1. Technical field
The present application relates to surgical stapling and staple line reinforcement materials. In particular, the staple line reinforcement material is attached to one or both tissue contacting surfaces of a surgical stapler utilizing a retainer.
2. Background
The use of staple line reinforcement materials, or buttresses, in conjunction with staplers is known. U.S. Pat. No. 5,542,594 to McKean et al., the disclosure of which is hereby incorporated by reference herein, discloses a surgical stapling apparatus with a biocompatible surgical fabric attached to the apparatus. The surgical fabric and staples are attached to body tissue by the stapling apparatus. Pins or clips secure the fabric to surfaces of the stapling apparatus.
U.S. Pat. No. 7,128,748 discloses a circular stapler and buttress. The buttress material is positioned on the staple cartridge of the stapler and on the anvil component of the stapler. The anvil buttress material has a cylindrical raised center portion adapted to fit the central recessed aperture of the anvil and the staple cartridge buttress has a cylindrical raised center portion adapted to fit a central recessed aperture in the cartridge component of the stapler.
U.S. Pat. No. 6,503,257 discloses an adhesive used to releasably attach a buttress material to clamping members of a stapler. The buttress material is releasably attached by the adhesive material.
There is a need for a staple line reinforcement material or buttress material attachment that does not complicate assembly or manufacturing, does not interfere with the operation of the surgical instrument, and securely attaches the material while allowing the material to be reliably released when desired.
In an aspect of the present disclosure, a surgical stapling instrument comprises a staple cartridge assembly having a plurality of rows of staple receiving slots, an anvil assembly having an anvil member defining a plurality of rows of staple forming recesses. The staple cartridge assembly, the anvil assembly, or both, has one or more attachment members. A staple line reinforcement material is attached to the attachment members by ultrasonic welding.
In certain embodiments, the staple line reinforcement material defines perforations adjacent the attachment members. Such perforations can be useful to facilitate release of the buttress from the surgical stapling apparatus. In certain embodiments, the surgical stapling instrument is a circular stapler. The plurality of rows of staple receiving slots can be circular rows. Such staplers are useful in intestinal anastomosis procedures and other surgical procedures. The plurality of rows of staple forming recesses can be circular rows.
In certain embodiments, the one or more attachment members are formed on the anvil member by molding plastic. The one or more attachment members can be disposed on the anvil member; the anvil member is made of metal, whereas the attachment members can made from plastic.
In certain embodiments, the one or more attachment members are disposed on the staple cartridge assembly outwardly of the rows of staple receiving slots. The staple line reinforcement material can be attached to the one or more attachment members and define perforations adjacent the one or more attachment members. In this way, the staple line reinforcement material lifts away from the staple cartridge assembly, separating at the perforations. A margin of material remains on the staple cartridge assembly.
In another arrangement, the one or more attachment members are disposed on the anvil assembly outwardly of the rows of staple forming recesses. The staple line reinforcement material is attached to the one or more attachment members and defines perforations adjacent the one or more attachment members.
The anvil assembly may include a hub attached to the anvil member. The anvil assembly may include a shaft and further comprising a tubular body portion, the staple cartridge assembly being mountable in the tubular body portion; the tubular body portion has a rod, the shaft of the anvil assembly being attachable to the shaft. The surgical stapling instrument, in certain embodiments, comprises a handle assembly.
In another aspect of the present disclosure, a surgical stapling instrument comprises a staple cartridge assembly having a plurality of rows of staple receiving slots, an anvil assembly having a shaft and an anvil member; the anvil member defines a plurality of rows of staple forming recesses. A retainer is engaged to the shaft, and a staple line reinforcement material attached to the anvil assembly by the retainer.
The surgical stapling instrument can be a circular stapler. The plurality of rows of staple receiving slots can be circular rows, whereas the plurality of rows of staple forming recesses would be circular rows.
In certain embodiments, the retainer is circular in shape and has a central aperture for receiving the shaft. The retainer may be frictionally engaged with the shaft. For example, the retainer is formed of a material that has a coefficient of friction with the shaft, the coefficient of friction being selected so as to retain the retainer and the staple line reinforcement material on the shaft.
In certain embodiments, the retainer is secured to the shaft utilizing a fastener. Alternatively, the retainer is secured to the shaft utilizing a snap-fit relationship between the retainer and the anvil assembly. The retainer, the shaft, or both, may be texturized in such a way so as to improve the frictional engagement of those parts. For example, the surface of the shaft is mechanically treated, or the shaft, the retainer, or both, have a coating that increases friction between the shaft and the retainer.
The anvil assembly may include a hub attached to the anvil member. In certain embodiments, the surgical stapling instrument has a tubular body portion, the staple cartridge assembly being mountable in the tubular body portion; the tubular body portion has a rod, the shaft of the anvil assembly being attachable to the shaft. In certain embodiments, the surgical stapling instrument has a handle assembly.
