The present invention relates to devices that operate in at least the millimeter wave (mm-wave) and/or sub-millimeter wave (sub mm-wave) frequency bands, and more specifically, to an integrated circuit package including antennas that provide circular polarization-shaped radiation pattern.
The availability of millimeter wave (mm-wave) frequency bands has contributed to the expansion of main stream applications of mm-wave wireless technologies. The 60 GHz band, for example, has various applications, such as Wireless HD and WiFi standard 802.11ad. Also, the progress in developing mm-wave radio frequency integrated circuits (RFICs) is providing the path to mobile and personal computing applications. Packaging for mm-wave RFICs include a plurality of antennas to facilitate communications between mm-wave transceivers. A plurality of antennas, also referred as to as an antenna array, is typically included to achieve a desired gain and directivity in the antenna radiation pattern. One or more of the antenna array elements is configured for circular polarization radiation pattern shape. To achieve this pattern shape, however, requires the RFIC package to include phase shifting components in the signal fed to each of the circularly polarized antenna array elements, which increases the size, complexity, and cost of the RFIC package. Achieving circular polarization across a wide frequency bandwidth is also difficult without increasing the size, complexity, and cost of the RFIC package.
The approaches described in this section are approaches that could be pursued, but not necessarily approaches that have been previously conceived or pursued. Therefore, unless otherwise indicated, it should not be assumed that any of the approaches described in this section qualify as prior art merely by virtue of their inclusion in this section.
Embodiments are depicted by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, that the present invention may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to avoid unnecessarily obscuring the present invention.
An apparatus includes one or more antennas configured to use circularly polarized electromagnetic radiation, e.g., for transmission and/or reception. The apparatus also includes one or more integrated circuits electrically coupled to the one or more antennas. Each of the antennas is electrically coupled to an integrated circuit via a respective single feed line. Each of the antennas comprises a patch antenna capable of operating across a wide frequency bandwidth at least in the millimeter wave (mm-wave) and/or sub-millimeter wave (sub mm-wave) frequency spectrum. As an example, the antennas operate in the 60 GHz band (e.g., in the range of approximately 57 to 66 GHz), although the antennas are capable of operating in other frequency bands as discussed in detail below. As another example, the antennas can operate in 24 GHz, 72 GHz, 85 GHz, 120 GHz, less than 60 GHz, more than 60 GHz, and the like. Various configurations of the antennas are contemplated, as discussed in detail below. The antennas are compact in size to minimize footprint requirements in the apparatus. In this manner, a plurality of antennas can be included in the apparatus for transmitting and receiving circularly polarized electromagnetic radiation having a desired gain and directivity profile for operation in the mm-wave carrier frequencies (or other frequencies) while also being compact and efficient to operate.
In an embodiment, RFIC 102, antennas 104, and feed lines 106 are included in the package 108. Package 108 may comprise packaging for the RFIC 102 but which also includes sufficient area to include the antennas 104 and feed lines 106. Package 108 is mounted or soldered to PCB 110. PCB 110 is larger than the package 108, and may include other integrated circuits, chips, packages, electronics, power supply circuits, components, and the like (not shown). Although not depicted in
In another embodiment, package 108 is absent in apparatus 100. RFIC 102, antennas 104, and feed lines 106 are provided directly on/in the PCB 110. In this configuration, PCB 110 may be considered a package for at least the RFIC 102, antennas 104, and/or feed lines 106.
In alternative embodiments, antennas 104 and feed lines 106 can be located within RFIC 102. Apparatus 100 may also include other components and elements, depending upon a particular implementation, and apparatus 100 is not limited to any particular components or elements.
RFIC 102 and antennas 104 are located on the same or different plane/side of PCB 110 relative to each other.
In
In alternative embodiments, one or more combinations of component arrangements on and/or in a PCB may be possible depending on space, fabrication, performance, and/or other constraints. For example, at least one antenna from among a plurality of antennas may be embedded on a plane/side of the PCB and at least one other antenna from among the plurality of antennas may be embedded in the PCB.
