The present invention is directed to an LED module assembly and to a luminaire having an array of the LED module assemblies. The invention is also directed to an LED module having a heat sink for mounting in a luminaire where each of the LED modules in the luminaire are positionable about a center axis to orient each LED module and direct light in a direction independently of each other.
In recent years, commercial and residential lighting applications include an array of LED chips or assemblies as the light source in place of the conventional incandescent lights or HID lights.
LEDs are more efficient forms of lights than conventional light sources although LEDs are known to have various problems and concerns. LEDs can be difficult to focus and direct the light to a selected area. LEDs emit light in all directions from the circuit board and require a lens or prism to control the direction and distribution of the light. Individual LEDs do not provide sufficient light so that large numbers or arrays of LEDs are required to illuminate the desired area.
LEDs also require a mechanism for dissipating the heat that is inherently produced by the LED. Various structures are proposed for use with LED arrays that include heat sinks, cooling fins, and the like, to dissipate the heat and prevent damage to the LED and circuit board.
U.S. Patent Publication No. 2012/0025711 to Best et al. discloses an outdoor overhead lamp assembly having a plurality of LED modules within the lamp. The modules are mounted to inclined surfaces for directing the light in a selected direction. The inclined surfaces are molded into the housing of the luminaire so that the position of the LED modules is fixed.
U.S. Patent Publication No. 2012/0014099 to An et al. discloses a lighting system having a plurality of LED modules mounted to a base and a heat sink extending outwardly from the base as shown in
U.S. Patent Publication No. 2011/0291588 to Tagare discloses a light fixture having an array of self-contained LED tiles. The tiles have geometric shapes for joining the LEDs together in selected patterns.
U.S. Patent Publication No. 2011/0194279 to Kuo discloses an LED lighting device. The lighting device includes a housing and a circuit board supporting LED lamps. A cover is mounted to the housing to retain the LED modules in the housing.
U.S. Patent Publication No. 2011/0122632 to Ku et al. discloses an LED unit having a lens. The lens has an incidence surface, an emission surface and a light-reflecting face between the incidence surface and the emission surface.
U.S. Patent Publication No. 2011/0044038 to Mo discloses an LED lamp having a plurality of LEDs mounted in a supporting plate. The LEDs include first LEDs disposed on a top surface of the supporting plate and a plurality of second LEDs disposed on the bottom surface of the supporting plate and surrounding a light reflecting member.
U.S. Patent Publication No. 2010/0157594 to Yang et al. discloses an LED lamp having a semi-spherical lamp body and a plurality of LEDs embedded on an outer surface of the semi-spherical body.
U.S. Patent Publication No. 2010/0103668 to Leuken et al. and assigned to Hubbell discloses an LED with a plurality of luminaire modules. The luminaire modules in this device are mounted in a fixed position.
U.S. Patent Publication No. 2008/0080188 to Wang discloses a modular assembly for an LED lamp. The LED modules have an LED mounted to a base which is attached to a heat sink as shown in
U.S. Pat. No. 8,075,163 to Xiao et al. discloses an illumination lamp and rotatable light emitting module. The module as shown in
U.S. Pat. No. 8,061,868 to Dubord discloses an adjustable LED lighting system. The lighting system includes an LED array mounted to a printed circuit board as shown in
U.S. Pat. No. 7,997,768 to Zheng discloses an LED lamp having an upper base plate and a lower base plate with a plurality of LED modules between the plates. Each module has a heat sink sandwiched between the two base plates and a lens engaging the bottom surface of a conductive cylinder enclosing the LED module.
U.S. Pat. No. 7,488,097 to Reisenauer et al. discloses an LED lamp module designed to be retrofitted into an existing incandescent light fixture. The module includes a circular metal core with an LED and printed circuit board. A second surface of the metal core is configured to contact a fixture and heat generated by the LED conducted to the fixture.
While the prior lighting devices are generally suitable for their intended purpose, there is a continuing need in the industry for improved LED lighting devices.
The present invention is directed to an LED module and to a luminaire that includes a plurality of the LED modules. The invention is particularly directed to a luminaire having a plurality of LED modules where the position of each LED module is independently adjustable with respect to the luminaire to direct the light from each LED module in a selected direction to direct a selected light pattern to a target area to be illuminated.
The luminaire of the invention has a housing with an array of LED modules for directing light to a selected target area. Each of the LED modules can be oriented independently in the lighting assembly with respect to the housing to direct light in a predetermined direction. The lighting assembly includes a housing that enables the LED modules to be positioned for directing light from the LEDs in a selected direction and pattern.