An embodiment or embodiments of the presently disclosed surgical instrument and staple line reinforcement material is disclosed with reference to the drawings, wherein:
An embodiment or embodiments of the presently disclosed stapling instrument, retainer, and staple line reinforcement material will now be described in detail with reference to the drawings. Like numerals in the drawings designate identical or corresponding elements in each of the several views. As is common in the art, the term “proximal” refers to that part or component that is closer to the user of the instrument while the term “distal” refers to that part or component that is farther from the user of the instrument.
The staple cartridge assembly 22 is connectable to the distal end of tubular body portion 20 or may be configured to concentrically fit within the distal end of tubular body portion 20. Typically, staple cartridge assembly 22 includes a staple pusher (not shown) with a distal portion defining two concentric rings of peripherally spaced fingers (not shown), each one of which is received within a respective staple receiving slot 36. Typically, a knife (not shown) having a cutting edge is disposed within the staple cartridge assembly 22. The knife edge is circular and disposed radially inward of the rows of staples. The knife is mounted so that as the staple pusher is advanced axially in the direction of the anvil assembly, the knife is also advanced axially. Alternatively, the knife may be separately actuated. The staple pusher is advanced in the distal direction to drive staples from the staple receiving slots 36 against the anvil member so that the staple forming recesses 27 form the staples in a closed shape. The knife is advanced and driven toward the anvil assembly 30 to cut tissue. U.S. Pat. No. 5,915,616 to Viola et al., the entire content of which is hereby incorporated herein by reference, discloses a circular stapling instrument. Although a circular stapling instrument is shown in
The anvil member 26 may or may not be pivotable about the anvil shaft 28 from a first, initial position in which a plane defined by the tissue contact surface 52 of the anvil member 26 is substantially perpendicular to the longitudinal axis of the anvil shaft 28 to a second position, tilted with respect to the longitudinal axis “x”. The second position is desirably a reduced profile position in which anvil member 26 defines an angle with respect to the longitudinal axis “x”. Alternately, the anvil member 26 is rigidly attached to the anvil shaft 28.
The anvil shaft 28 is dimensioned to releasably engage an anvil retainer (not shown) on the rod or shaft 40 of a circular surgical stapling instrument, such as the surgical stapling instrument 10. One such surgical stapling device having an anvil retainer and with which anvil assembly 30 may be used is disclosed in U.S. provisional patent application Ser. No. 60/281,259, filed Apr. 3, 2001, (“the '259 application”) which is hereby incorporated by reference herein, in its entirety. The anvil retainer functions to align anvil assembly 30 with the body portion 20 (
The circular stapling instrument can be used to form an anastomosis between sections of intestinal tissue. As shown in
According to the present disclosure, a surgical stapling instrument has a staple line reinforcement material retained thereon. In certain embodiments, the anvil head 42 has an inner recess 53 that is generally annular and may include a cut ring for receiving the knife. As shown in
In another embodiment, the retainer is secured to the anvil assembly utilizing a fastener (such as a screw or bolt), a clip, a detent, or by a snap-fit relationship between the retainer and the anvil assembly. In a further alternative, the retainer 60, the shaft 28, or both, may be texturized 69, 29, respectively in such a way so as to improve the frictional engagement of those parts. This can include mechanically treating the surfaces of the shaft and/or retainer, or can include coatings.
During use, the rotatable actuator 18 is manipulated to approximate the anvil assembly 30 toward the staple cartridge assembly 22 and clamp tissue therebetween. When the pivotable actuating handle 14 is moved, the knife and/or pusher will be moved in a direction toward the anvil assembly to fire the staples and cut tissue. The staple line reinforcement material retainer assembly 66 is arranged so that the retainer 60 lies inwardly of the knife. The retainer retains the staple line reinforcement material 50 against the tissue contacting surface 52 of the anvil member 26. The knife will cut the tissue and the staple line reinforcement material, making the retainer easy to remove with the circular stapling instrument 10.
In another embodiment of the present disclosure, a circular stapling instrument as discussed above in connection with
One or more attachment members 132 may be used and they may have a variety of shapes. The tabs shown in
It may be desirable to attach a staple line reinforcement material 50 adjacent the staple cartridge assembly 22. As shown in
Alternately, the material of the staple cartridge 23, which is normally plastic, can be selected so as to be useful for attaching the staple line reinforcement material by adhesives, ultrasonic or other kinds of welding, or other methods. In certain embodiments, the anvil assembly 130 includes a cut ring disposed in the recess 153. The cut ring can be formed with tabs extending proximally toward the tissue contact surface 152 so as to be accessible for attachment to the staple line reinforcement material.