Each of the radiating element 202, ground element 204, and feed line or trace 214 comprises a conductive material such as, but not limited to, a metal, copper, gold, aluminum, and like equivalents. As used herein, the term “conductive” refers to “electrically conductive.” Substrate 206 comprises a non-conductive material such as, but not limited to, plastic, fiberglass epoxy resin, TEFLON™, low temperature co-fired ceramic (LTCC), conventional PCB material, or the like. For example, in embodiments where the antenna 200 is embedded in or on a PCB, substrate 206 may be a layer or part of the PCB. In some embodiments, substrate 206 may comprise one layer or more than one layer.
Antenna 200 may be fabricated using deposition and/or etching techniques. The shape of the radiating element 202, for example, can be defined by a mask, and conductive material can be selectively deposited or etched in accordance with the mask to form the radiating element 202 layer.
Radiating element 202 has a particular shape and dimensions, as described in detail below, to enable emission of electromagnetic radiation that is circularly polarized in one of a clockwise or counter-clockwise orientation at a certain frequency band. As shown in
The first and second corners of the first pair of opposing corner 216 can be identical to each other (e.g., same dimensions, contours, shape, and/or angle, etc.). Alternatively, the first and second corners of the first pair of opposing corner 216 can be different from each other (e.g., different dimensions, contours, shape, and/or angle, etc.). Likewise, the first and second corners of the second pair of opposing corner 218 can be identical or different from each other in dimensions, contours, shape, angle, and/or the like. In some embodiments, the non-symmetric portion of the outer perimeter 210 may be fewer than two corners, more than two corners, adjacent corners, corners that are not on opposing or opposite to each other, and/or the like.
Aperture 212 comprises a hole or slot located at the center or approximate/substantially in the center of the radiating element 202. The shape of aperture 212 can be any shape, including, without limitation, a geometric shape, a symmetric shape, a non-symmetric shape, and the like. For example, aperture 212 can be a square, approximately a square, a rectangle, approximately a rectangle, a circle, approximately a circle, elliptical, approximately elliptical, or other shape. Although aperture 212 is depicted as being in the center or substantially in the center of radiating element 202, aperture 212 need not be centrally located. Instead, the location of aperture 212 may vary depending upon a particular implementation.
Feed line or trace 214 is used to connect antenna 200 to an RFIC, such as RFIC 102, 122, or 132. The signal input to antenna 200 is fed in using a single line or trace. A feed network, splitter, phase shifting component, or multiple feed lines is not required to generate circular polarized output. In an embodiment, antenna 200 having a non-symmetrically shaped outer perimeter, an aperture, and a single feed line, when driven by an input signal to the feed line, emits circularly polarized radiation at a certain frequency band. In another embodiment, antenna 200 having a non-symmetrically shaped outer perimeter and a single feed line, when driven by an input signal to the feed line, generates circularly polarized radiation at a certain frequency band. Although the feed line 214 is depicted as a single feed line, in alternative embodiments, feed line 214 may comprise any number of conductive lines or traces, such as two lines.
In some embodiments, radiating element 202 further includes a pair of impedance matching slots 220 adjacent to the feed line or trace 214. The pair of impedance matching slots 220 comprises an impedance matching component in the feed line to match impedance between the antenna 200 and the RFIC. Slots 220 are optional for circular polarization generation having the performance characteristics discussed herein.
Ground element 204 is depicted as extending beyond the dimensions of radiating element 202 in
The dimension values provided in the table are applicable for antenna operation, for example without limitation, at or around a free space wavelength λ of 4.84 mm. Free space wavelength λ may also be referred to as the wavelength λ in free space, center wavelength λ, or operating wavelength λ. A free space wavelength of 4.84 mm corresponds to a frequency of 62 GHz based on the relationship f=c/λ, where c is the speed of light. The 62 GHz frequency, also referred to as the center frequency or operating frequency, is within the 57 to 66 GHz frequency band, which is the IEEE 802.1 lad protocol frequency band of operation.
