The presently disclosed and claimed inventive concept(s) generally relates to circular saw blade assemblies, and more particularly to improve circular saw blade assemblies for cutting various hard materials such as building materials, and utilizing a chain with cutting portions positioned on the blade core such that a cutting tip section can be replaced by replacing the chain or sections of the chain.
Generally in the field of circular cutting saws, blades, and blade assemblies, the tooling utilizes a circular blade core, the circumference of which is configured with a cutting section. Generally, the circumference has individual cutting elements attached to the blade, specifically to the blade core. These blade cores, when used with a rotary saw, spin at very high speeds cutting material in the path of the blade. The cutting elements have relatively high deterioration rates due to abrasion and impacts from the cutting. This abrasion is caused by wear due to the impacts from hitting hard objects that lead to a large amount of frictional heat generated as well as abrasive contact with the saw blades.
In general, circular saw blade assemblies are made in two different embodiments. In a first general embodiment, the circular saw blade assemblies comprise a core having cutting segments affixed to the core, typically by welding, soldering, braising, electroplating, or bolting. Alternatively, as shown in U.S. Pat. No. 4,627,322, the contents of which are hereby incorporated by reference, it has been contemplated to use replaceable chains, such as cutters attached to removable chains such as chains found on a chainsaw, on the exterior of the core to form the cutting element. In this embodiment it is thought that in the event that the cutting tips of the saw become dull or damaged, the chain can be removed and the chain links containing the cutting tips can be replaced or new cutting tips placed on the chain. While the chain is being repaired, a second chain can be used in the meantime on the original core, thus avoiding the need for a new blade core to be used each time the cutting elements must be replaced or repaired (such as when the tips must be sharpened).
Accordingly, what has been developed is a blade core having a circumferential groove for chain drive links. A cutting chain is then placed on the core by stretching the chain.
The purpose of the Summary is to enable the public, and especially the scientists, engineers, and practitioners in the art who are not familiar with patent or legal terms or phraseology, to determine quickly from a cursory inspection, the nature and essence of the technical disclosure of the application. The Summary is neither intended to define the inventive concept(s) of the application, which is measured by the claims, nor is it intended to be limiting as to the scope of the inventive concept(s) in any way.
For the purposes of this application, the term drive link means the general shape of a standard drive link of a chain as depicted, for example, in
The term “circular saw blade” is referred to as a blade core having a chain configured on the blade core such that the drive links of the chain are located within the circumferential groove located on the blade core.
What is disclosed in a preferred embodiment is a circular core for a saw blade for use with a chain. The circular core has a circular disc like core body having an outer circumference and a width. The core body has a central arbor substantially at the center of said core body and configured to provide an axis of rotation for when the core body is attached to a circular saw. The core body has a first side and a second side and a width between the first side and the second side. The core body has a circumferential groove extending inward from the circumference of the core body and is located between the first side and said second side and ends at a groove floor. In a preferred embodiment, the core body has an endless chain positioned on the circumference of the core body such that the drive links (or protrusions of the drive links interchangeably called drive link tangs) of the chain are positioned within the circumferential groove.
In a preferred embodiment the width of the circumferential groove is approximate to the width of said drive links positioned within said circumferential groove. It is thought that this creates friction between the drive link and the walls of the groove such that when the blade core and chain are driven on a circular saw, the friction between the drive link and the walls of the circumferential groove prevent the chain from spinning on the blade core when the cutting or impact surface of the chain impacts an object.
In a preferred embodiment, the width and tolerance of a circumferential groove is +0.05 mm -0. Ideally the circumferential groove is sized such that the drive link is a very tight fit with the groove such that the friction between the groove walls and the drive link hold the chain in place when the blade core and chain are spinning at very high speeds as is common in a rescue saw.