In the embodiments discussed in connection with
In another embodiment of the present disclosure, a surgical stapling instrument and staple line reinforcement material according to
In another embodiment, the staple line reinforcement material 50a has an inner diameter that is smaller than the diameter of the knife so that a portion of the staple line reinforcement material 50a is severed removed by the knife.
In another embodiment of the present disclosure a linear stapling instrument is used with a staple line reinforcement material on the anvil, the cartridge assembly, or both. The linear stapling instrument 300 has stapler jaws 310, 320. See
To attach the staple line reinforcement material to the jaw or jaws 310, 330, attachment members are formed on or in the cartridge assembly 310 and/or anvil assembly 330. Typically the anvil member 326 is formed from a metal such as stainless steel. The attachment members 332 are formed from a material that is useful for attachment to a staple line reinforcement material. The staple line reinforcement material 350 is attached to the attachment members 332 utilizing adhesives, ultrasonic or other kinds of welding, or other methods. The attachment member or members 332 may be formed of a variety of polymeric materials, such as the polymeric materials from which the staple line reinforcement material is made. In one example, recesses are formed in the anvil member, as by grinding, drilling, machining, etc. A polymeric material is overmolded on the anvil member so that attachment members of the polymeric material are disposed in the recesses. In one embodiment, the attachment members 332 include a first distal attachment member 332a, a second distal attachment member 332b, a first proximal attachment member 332c, and a second proximal attachment member 332d, so that there are one or more attachment members at each of the distal and proximal ends of the anvil member. See
In a further embodiment, a plastic frame or ring 341 having tabs 342 extending inwardly (see
It may be desirable to attach a staple line reinforcement material to the tissue contact surface 311 of the cartridge assembly 310. Attachment members 334 are provided for the staple cartridge assembly and are formed from a material that is useful for attachment to a staple line reinforcement material. The staple line reinforcement material 350 is attached to the attachment members 334 utilizing adhesives, ultrasonic or other kinds of welding, or other methods. The attachment member or members 334 may be formed of a variety of polymeric materials, such as the polymeric materials from which the staple line reinforcement material is made. The attachment member or members 334 can be made by providing recesses in the tissue contact surface 311 of the cartridge assembly 310, and overmolding. Alternately, a plastic frame or ring, like that shown in
In another embodiment of the present disclosure, a surgical stapling instrument and staple line reinforcement material according to
It is contemplated that the staple line reinforcement materials discussed above may be fabricated from or include a surgical grade, biocompatible, non-absorbable material and may comprise a mesh. For example, the staple line reinforcement material may be fabricated from “TEFLON”, which is a registered trademark owned by DuPont de Nemours & Co. It is further contemplated that body portion 102 may be fabricated from a biocompatible polymeric foam, felt, polytetrafluoroethylene (ePTFE), gelatin, fabric or the like, or any other biocompatible material.
Non-absorbable materials used for staple line reinforcement material include, and are not limited to, those that are fabricated from such polymers as polyethylene, polypropylene, nylon, polyethylene terephthalate, polytetrafluoroethylene, polyvinylidene fluoride, and the like. Further non-absorbable materials include and are not limited to stainless steel, titanium and the like.
In one embodiment, the staple line reinforcement material may be fabricated from a bio-absorbable material. In other embodiments, the staple line reinforcement material has at least one portion that is absorbable and at least one portion that is not absorbable. Bio-absorbable materials used for staple line reinforcement material include, and are not limited to, those fabricated from homopolymers, copolymers or blends obtained from one or more monomers selected from the group consisting of glycolide, glycolic acid, lactide, lactic acid, p-dioxanone, α-caprolactone and trimethylene carbonate. Other bio-absorbable materials include and are not limited to, for example, Polyglycolic Acid (PGA) and Polylactic Acid (PLA). In one embodiment, the staple line reinforcement material may be fabricated from bio-absorbable felt, gelatin or any other bio-absorbable materials.
The staple line reinforcement material can incorporate a wound treatment material “W”, which includes and is not limited to one or a combination of adhesives, hemostats, sealants, coagulants, astringents, and medicaments. Other surgically biocompatible wound treatment materials “W” which may be employed in or applied by surgical instruments, including surgical staplers, include adhesives whose function is to attach or hold organs, tissues or structures; sealants to prevent fluid leakage; hemostats to halt or prevent bleeding; coagulants, astringents (e.g., sulfates of aluminum) and medicaments. Examples of adhesives which can be employed include protein derived, aldehyde-based adhesive materials, for example, the commercially available albumin/glutaraldehyde materials sold under the trade designation BioGlue™ by Cryolife, Inc., and cyanoacrylate-based materials sold under the trade designations Indermil™ and Derma Bond™ by Tyco Healthcare Group, LP and Ethicon Endosurgery, Inc., respectively. Examples of sealants, which can be employed, include fibrin sealants and collagen-based and synthetic polymer-based tissue sealants. Examples of commercially available sealants are synthetic polyethylene glycol-based, hydrogel materials sold under the trade designation CoSeal™ by Cohesion Technologies and Baxter International, Inc. Examples of hemostat materials, which can be employed, include fibrin-based, collagen-based, oxidized regenerated cellulose-based and gelatin-based topical hemostats. Examples of commercially available hemostat materials are fibrinogen-thrombin combination materials sold under the trade designations CoStasis™ by Tyco Healthcare Group, LP, and Tisseel™ sold by Baxter International, Inc. The W can include medicaments. Medicaments may include one or more medically and/or surgically useful substances such as drugs, enzymes, growth factors, peptides, proteins, dyes, diagnostic agents or hemostasis agents, monoclonal antibodies, or any other pharmaceutical used in the prevention of stenosis.