A thickness 234 (denoted as T) of the substrate 206 (see
Even if the shape of antenna 200 stays the same, the size of antenna 200 can be scaled up or down in accordance with the carrier frequency. Wavelength is inversely proportional to frequency. Hence, as frequency increases, wavelength decreases. Accordingly, as shown by the example dimensional values above, as frequency increases, antenna dimensions decrease. For example, if the center frequency doubles, antenna 200 would be halved in size. If the frequency doubled again, antenna 200 may be a quarter of the starting size.
Note that while radiating element 202 is square-ish in overall shape, it may actually be rectangular (e.g., length L is shorter than width W). Likewise, the truncation or mitered angle of the contoured corners need not be at 45 degrees and can instead be at any angle. The particular combination of dimensions of the antenna 200, such as the amount of mitering, size of the aperture 212, or shape of the aperture 212, are optimized to achieve the desired performance characteristics.
In alternative embodiments, radiating element 202 can be configured in a variety of shapes. For example, without limitation, a radiating element 240 shown in
Antenna 300 comprises a first substrate 306 positioned above a ground element 304, a radiating element 302 positioned above the first substrate 306, a second substrate 352 positioned above the radiating element 302, and the static element 350 positioned above the second substrate 352. Antenna 300 comprises three conductive layers—ground element 304, radiating element 302, and static element 350—separated from each other by a respective non-conductive layer—first and second substrates 306, 352. Static element 350 is adjacent a first plane/side of radiating element 302 while the ground element 304 is adjacent a second plane/side (e.g., the opposite plane/side) of radiating element 302. In an embodiment, the ground element 304, radiating element 302, and static element 350 are co-linearly located with each other along the y-axis in accordance with a Cartesian coordinate system. Elements of antenna 300 may be packaged together in a package 308.
Radiating element 302 and ground element 304 are similar or identical to radiating element 202 and ground element 204, respectively, of antenna 200 discussed above. Likewise, the features of radiating element 302—an outer perimeter 310, an aperture 312, a feed line or trace 314, a first pair of opposing corners 316, a second pair of opposing corners 318, and a pair of impedance matching slots 320—are similar or identical to respective features of radiating element 202.
Each of the radiating element 302, ground element 304, static element 350, and feed line or trace 314 comprises a conductive material such as, but not limited to, a metal, copper, gold, aluminum, and like equivalents. Each of the first and second substrates 306, 352 comprises a non-conductive material such as, but not limited to, plastic, fiberglass epoxy resin, TEFLON™, low temperature co-fired ceramic (LTCC), conventional PCB material, or the like. For example, in embodiments where the antenna 300 is embedded in or on a PCB, first substrate 306 and/or second substrate 352 may be a layer or part of the PCB. In some embodiments, each of the first substrate 306 and/or second substrate 352 may comprise one or more layers.
Antenna 300 may be fabricated using deposition and/or etching techniques. The shape of each of the radiating element 302 and static element 350, for example, can be defined by a mask, and conductive material can be selectively deposited or etched in accordance with the mask to form the radiating element 302 layer and static element 350 layer.
While radiating element 302 is configured to emit electromagnetic radiation that is circularly polarized in a clockwise or counter-clockwise orientation at a certain frequency band, static element 350 is not a radiating patch element. Static element 350 aids in improving bandwidth of the radiation emitted by the radiating element 302. Static element 350 can also contribute to creating circular polarization. In an embodiment, static element 350 has a circular shape, is centered over the radiating element 302, and is sized to substantially “overlap” with the radiating element 302. The radiating element 302 may be smaller than the static element 350 in some respects but not in others. For example, the mitered corners of the radiating element 302 may be “covered” by the static element 350, but the non-mitered corners of the radiating element 302 may extend beyond the static element 350. In alternative embodiments, the relative size, shape, position, and/or extent of overlap (e.g., partial overlap, complete overlap) between the radiating element 302 and static element 350 can vary depending upon antenna performance requirements.