Accordingly, one object of the invention is to provide an LED module and to provide a luminaire adapted to receive an array of the LED modules. The LED modules can conduct heat from the LEDs to a heat sink within the luminaire housing. Each of the LED modules have a heat conducting body that can conduct heat to a primary heat sink in the luminaire.
A further feature of the invention is to provide an LED optic module having a substantially circular shape that is adapted for mounting in an array within a luminaire or lighting assembly and being rotatable within the luminaire or lighting assembly to direct light to a predetermined area and light pattern.
Another feature of the invention is to provide an LED module having a plurality of LEDs for illuminating the target area.
A further feature of the invention is to provide an LED module having a plurality of LEDs that are angled in a predetermined direction at an incline with respect to a plane of the module and the housing. A plurality of the LED modules are mounted in an array on the housing. The LED modules are mounted in the housing in selected positions to aim the LEDs to direct light to a selected target area.
The LED module has a substantially circular shaped body. The circular body is mounted to a support structure in a luminaire where the module can be rotated about an axis perpendicular to the plane of the support and the LED module to direct the light to a selected area. The LED modules are rotatably positioned independently in the desired location with respect to a center axis of the respective module and then fixed to prevent movement after installation.
The LED module in one embodiment of the invention is a cast metal body with an open bottom and a plurality of fins extending from a top end. The bottom of the body has a cavity with a supporting surface for a printed circuit board supporting at least one, and preferably at least two LEDs. The printed circuit board can be attached to the supporting surface by a thermally transmissive adhesive or grease. The printed circuit board is mounted to the mounting surface in a manner to conduct heat from the LEDs to the cast metal body where the heat can be dissipated away from the LEDs. In one embodiment, the printed circuit board and LEDs are fixed to the body and are not movable with respect to the body.
In one embodiment, the LED modules are coupled to a mounting assembly within the luminaire housing such that the heat from the LEDs is conducted through the module to the mounting assembly. In one embodiment, the luminaire housing can include air vents to enable cooling of the LED modules and the mounting assembly.
The cavity in the bottom side of the LED module body has a depth to receive the PCB and LED assembly and to aim the LEDs in a selected direction with respect to the module. In one embodiment of the invention, the PCB is mounted to direct the light from the LEDs at an inclined angle of about 60° with respect to a horizontal plane of the module. The PCB includes wires that extend to a male connector and to a female connector for connecting the PCB and LEDs to a power source. In one embodiment, the female connector is attached to a top face of the LED module. The male connector extends from a wire having a length to connect to a female connector of an adjacent LED module to connect a plurality of the LED modules in series.
The LED module includes a molded cover forming a lens body that is attached to the bottom side of the body of the module. Preferably, the cover is made of a clear plastic such as an acrylic resin. The cover has a circular configuration to conform to the shape of the body and fit within the recess in the bottom of the body. The cover has an upwardly projecting upper portion to conform to the shape of the cavity formed in the bottom of the body, a downwardly projecting lower portion and a lens portion extending between the upper and lower portions. The lens portion is parallel to the PCB and spaced from the LEDs a suitable distance to focus and direct light from the LEDs to the target area in a line substantially perpendicular to the plane of a mounting surface of the module. In the embodiment shown, the lens and LEDs are angled to project the light at an incline with respect to the plane of the module.
The LED modules are mounted in a mounting assembly of the luminaire. The bottom face of the luminaire housing has a plurality of openings for mounting an LED module assembly. The LED module assembly is captured between a top plate and bottom plate and coupled to the luminaire housing to position the LED assembly within the opening of the housing. In one embodiment, the bottom plate has an outwardly extending top flange, an inwardly extending bottom flange and a cylindrical side wall extending between the top flange and the bottom flange to define a recess. The bottom flange has an opening for supporting the LED module and directing light from the LED module through the opening in the luminaire housing. A flat, planar shade having a gasket around the perimeter is seated in a recess around the opening of the luminaire housing. The top plate is positioned onto the bottom plate to capture the LED module. Screws can extend through holes in the top plate and the outwardly extending flange of the bottom plate and onto threaded holes in the top face of the luminaire housing to couple the assembly.
A further feature of the invention is to provide a luminaire module with alignment studs or projections on the top face for mating with a corresponding recess in the bottom face of the top plate of the support. The LED module in one embodiment has a central portion that mates with a recess or hole formed in a center of the top plate. A plurality of registration holes or recesses are provided in the top plate around the center recess for mating with the alignment stud. The LED module can be rotated about a vertical axis extending through the center of the module to allow the alignment stud to register with a selected second recess to position the LED module in a selected position to aim the LEDs with respect to the luminaire.
