one of the two needle beds, which in the embodiment given by way of example is the needle cylinder 1, to be equipped with compound needles. The cylinder needles 2 are consequently provided with needle parts 15 and slide parts 16 which are displaceable parallel and in a vertical direction relative to one another, the slide parts being mounted to slide in slots in the needle parts 15 (cf. especially FIG. 3). The needle parts 15 have at their upper ends needle hooks 15.1, whilst the slide parts 16 are provided at their upper ends with slide tips 16.1, by means of which they can open or close the needle hooks 15.1 in a manner known per se. The cylinder cam 3 surrounding the needle cylinder 1 has in this case not individually illustrated cam parts, which cooperate with butts of the needle and slide parts 15, 16 which are also not shown, in order to impart to these the necessary movements for opening or closing the needle hooks 15.1 and for picking up threads. Compound needles and their control systems are also known to the expert, so that e.g. document DE 38 21 214 C2 is hereby incorporated in the subject matter of the present disclosure to avoid repetitions.
In an embodiment of the invention which is currently held to be the best, provision is also made to select the vertical comb spacing x, with an unaltered horizontal comb spacing y, substantially larger than in standard machines and give it for example a value of 14 mm which with y=1.05 mm leads to a value of approx. 14.04 mm for the dimension z. No special measures have to be taken to bring this about, as is explained below with the aid of
According to
On system S1, a row of a rib hose is produced similar to FIG. 2. To this end, the dial needles 5 are pushed forward radially outwards along a path section 20.1, which ends at a path section 20.2 corresponding to the knitting position, in order to open the hooks 5a, and thereafter is drawn away radially inwards along a path section 20.3 in order to pick up a thread 2.1 from a thread guide 22, work it hiuo a stitch and thus form a first cloth surface or layer, i.e. a rib hose 23 (FIGS. 2 and 4). The compound needles 2 are held in system S1 in a pass position.
In system S2, the dial needles 5 remain in a withdrawn pass position, whilst the needle parts 15 of the compound needles 2 are initially raised along a path section 18.1. The slide parts 16 here initially remain in a position in which the slide tips 16.1 are disposed below the upper edge (circular line 8 in
Later on, first the dial needles 5 are raised in system S3 along a path section 20.4 which ends at a path section 20.5 corresponding to the tuck position. At a slight delay thereafter, the needle parts 15 are raised along a path section 18.4 until a path section 18.5, corresponding to the tack position, is reached. The slide parts 16 here still remain in their low position drawn back under the upper edge of the needle cylinder 1 (FIG. 8). However in this position the slide tips 16.1 are in a central region of the breast portion 15.4 in such a way that they also still below old stitches 27 hanging on the breast portions 15.4 and formed in a previous system. Further it is to note, that the cylinder and dial needles 2, 5 may be selected in system S3 in accordance with
As in particular
The needle parts 15 and with them the hooks 15.1 are now drawn down again along a path section 18.6 whilst substantially at the same time the dial needles 5 are withdrawn along a path section 20.6. In this process, as in particular
Therefore the old stitches 27, in contrast to
What was explained with the aid of
In all the cases described, the particular advantage is achieved th the system width can be kept relatively small as a result of the use of compound needles, and that, when customary speeds are used, system widths of 2.4 systems per inch of the needle cylinder diameter can easily be realised, which corresponds to a system width of approx. 33 mm when measured in the circumferential direction. This is exploited according to the invention in order to equip the circular knitting machine with more than 48, preferably at least 72, knitting systems.
The invention is not limited to the described embodiment but can be modified in many ways. This is true for example for the needle cams described with the aid of
It will be understood, that each of the element; described above or two or more together, may also find a useful application in other types of construction differing from the types described above.
While the invention has been illustrated and described as embodied in a circular knitting machine, it is not intended to be limited to the details shown, since various modifications and structural changes may be made without departing in any way from the spirit of the present invention.
Without further analysis, the forgoing will so fully reveal the gist of the present invention that others can, by applying current knowledge, readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention.
What is claimed as new and desired to be protected by Letters Patent is set forth in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
103 20 533 | May 2003 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
1385929 | Scott | Jul 1921 | A |
RE15741 | Scott | Jan 1924 | E |
2250658 | Smith et al. | Jul 1941 | A |
4920767 | Plath et al. | May 1990 | A |
5275020 | Scherzinger | Jan 1994 | A |
20020152776 | Didier | Oct 2002 | A1 |
Number | Date | Country |
---|---|---|
74 25 934 | Nov 1974 | DE |
27 11 881 | Sep 1977 | DE |
28 50 823 | May 1979 | DE |
28 21 214 | Nov 1979 | DE |
31 40 787 | Apr 1983 | DE |
38 21 213 | Feb 1989 | DE |
41 28 372 | Mar 1993 | DE |
1 571 584 | Jul 1980 | GB |
Number | Date | Country | |
---|---|---|---|
20040216496 A1 | Nov 2004 | US |