In an embodiment, second substrate 352 has a thickness 354 (denoted as T2 in
The dimension values provided in the table are applicable for antenna operation, for example without limitation, at or around a free space wavelength λ of 4.84 mm. Free space wavelength λ may also be referred to as the wavelength λ in free space, center wavelength λ, or operating wavelength λ. A free space wavelength of 4.84 mm corresponds to a frequency of 62 GHz based on the relationship f=c/λ, where c is the speed of light. The 62 GHz frequency, also referred to as the center frequency or operating frequency, is within the 57 to 66 GHz frequency band, which is the IEEE 802.1 lad protocol frequency band of operation.
In alternative embodiments, if the first substrate 306 and/or second substrate 352 is a different material and/or has different properties than those of a PCB-type material, the dimensional values can vary in the range of approximately +/−20% from those provided above.
Even if the shape of antenna 300 stays the same, the size of antenna 300 can be scaled up or down in accordance with the center frequency. Wavelength is inversely proportional to frequency. Hence, as frequency increases, wavelength decreases. Accordingly, as shown by the example dimensional values above, as frequency increases, antenna dimensions decrease. For example, if the center frequency doubles, antenna 300 would be halved in size. If the frequency doubled again, antenna 300 would be a quarter of the starting size.
Radiating element 302 can have any number of alternative shapes as discussed above for radiating element 202. In addition, static element 350 can also be a variety of shapes, sizes, and/or have relative “overlap” to radiating element 302. The particular combination of dimensions of the antenna 300 is optimized to achieve the desired performance characteristics. For example, static element 350 can be circular, elliptical, square, rectangular, symmetrical, non-symmetrical, or other shape. As another example, static element 350 can be smaller or larger than the radiating element 302. As still another example, static element 350 can include an aperture in the central region. As another example, static element 350 can comprise more than one segment (e.g., made up of four pieces located in the same layer instead of a single piece). As a further example, static element 350 can be offset from the radiating element 302 by varying amounts such that static element 350 is off-centered from the radiating element 302, static element 350 is substantially over the radiating element 302, static element 350 is substantially not over the radiating element 350, and the like. For example, the static element 350 may at least partially extend over the radiating element 302 and/or be substantially the same size as the radiating element 302.
In alternative embodiments, more than one static element may be included in an antenna.
Antennas 200 and 300 are fed (e.g., electrically connected to a RFIC) using a direct feed technique. Alternatively, antenna 200 and/or 300 can be fed via a coaxial feed, a capacitively coupled feed, a slot coupled feed, or other feed mechanism. Due to use of a “thick” substrate in antennas 200 and/or 300, the feed line or trace 214 and/or 314 may be wide (width in the x-axis direction), which in turn may increase the area of the feed network, make the antenna area larger, and the overall packaging area larger. In an embodiment, a technique to reduce the feed line width relative to antennas 200 and/or 300 is implemented in antennas 400 and 500. In antennas 400 and 500, described in detail below, at least the minimum distance between the radiating element and ground element—the minimum thickness of the substrate between the radiating element and ground element—is maintained in order to preserve the desired circular polarization bandwidth, while a via-based ground feed structure (also referred to as a modified ground feed structure or modified ground feed) is added between the radiating element and ground element layers to enable use of a thinner feed line without a reduction in antenna performance. The via-based ground feed structure maintains a unified ground plane potential for the antenna.
Accordingly, the footprint or area of antennas 200 and 300 may be larger than that of antennas 400 and 500 in the xy-plane at least due to the wider feed line of antennas 200 and 300 relative to antennas 400 and 500, respectively. However, the overall thickness or depth of antennas 400 and 500 may be greater than that of antennas 200 and 300, respectively, in the planes perpendicular to the xy-plane due to the inclusion of a via-based ground feed structure in antennas 400 and 500.
Antenna 400 comprises a ground element 404 positioned below a first substrate 406, a modified ground feed element 460 positioned above the first substrate 406, a second substrate 464 positioned above the modified ground feed element 460, a radiating element 402 positioned above the second substrate 464, and a conductive via element 462 extending through the first substrate 406 to electrically connect the ground element 404 and modified ground feed element 460 with each other. In an embodiment, the modified ground feed element 460 (also referred to as a supplemental ground feed element), the conductive via element 462, and second substrate 464 comprise the via-based ground feed structure for antenna 400. Elements of antenna 400 may be packaged together in a package 408.