The staple line reinforcement material may include a single layer including a homogeneous array of bio-absorbable or non-absorbable materials or a heterogeneous array of bio-absorbable and/or non-absorbable materials. The staple line reinforcement material may include a layered body portion having at least two layers as indicated by first layer, film or wafer and second layer, film or wafer. In this embodiment, each layer may include a homogeneous or heterogeneous array of bio-absorbable and/or non-absorbable materials.
In certain preferred embodiments, the staple line reinforcement material is a non-woven fabric. The non-woven fabric can be formed utilizing a melt blown process, including the following steps. The polymer resin is melt extruded. A melt pump meters out the molten polymer to a die head having an array of holes. By way of example, the holes have a diameter of between about 0.175 and about 0.25 millimeters. The polymer is forced through the array of holes in the die. Polymer fibers exit the die and are forced onto a conveyor belt. A stream of blowing hot air can be used to force the polymer fibers onto the conveyor. Suction through the conveyor belt surface can be used to compact the fibers against the belt and against each other, as the fibers cool. Additional compression may be applied to the fibers, such as by using a calendaring roll, which may include heating or cooling. The non-woven fabric may then be annealed. For example, isometric tension or other uniform compression can be used to drive crystallization and remove the monomer. The polymer is desirably a bioabsorbable or non-bioabsorbable polymer, such as a glycolide lactide copolymer (the material utilized in Polysorb™ sutures), a termpolymer composed of glycolide, trimethylene carbonate and dioxanone (the material utilized in Biosyn™ sutures), a polymer of glycolide, caprolactone, trimethylene carbonate, and lactide (the material utilized in Caprosyn™ sutures), and a glycolide trimethylene carbonate copolymer (the material utilized in Maxon™ sutures).
In certain embodiments, the non-woven fabric is porous. For example, the non-woven fabric can have a porousity of between about 50% and about 90%. The fiber diameter may be between about 5 and about 100 μm. The fabric thickness may be between about 150 and about 400 μm.
It will be understood that various modifications may be made to the embodiments disclosed herein. For example, the surgical stapling instrument need not apply staples but rather may apply two part fasteners as is known in the art. Further, the length of the linear row of staples or fasteners, or the length or diameter of a circular row of staples or fasteners, may be modified to meet the requirements of a particular surgical procedure. Therefore, the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended thereto.
Number | Name | Date | Kind |
---|---|---|---|
3054406 | Usher | Sep 1962 | A |
3124136 | Usher | Mar 1964 | A |
4347847 | Usher | Sep 1982 | A |
4354628 | Green | Oct 1982 | A |
4452245 | Usher | Jun 1984 | A |
4527724 | Chow et al. | Jul 1985 | A |
4605730 | Shalaby et al. | Aug 1986 | A |
4655221 | Devereux | Apr 1987 | A |
4834090 | Moore | May 1989 | A |
4838884 | Dumican et al. | Jun 1989 | A |
4927640 | Dahlinder et al. | May 1990 | A |
4930674 | Barak | Jun 1990 | A |
5002551 | Linsky et al. | Mar 1991 | A |
5014899 | Presty et al. | May 1991 | A |