The features of the invention are basically attained by providing an LED module comprising a body member made from a heat conducting material. The body has a top side and a bottom side and a plurality of heat conducting fins extending from the top side. The bottom side has a mounting surface. The mounting surface is inclined with respect to a plane of the bottom side of the body. A PCB is coupled to the inclined mounting surface. The PCB has at least one LED for directing light at an incline with respect to the plane of the bottom side.
The features of the invention are also attained by providing a luminaire comprising a housing having a support assembly and a plurality of LED modules coupled to said support surface. Each of the LED modules are independently positionable with respect to the support surface of the luminaire to direct light in a selected target area with respect to a respective LED module. Each LED module comprises a heat conducting body member coupled to the housing. The body member has a top side with a plurality of heat conducting fins and a bottom side having a mounting surface. The mounting surface is oriented at an incline with respect to a plane of the bottom side. A PCB is coupled to the inclined mounting surface and has at least one LED mounted on the PCB for directing light to the selected target area at an incline with respect to a plane of the body member and with respect to a plane of the support assembly of the luminaire.
The features of the invention are further attained by providing a luminaire including a housing with a support assembly and a plurality of LED modules coupled to the support surface to direct light to a selected area with respect to a respective LED module. Each LED module has a heat conducting body member coupled to the housing. The body member has a top surface with heat conducting fins and a bottom side with an inclined LED mounting surface. The mounting surface is oriented at an incline with respect to a plane of the bottom side. A PCB is coupled to the inclined mounting surface. The PCB has at least one LED mounted thereon for directing to the target area at an incline with respect to a plane of the body member and the support assembly.
The features of the invention are also attained by providing a luminaire having a housing with a bottom wall and a plurality of LED modules adapted for directing light to a target area. Each LED module has a body member coupled to the bottom wall of the housing and has at least one LED for directing light at an incline with respect to a plane of the bottom wall. The LED module has a central axis perpendicular to the plane of the bottom wall and is rotatably adjustable with respect to the central axis independent of each other LED module to direct light from each LED module to a selected location of the target area.
These and other aspects of the invention will become apparent from the following detailed description of the invention, which taken in conjunction with the annexed drawings, disclose various embodiments of the invention.
The drawings illustrate various embodiments and features of the invention, in which:
The present invention is directed to a luminaire or lighting assembly having a plurality of LED modules and to an LED optic and heat sink module adapted for mounting in a luminaire. The invention is further directed to a luminaire having a plurality of LED modules that can be independently positioned within the luminaire to direct the light from each of the LED modules in a selected direction and to direct light from an array of the LED modules in a predetermined pattern in a target area to be illuminated.
Referring to the drawings, the invention in one embodiment is directed to a lighting assembly shown as luminaire assembly 10 for mounting to a pole 12 or other support. The luminaire 10 includes a housing 14 and a mounting bracket 16 for coupling the luminaire 10 to the pole 12. The housing 14 has a generally low profile configuration with a top surface 18 and a bottom surface 20. The bottom surface 20 includes an LED array 22 for directing light in a generally downward direction in a predetermined pattern. The luminaire or lighting assembly can be in any suitable shape or form depending on the intended use.
Referring to
The LED array 22 includes a mounting assembly 40 shown in
The LED array is made up of a plurality of LED modules 48 positioned between the base 42 and top plate 44 of the mounting assembly 40 which defines a support for the LED modules 48. The base 42 includes a plurality of circular openings 50 for receiving a respective LED module 48. The openings 50 are spaced apart in a predetermined pattern to orient each of the LED modules in a manner to provide a predetermined lighting pattern.
In the embodiment illustrated, 28 LED modules are provided in the LED array. The number and arrangement of the openings 50 for the LED modules can vary depending on the intended use of the luminaire. The arrangement of the openings 50 and LED modules 48 as shown are intended to be exemplary.
Referring to
Referring to
In the embodiment shown, the mounting assembly 40 is suspended from the top wall 26 of the housing 14 and is spaced a small distance from the bottom wall 24 to form a gap 27 between the mounting assembly 40 and the housing 14 around the central opening 30. The gap 27 allows sufficient air circulation through the housing to maintain the LEDs at a suitable temperature.