Radiating element 402 and ground element 404 are similar or identical to radiating element 202 and ground element 204, respectively, of antenna 200 discussed above. Likewise, the features of radiating element 402 are similar or identical to respective features of radiating element 202. In an embodiment, second substrate 464 has a thickness 472 (denoted as T4 in
In an embodiment, the width of the feed line or trace 414 (width along the x-axis direction) is reduced by a factor of 2 to 5 relative to the width of feed line or trace 214 of antenna 200. The width of feed line or trace 414 can be approximately 0.02λ, where λ is the central or operating free space wavelength associated with antenna 400. And the width of feed line or trace 214 can be approximately 0.04λ to 0.1λ, where λ is the central or operating free space wavelength associated with antenna 200. For example, for an operating free space wavelength λ of 4.84 mm, the width of the feed line or trace 414 may be 0.1 mm while the width of the feed line or trace 212 may be 0.19 mm to 0.48 mm.
Each of the radiating element 402, ground element 404, modified ground feed element 460, conductive via element 462, and feed line or trace 414 comprises a conductive material such as, but not limited to, a metal, copper, gold, aluminum, and like equivalents. Each of the first and second substrates 406, 464 comprises a non-conductive material such as, but not limited to, plastic, fiberglass epoxy resin, TEFLON™, low temperature co-fired ceramic (LTCC), conventional PCB material, or the like. For example, in embodiments where the antenna 400 is embedded in or on a PCB, first substrate 406 and/or second substrate 464 may be a layer or part of the PCB. In some embodiments, each of the first substrate 406 and/or second substrate 464 may comprise one or more layers.
Antenna 300 may be fabricated using deposition and/or etching techniques. The shape of each of the radiating element 302 and modified ground feed element 460, for example, can be defined by a mask, and conductive material can be selectively deposited or etched in accordance with the mask to form the radiating element 302 layer and modified ground feed element 460 layer.
Antenna 500 comprises a ground element 504 positioned below a first substrate 506, a modified ground feed element 560 positioned above the first substrate 506, a second substrate 564 positioned above the modified ground feed element 560, a radiating element 502 positioned above the second substrate 564, a third substrate 580 positioned over the radiating element 502, a static element 550 positioned over the third substrate 580, and a conductive via element 562 extending through the first substrate 506 to electrically connect the ground element 504 and modified ground feed element 560 with each other. In an embodiment, the modified ground feed element 560 (also referred to as a supplemental ground feed element), the conductive via element 562, and second substrate 564 comprise the via-based ground feed structure for antenna 500. Elements of antenna 500 may be packaged together in a package 508.
Radiating element 502, ground element 404, and static element 550 are similar or identical to radiating element 302, ground element 304, and static element 350, respectively, of antenna 300 discussed above. Likewise, the features of radiating element 502 and static element 550 are similar or identical to respective features of radiating element 302 and static element 350. The first substrate 506 has a thickness 570 (denoted as T5 in
Conductive via element 562 is oriented perpendicular (or substantially perpendicular) to the planes or layers of ground element 506 and modified ground feed element 560. In an embodiment, the modified ground feed element 560 extends under at least a portion of a feed line or trace 514 but is not located under (or is not co-linear in the y-axis direction with) the radiating element 502.
In an embodiment, the width of the feed line or trace 514 (width along the x-axis direction) is reduced by a factor of 2 to 5 relative to the width of feed line or trace 314 of antenna 300. The width of feed line or trace 514 can be approximately 0.02λ, where λ is the central or operating free space wavelength associated with antenna 500. And the width of feed line or trace 314 can be approximately 0.04λ to 0.1λ, where λ is the central or operating free space wavelength associated with antenna 300. For example, for an operating free space wavelength λ of 4.84 mm, the width of the feed line or trace 514 may be 0.1 mm while the width of the feed line or trace 312 may be 0.19 mm to 0.48 mm.