5040715 | Green et al. | Aug 1991 | A |
5065929 | Schulze et al. | Nov 1991 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5263629 | Trumbull et al. | Nov 1993 | A |
5314471 | Brauker et al. | May 1994 | A |
5344454 | Clarke et al. | Sep 1994 | A |
5392979 | Green et al. | Feb 1995 | A |
5397324 | Carroll et al. | Mar 1995 | A |
5425745 | Green et al. | Jun 1995 | A |
5441193 | Gravener | Aug 1995 | A |
5441507 | Wilk et al. | Aug 1995 | A |
5443198 | Viola et al. | Aug 1995 | A |
5468253 | Bezwada et al. | Nov 1995 | A |
5503638 | Cooper et al. | Apr 1996 | A |
5542594 | McKean et al. | Aug 1996 | A |
5549628 | Cooper et al. | Aug 1996 | A |
5575803 | Cooper et al. | Nov 1996 | A |
5653756 | Clarke et al. | Aug 1997 | A |
5683809 | Freeman et al. | Nov 1997 | A |
5690675 | Sawyer et al. | Nov 1997 | A |
5702409 | Rayburn et al. | Dec 1997 | A |
5752965 | Francis et al. | May 1998 | A |
5762256 | Mastri et al. | Jun 1998 | A |
5766188 | Igaki | Jun 1998 | A |
5769892 | Kingwell | Jun 1998 | A |
5782396 | Mastri et al. | Jul 1998 | A |
5799857 | Robertson et al. | Sep 1998 | A |
5810855 | Rayburn et al. | Sep 1998 | A |
5814057 | Oi et al. | Sep 1998 | A |
5833695 | Yoon | Nov 1998 | A |
5843096 | Igaki et al. | Dec 1998 | A |
5895412 | Tucker | Apr 1999 | A |
5902312 | Frater et al. | May 1999 | A |
5908427 | McKean et al. | Jun 1999 | A |
5915616 | Viola et al. | Jun 1999 | A |
5931847 | Bittner et al. | Aug 1999 | A |
5964774 | McKean et al. | Oct 1999 | A |
5997895 | Narotam et al. | Dec 1999 | A |
6019791 | Wood | Feb 2000 | A |
6030392 | Dakov et al. | Feb 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6045560 | McKean et al. | Apr 2000 | A |
6063097 | Oi et al. | May 2000 | A |
6080169 | Turtel | Jun 2000 | A |
6099551 | Gabbay | Aug 2000 | A |
6149667 | Hovland et al. | Nov 2000 | A |
6155265 | Hammerslag | Dec 2000 | A |
6210439 | Firmin et al. | Apr 2001 | B1 |
6214020 | Mulhauser et al. | Apr 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6258107 | Balazs et al. | Jul 2001 | B1 |
6267772 | Mulhauser et al. | Jul 2001 | B1 |
6273897 | Dalessandro et al. | Aug 2001 | B1 |
6280453 | Kugel et al. | Aug 2001 | B1 |
6299631 | Shalaby | Oct 2001 | B1 |
6312457 | DiMatteo et al. | Nov 2001 | B1 |
6312474 | Francis et al. | Nov 2001 | B1 |
6325810 | Hamilton et al. | Dec 2001 | B1 |
6398797 | Bombard et al. | Jun 2002 | B2 |
6436030 | Rehil | Aug 2002 | B2 |
6454780 | Wallace | Sep 2002 | B1 |
6461368 | Fogarty et al. | Oct 2002 | B2 |
6503257 | Grant et al. | Jan 2003 | B2 |
6514283 | DiMatteo et al. | Feb 2003 | B2 |
6517566 | Hovland et al. | Feb 2003 | B1 |
6551356 | Rousseau | Apr 2003 | B2 |
6592597 | Grant et al. | Jul 2003 | B2 |
6638285 | Gabbay | Oct 2003 | B2 |
6652594 | Francis et al. | Nov 2003 | B2 |
6656193 | Grant | Dec 2003 | B2 |
6669735 | Pelissier | Dec 2003 | B1 |
6677258 | Carroll et al. | Jan 2004 | B2 |
6685714 | Rousseau | Feb 2004 | B2 |
6704210 | Myers | Mar 2004 | B1 |
6723114 | Shalaby | Apr 2004 | B2 |
6726706 | Dominguez | Apr 2004 | B2 |
6736823 | Darois et al. | May 2004 | B2 |
6736854 | Vadurro et al. | May 2004 | B2 |
6746458 | Cloud | Jun 2004 | B1 |
6773458 | Brauker et al. | Aug 2004 | B1 |
6927315 | Heinecke et al. | Aug 2005 | B1 |
7128748 | Mooradian et al. | Oct 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7434717 | Shelton, IV et al. | Oct 2008 | B2 |