Referring to
The LED modules 48 include a body 62 that can be made of a suitable material such as metal or other heat conducting material. The base 42 and the top plate 44 can also be made of metal or other heat conducting material. The mounting assembly for the LED modules can function as a primary heat sink for the LED modules. The LED module 48 has a circular configuration with an outer edge 64 shown in
The bottom face 80 of the top plate 44 of the mounting assembly 40 includes at least one and preferably a plurality of registration recesses or holes 82 for receiving the registration pin 78 as shown in
The recess 72 in the body 62 has a substantially flat inclined mounting surface 84 for supporting an LED assembly 86. The mounting surface 84 is formed at an incline with respect to the center axis 39 of the body 82 and at an incline with respect to the bottom face 66 and top face 68. In the embodiment illustrated, the mounting surface 84 is oriented at an angle of about 60° with respect to the bottom face 66 and the transverse axis of the body 62. The recess 72 also includes an arcuate concave shaped surface 88 extending at an incline with respect to the transverse plane of the module and substantially perpendicular to the plane of the mounting surface 84. The concave shaped surface 88 extends from the mounting surface 84 towards the outer edge 64 at an angle to direct light at an inclined angle with respect to a transverse plane of the module 48.
The LED assembly 86 includes a printed circuit board (PCB) 90 supporting at least one and preferably two juxtaposed LEDs 92. More than two LEDs can be used depending on the lighting requirements. The LEDs 92 are mounted to the printed circuit board in a conventional manner and are connected to a power source by wires 94 coupled to the printed circuit board 90.
In one embodiment of the invention, the LED assembly 86 is fixed to the inclined mounting surface 84 by a suitable adhesive that is preferably heat conducting to transfer the heat from the LEDs and PCB to the body 62 of the LED module 48. Typically, the LED assembly is in a fixed position and not movable with respect to the LED module so that light from the LEDs is directed along a fixed principal axis 41 with respect to the body 62. The angular orientation of the LED module is selected to direct the light in a selected direction around the center axis 39 of the LED module.
The wires 94 extend to a female coupling member 96 and a male coupling member 98 as shown in
A cover or lens body 118 is coupled to the bottom face 66 of the body 62 by a ring 120. Ring 120 can be made from a flexible polymeric material having a suitable shape for attaching the lens body 118 to the body 62 by fitting over the outer edges of the body 62 and the lens body 118 as shown in
Referring to
Referring to
The lens 126 is adapted for directing light from the LED module in a direction substantially perpendicular to the plane of the mounting surface 84 and the LED assembly 86. The ring 120 which can be in the form of a gasket has an annular shape for encircling the outer edge of the body 62 and the lens body 118. The ring 120 includes a radial outer face 130, an upper lip 132 and a lower lip 134 forming grooves receiving the outer edges of the body 62 and the lens body 118 as shown in
As shown in
In the embodiment illustrated, the luminaire 10 is adapted for mounting to the pole 12 with the LED array oriented in a plane substantially parallel to the ground surface and target area to be illuminated. In the embodiment shown, a protective lens or prism 138 is coupled to the central opening 30 of the bottom wall 24 and is spaced from the LED modules 48. The lens 138 can be transparent or have a suitable surface to provide the desired diffusion of the light from the LED modules. In other embodiments, the lens 138 can be omitted.
Referring to
While various embodiments have been chosen to illustrate the invention, it will be understood by those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention as defined in the appended claims.
This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 61/590,584, filed Jan. 25, 2012, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
D470965 | Landefeld | Feb 2003 | S |
D482481 | Landefeld | Nov 2003 | S |
7488097 | Reisenauer et al. | Feb 2009 | B2 |
7997768 | Zheng | Aug 2011 | B2 |
8061868 | Dubord | Nov 2011 | B2 |
8075163 | Xiao et al. | Dec 2011 | B2 |
9109787 | Nankil | Aug 2015 | B2 |
20080080188 | Wang | Apr 2008 | A1 |
20080080190 | Walczak | Apr 2008 | A1 |
20090323330 | Gordin et al. | Dec 2009 | A1 |
20100103668 | Lueken et al. | Apr 2010 | A1 |
20100110671 | Gordin et al. | May 2010 | A1 |
20100157594 | Yang | Jun 2010 | A1 |
20110044038 | Mo | Feb 2011 | A1 |
20110122632 | Ku et al. | May 2011 | A1 |
20110194279 | Kuo | Aug 2011 | A1 |
20110291588 | Tagare | Dec 2011 | A1 |
20120014099 | An et al. | Jan 2012 | A1 |
20120025711 | Best et al. | Feb 2012 | A1 |
20120217897 | Gordin et al. | Aug 2012 | A1 |
20120307486 | Gordin | Dec 2012 | A1 |
Entry |
---|
Philips Wide-Lite Brochure, 2011. |
Number | Date | Country | |
---|---|---|---|
20150252985 A1 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
61590584 | Jan 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13748714 | Jan 2013 | US |
Child | 14719381 | US |