In a preferred embodiment circumferential groove and blade core are configured such that when a chain is positioned on the core, the chain is positioned such that the chain links are in contact with the circumference of the blade core when said blade core is not in use. This occurs by stretching a chain when a chain is being attached to the blade core. When tension is released from the stretched chain, the chain reflexes to be in tight contact with the blade core.
The circumferential groove in the blade core generally is made of two walls and a floor. The floor of the circumferential groove is generally located between the arbor and the outer circumference of the blade core and is between the first side and the second side of the core body. The drive links of a chain extend into the circumferential groove to a point proximate to but not in contact with the floor of the circumferential groove. It is thought that if the drive links are in contact with the floor of the groove the drive links will create stress with the floor and be prone to breakage.
In an embodiment of the invention, the circumferential groove is wider at the circumference of the circular core than at the floor of the circumferential groove. This may lead to increased friction between the groove and the drive links, or it may just be a by-product of the manufacturing process. Typically the groove does not include sprocket teeth configured for the placement within the links of a chain as found in typical saw setups in which a chain is driven around a core to cut.
One of the benefits of utilizing an endless chain on a blade core as opposed to fixed cutters on a blade core is that if the cutters are worn or break, the chain can be replaced as opposed to having to replace the entire blade core and cutters. Changing of the chain occurs, in a preferred embodiment, by removing a rivet between two tie straps of the chain to be replaced, stretching the replacement chain having two ends around the circumference of the blade core with the drive links located in the circumferential groove of the blade core, and attaching the two ends of the chain to form an endless chain around the circumference of the blade core. The tension is then released from the chain, which reflexes to a generally taught fit around the blade core. The blade core and chain assembly are then ready for use in cutting. In general, rescue saws are used to cut wood, metal, concrete and various hard materials. The embodiments of the invention(s) depicted herein are generally thought applicable in all uses in a rescue saw. This includes cutting into a building, vehicle, train, car or aircraft.
Still other features and advantages of the presently disclosed and claimed inventive concept(s) will become readily apparent to those skilled in this art from the following detailed description describing preferred embodiments of the inventive concept(s), simply by way of illustration of the best mode contemplated by carrying out the inventive concept(s). As will be realized, the inventive concept(s) is capable of modification in various obvious respects all without departing from the inventive concept(s). Accordingly, the drawings and description of the preferred embodiments are to be regarded as illustrative in nature, and not as restrictive in nature.
While the presently disclosed inventive concept(s) is susceptible of various modifications and alternative constructions, certain illustrated embodiments thereof have been shown in the drawings and will be described below in detail. It should be understood, however, that there is no intention to limit the inventive concept(s) to the specific form disclosed, but, on the contrary, the presently disclosed and claimed inventive concept(s) is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the inventive concept(s) as defined in the claims.
In a preferred embodiment, the width of the drive link T is equivalent or very close to the width T′ of the circumferential groove. This tolerance should be low in order to maintain friction between the drive link 36 and the blade core 38 such that when the blade core and chain assembly is used to cut material, the chain does not spin freely but is instead held in place by the friction. In a preferred embodiment the width of the tie strap 44 or cutter is the same or approximately the same as the width of the rail 46 such that when the cutting chain and blade assembly is utilized, lateral movement of the chain is minimized by the equivalent width of the rails and the tie strap.
It is thought that the friction between the drive link and the inner surfaces of the circumferential groove hold the chain in place with minimal slippage. This way, when a cutting tip on the chain impacts a material, the chain does not freely spin around the blade, or the blade spin within the chain.
While certain exemplary embodiments are shown in the figures and described in this disclosure, it is to be distinctly understood that the presently disclosed inventive concept(s) is not limited thereto but may be variously embodied to practice within the scope of the following claims. From the foregoing description, it will be apparent that various changes may be made without departing from the spirit and scope of the disclosure as defined by the following claims.
This application is a continuation of U.S. patent application Ser. No. 14/577,555, filed Dec. 19, 2014, the disclosure of which is incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 14577555 | Dec 2014 | US |
Child | 15947367 | US |