7438209 | Hess et al. | Oct 2008 | B1 |
7547312 | Bauman et al. | Jun 2009 | B2 |
7559937 | de la Torre et al. | Jul 2009 | B2 |
7604151 | Hess et al. | Oct 2009 | B2 |
7665646 | Prommersberger | Feb 2010 | B2 |
7669747 | Weisenburgh, II et al. | Mar 2010 | B2 |
7717313 | Bettuchi et al. | May 2010 | B2 |
7722642 | Williamson, IV | May 2010 | B2 |
7744627 | Orban, III et al. | Jun 2010 | B2 |
7776060 | Mooradian | Aug 2010 | B2 |
7793813 | Bettuchi | Sep 2010 | B2 |
7799026 | Schechter et al. | Sep 2010 | B2 |
7823592 | Bettuchi et al. | Nov 2010 | B2 |
7845533 | Marczyk et al. | Dec 2010 | B2 |
7845536 | Viola et al. | Dec 2010 | B2 |
7846149 | Jankowski | Dec 2010 | B2 |
7909224 | Prommersberger | Mar 2011 | B2 |
7950561 | Aranyi | May 2011 | B2 |
7951166 | Orban | May 2011 | B2 |
7967179 | Olson | Jun 2011 | B2 |
7988027 | Olson | Aug 2011 | B2 |
8011550 | Aranyi | Sep 2011 | B2 |
8016177 | Bettuchi | Sep 2011 | B2 |
8016178 | Olson | Sep 2011 | B2 |
8028883 | Stopek | Oct 2011 | B2 |
8062330 | Prommersberger et al. | Nov 2011 | B2 |
8083119 | Prommersberger | Dec 2011 | B2 |
8123766 | Bauman | Feb 2012 | B2 |
8123767 | Bauman | Feb 2012 | B2 |
8146791 | Bettuchi | Apr 2012 | B2 |
8157149 | Olson | Apr 2012 | B2 |
8157151 | Ingmanson | Apr 2012 | B2 |
8167895 | D'Agostino | May 2012 | B2 |
8192460 | Orban | Jun 2012 | B2 |
8210414 | Bettuchi | Jul 2012 | B2 |
8225799 | Bettuchi | Jul 2012 | B2 |
8225981 | Criscuolo et al. | Jul 2012 | B2 |
8231043 | Tarinelli | Jul 2012 | B2 |
8235273 | Olson | Aug 2012 | B2 |
8245901 | Stopek | Aug 2012 | B2 |
8256654 | Bettuchi | Sep 2012 | B2 |
8257391 | Orban | Sep 2012 | B2 |
8276800 | Bettuchi | Oct 2012 | B2 |
8286849 | Bettuchi | Oct 2012 | B2 |
8308042 | Aranyi | Nov 2012 | B2 |
8308045 | Bettuchi | Nov 2012 | B2 |
8308046 | Prommersberger | Nov 2012 | B2 |
8312885 | Bettuchi | Nov 2012 | B2 |
8313014 | Bettuchi | Nov 2012 | B2 |
8348126 | Olson | Jan 2013 | B2 |
8348130 | Shah | Jan 2013 | B2 |
8365972 | Aranyi et al. | Feb 2013 | B2 |
8371491 | Huitema | Feb 2013 | B2 |
8371492 | Aranyi | Feb 2013 | B2 |
8371493 | Aranyi | Feb 2013 | B2 |
8393514 | Shelton, IV | Mar 2013 | B2 |
8408440 | Olson | Apr 2013 | B2 |
8413871 | Racenet | Apr 2013 | B2 |
8424742 | Bettuchi | Apr 2013 | B2 |
8453652 | Stopek | Jun 2013 | B2 |
8453904 | Eskaros et al. | Jun 2013 | B2 |
8453909 | Olson | Jun 2013 | B2 |
8453910 | Bettuchi | Jun 2013 | B2 |
8464925 | Hull et al. | Jun 2013 | B2 |
8474677 | Woodard, Jr. | Jul 2013 | B2 |
8479968 | Hodgkinson | Jul 2013 | B2 |
8485414 | Criscuolo et al. | Jul 2013 | B2 |
8496683 | Prommersberger | Jul 2013 | B2 |
8511533 | Viola | Aug 2013 | B2 |
8512402 | Marczyk | Aug 2013 | B2 |
8529600 | Woodard, Jr. | Sep 2013 | B2 |
8540131 | Swayze | Sep 2013 | B2 |
8551138 | Orban | Oct 2013 | B2 |
8556918 | Bauman | Oct 2013 | B2 |
8561873 | Ingmanson | Oct 2013 | B2 |
8584920 | Hodgkinson | Nov 2013 | B2 |
8590762 | Hess | Nov 2013 | B2 |
8616430 | Prommersberger | Dec 2013 | B2 |
8631989 | Aranyi | Jan 2014 | B2 |
8668129 | Olson | Mar 2014 | B2 |
8684250 | Bettuchi | Apr 2014 | B2 |
20020016626 | DiMatteo et al. | Feb 2002 | A1 |
20020019187 | Carroll et al. | Feb 2002 | A1 |
20020028243 | Masters | Mar 2002 | A1 |
20020052622 | Rousseau | May 2002 | A1 |
20020091397 | Chen | Jul 2002 | A1 |
20020133236 | Rousseau | Sep 2002 | A1 |
20020138152 | Francis et al. | Sep 2002 | A1 |