Each of the radiating element 502, ground element 504, static element 550, modified ground feed element 560, conductive via element 562, and feed line or trace 514 comprises a conductive material such as, but not limited to, a metal, copper, gold, aluminum, and like equivalents. Each of the first, second, and third substrates 506, 564, 580 comprises a non-conductive material such as, but not limited to, plastic, fiberglass epoxy resin, TEFLON™, low temperature co-fired ceramic (LTCC), conventional PCB material, or the like. For example, in embodiments where the antenna 500 is embedded in or on a PCB, first substrate 506, second substrate 564, and/or third substrate 580 may be a layer or part of the PCB. In some embodiments, each of the first substrate 506, second substrate 564, and/or third substrate 580 may comprise one or more layers.
Antenna 500 may be fabricated using deposition and/or etching techniques. The shape of each of the radiating element 502 and static element 550, for example, can be defined by a mask, and conductive material can be selectively deposited or etched in accordance with the mask to form the radiating element 502 layer and static element 550 layer.
Antennas 200, 300, 400, and 500 are depicted herein as having a radiating element in a layer above a ground of the radiating element. In this orientation, the direction of circular polarization emission is considered to be in a direction perpendicular to the radiating element layer and away from the ground of the radiating element. However, in alternative embodiments, the radiating element can be in a layer below the ground of the radiating element by flipping the antenna structures described above. Such flipped antenna structure may be mounted on a bottom side of a PCB or package, for example, as shown by antennas 124 in
Plot 600 shows antenna 200 handling circularly polarized emission in the frequency range of approximately 56-64 GHz. The two “dips” of plot 600 are attributed to the presence of aperture 212 in antenna 200. The aperture 212 may be used to provide impedance matching for antenna 200 (e.g., 50 ohms). In some embodiments, additional impedance matching slots/apertures may be used to improve the return loss of the antenna.
The circular polarization bandwidth of antenna 500 is similarly wider or larger than the circular polarization bandwidth of antenna 400 due to the presence of both a static element and radiating element in antenna 500.
In the foregoing specification, embodiments of the invention have been described with reference to numerous specific details that may vary from implementation to implementation. Thus, the sole and exclusive indicator of what is the invention, and is intended by the applicants to be the invention, is the set of claims that issue from this application, in the specific form in which such claims issue, including any subsequent correction. Any definitions expressly set forth herein for terms contained in such claims shall govern the meaning of such terms as used in the claims. Hence, no limitation, element, property, feature, advantage or attribute that is not expressly recited in a claim should limit the scope of such claim in any way. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
Number | Name | Date | Kind |
---|---|---|---|
5717407 | Hong | Feb 1998 | A |
6181281 | Desclos | Jan 2001 | B1 |
6549168 | Ryken | Apr 2003 | B1 |
7212163 | Huang | May 2007 | B2 |
7626549 | Channabasappa | Dec 2009 | B2 |
20020163468 | Anderson | Nov 2002 | A1 |
20040090370 | McCarrick | May 2004 | A1 |
20040100405 | Mohamadi | May 2004 | A1 |
20090058731 | Geary | Mar 2009 | A1 |
20090153404 | Ryou | Jun 2009 | A1 |
20100327068 | Chen | Dec 2010 | A1 |
20130194147 | Yoshioka | Aug 2013 | A1 |
20130321214 | Zhou | Dec 2013 | A1 |
20150357718 | Singh | Dec 2015 | A1 |
20160190697 | Preradovic et al. | Jun 2016 | A1 |
Entry |
---|
U.S. Appl. No. 14/586,776, filed Dec. 30, 2014, Office Action, dated Jul. 29, 2016. |
Preradovic, U.S. Appl. No. 15/586,776, filed Dec. 30, 2014, Interview Summary, dated Jun. 21, 2017. |
Preradovic, U.S. Appl. No. 14/586,776, filed Dec. 30, 2014, Final Office Action, dated May 5, 2017. |
Preradovic, U.S. Appl. No. 14/586,776, filed Dec. 30, 2014, Office Action, dated Apr. 19, 2018. |
Number | Date | Country | |
---|---|---|---|
20160190696 A1 | Jun 2016 | US |