20020151911 | Gabbay | Oct 2002 | A1 |
20020165559 | Grant et al. | Nov 2002 | A1 |
20020165562 | Grant et al. | Nov 2002 | A1 |
20020165563 | Grant et al. | Nov 2002 | A1 |
20020177859 | Monassevitch et al. | Nov 2002 | A1 |
20030065345 | Weadock | Apr 2003 | A1 |
20030065346 | Evens et al. | Apr 2003 | A1 |
20030083676 | Wallace | May 2003 | A1 |
20030088256 | Conston et al. | May 2003 | A1 |
20030105510 | DiMatteo et al. | Jun 2003 | A1 |
20030114866 | Ulmsten et al. | Jun 2003 | A1 |
20030120284 | Palacios | Jun 2003 | A1 |
20030167064 | Whayne | Sep 2003 | A1 |
20030181927 | Wallace | Sep 2003 | A1 |
20030183671 | Mooradian et al. | Oct 2003 | A1 |
20030208231 | Williamson, IV et al. | Nov 2003 | A1 |
20040034377 | Sharkawy et al. | Feb 2004 | A1 |
20040092960 | Abrams et al. | May 2004 | A1 |
20040093029 | Zubik et al. | May 2004 | A1 |
20040107006 | Francis et al. | Jun 2004 | A1 |
20040116945 | Sharkawy et al. | Jun 2004 | A1 |
20040142621 | Carroll et al. | Jul 2004 | A1 |
20040172048 | Browning | Sep 2004 | A1 |
20040209059 | Foss | Oct 2004 | A1 |
20040215214 | Crews et al. | Oct 2004 | A1 |
20040215219 | Eldridge et al. | Oct 2004 | A1 |
20040215221 | Suyker et al. | Oct 2004 | A1 |
20040254590 | Hoffman et al. | Dec 2004 | A1 |
20040260315 | Dell et al. | Dec 2004 | A1 |
20050002981 | Lahtinen et al. | Jan 2005 | A1 |
20050021026 | Baily | Jan 2005 | A1 |
20050021053 | Heinrich | Jan 2005 | A1 |
20050021085 | Abrams et al. | Jan 2005 | A1 |
20050059996 | Bauman et al. | Mar 2005 | A1 |
20050059997 | Bauman et al. | Mar 2005 | A1 |
20050070929 | Dalessandro et al. | Mar 2005 | A1 |
20050118435 | DeLucia et al. | Jun 2005 | A1 |
20050143756 | Jankowski | Jun 2005 | A1 |
20050149073 | Arani et al. | Jul 2005 | A1 |
20050228446 | Mooradian et al. | Oct 2005 | A1 |
20050245965 | Orban et al. | Nov 2005 | A1 |
20060004407 | Hiles et al. | Jan 2006 | A1 |
20060085034 | Bettuchi | Apr 2006 | A1 |
20060135992 | Bettuchi | Jun 2006 | A1 |
20060173470 | Oray et al. | Aug 2006 | A1 |
20060178683 | Shimoji et al. | Aug 2006 | A1 |
20060212050 | D'Agostino et al. | Sep 2006 | A1 |
20060271104 | Viola et al. | Nov 2006 | A1 |
20070034669 | de la Torre et al. | Feb 2007 | A1 |
20070049953 | Shimoji et al. | Mar 2007 | A2 |
20070123839 | Rousseau et al. | May 2007 | A1 |
20070179528 | Soltz et al. | Aug 2007 | A1 |
20070203509 | Bettuchi | Aug 2007 | A1 |
20070203510 | Bettuchi | Aug 2007 | A1 |
20070246505 | Pace-Floridia et al. | Oct 2007 | A1 |
20080029570 | Shelton et al. | Feb 2008 | A1 |
20080082126 | Murray et al. | Apr 2008 | A1 |
20080110959 | Orban et al. | May 2008 | A1 |
20080125812 | Zubik et al. | May 2008 | A1 |
20080140115 | Stopek | Jun 2008 | A1 |
20080161831 | Bauman et al. | Jul 2008 | A1 |
20080161832 | Bauman et al. | Jul 2008 | A1 |
20080169327 | Shelton et al. | Jul 2008 | A1 |
20080169328 | Shelton | Jul 2008 | A1 |
20080169329 | Shelton et al. | Jul 2008 | A1 |
20080169330 | Shelton et al. | Jul 2008 | A1 |
20080169331 | Shelton et al. | Jul 2008 | A1 |
20080169332 | Shelton et al. | Jul 2008 | A1 |
20080169333 | Shelton et al. | Jul 2008 | A1 |
20080200949 | Hiles | Aug 2008 | A1 |
20080290134 | Bettuchi et al. | Nov 2008 | A1 |
20080308608 | Prommersberger | Dec 2008 | A1 |
20080314960 | Marczyk et al. | Dec 2008 | A1 |
20090001121 | Hess et al. | Jan 2009 | A1 |
20090001122 | Prommersberger et al. | Jan 2009 | A1 |
20090001123 | Morgan et al. | Jan 2009 | A1 |
20090001124 | Hess et al. | Jan 2009 | A1 |
20090001125 | Hess et al. | Jan 2009 | A1 |
20090001126 | Hess et al. | Jan 2009 | A1 |
20090001128 | Weisenburgh, II et al. | Jan 2009 | A1 |
20090001130 | Hess et al. | Jan 2009 | A1 |
20090005808 | Hess et al. | Jan 2009 | A1 |
20090030452 | Bauman et al. | Jan 2009 | A1 |
20090043334 | Bauman et al. | Feb 2009 | A1 |
20090076528 | Sgro | Mar 2009 | A1 |
20090078739 | Viola | Mar 2009 | A1 |
20090095791 | Eskaros et al. | Apr 2009 | A1 |
20090095792 | Bettuchi | Apr 2009 | A1 |
20090120994 | Murray et al. | May 2009 | A1 |
20090134200 | Tarinelli et al. | May 2009 | A1 |
20090206125 | Huitema et al. | Aug 2009 | A1 |
20090206126 | Huitema et al. | Aug 2009 | A1 |
20090206139 | Hall et al. | Aug 2009 | A1 |
20090206141 | Huitema et al. | Aug 2009 | A1 |
20090206142 | Huitema et al. | Aug 2009 | A1 |
20090206143 | Huitema et al. | Aug 2009 | A1 |
20090218384 | Aranyi | Sep 2009 | A1 |
20090277947 | Viola | Nov 2009 | A1 |
20090287230 | D'Agostino et al. | Nov 2009 | A1 |
20100012704 | Tarinelli Racenet et al. | Jan 2010 | A1 |
20100065606 | Stopek | Mar 2010 | A1 |
20100065607 | Orban, III et al. | Mar 2010 | A1 |
20100072254 | Aranyi et al. | Mar 2010 | A1 |
20100147921 | Olson | Jun 2010 | A1 |
20100147922 | Olson | Jun 2010 | A1 |
20100147923 | D'Agostino et al. | Jun 2010 | A1 |
20100243707 | Olson et al. | Sep 2010 | A1 |
20100243708 | Aranyi et al. | Sep 2010 | A1 |
20100243711 | Olson et al. | Sep 2010 | A1 |
20100249805 | Olson et al. | Sep 2010 | A1 |
20100264195 | Bettuchi | Oct 2010 | A1 |
20100282815 | Bettuchi et al. | Nov 2010 | A1 |
20110024476 | Bettuchi et al. | Feb 2011 | A1 |
20110024481 | Bettuchi et al. | Feb 2011 | A1 |
20110036894 | Bettuchi | Feb 2011 | A1 |
20110042442 | Viola et al. | Feb 2011 | A1 |
20110046650 | Bettuchi | Feb 2011 | A1 |
20110057016 | Bettuchi | Mar 2011 | A1 |
20110087279 | Shah et al. | Apr 2011 | A1 |
20120080484 | Morgan et al. | Apr 2012 | A1 |
20120187179 | Gleiman | Jul 2012 | A1 |
20120273547 | Hodgkinson et al. | Nov 2012 | A1 |
20120289979 | Eskaros et al. | Nov 2012 | A1 |
20130037596 | Bear et al. | Feb 2013 | A1 |
20130105548 | Hodgkinson et al. | May 2013 | A1 |
20130105553 | Racenet | May 2013 | A1 |
20130112732 | Aranyi | May 2013 | A1 |
20130112733 | Aranyi | May 2013 | A1 |
20130146643 | Schmid et al. | Jun 2013 | A1 |
20130153633 | Casasanta | Jun 2013 | A1 |
20130153634 | Carter | Jun 2013 | A1 |
20130153635 | Hodgkinson | Jun 2013 | A1 |
20130153638 | Carter | Jun 2013 | A1 |
20130153639 | Hodgkinson | Jun 2013 | A1 |
20130153640 | Hodgkinson | Jun 2013 | A1 |
20130181031 | Olson | Jul 2013 | A1 |
20130193186 | Racenet | Aug 2013 | A1 |
20130193190 | Carter | Aug 2013 | A1 |
20130193191 | Stevenson | Aug 2013 | A1 |
20130193192 | Casasanta | Aug 2013 | A1 |
20130209659 | Racenet | Aug 2013 | A1 |
20130214030 | Aronhalt et al. | Aug 2013 | A1 |
20130221062 | Hodgkinson | Aug 2013 | A1 |
20130221063 | Aronhalt et al. | Aug 2013 | A1 |
20130221064 | Aronhalt et al. | Aug 2013 | A1 |
20130221065 | Aronhalt et al. | Aug 2013 | A1 |
20130240600 | Bettuchi | Sep 2013 | A1 |
20130240601 | Bettuchi | Sep 2013 | A1 |
20130240602 | Stopek | Sep 2013 | A1 |
20130277411 | Hodgkinson | Oct 2013 | A1 |
20130306707 | Viola | Nov 2013 | A1 |
20130310873 | Prommersberger | Nov 2013 | A1 |
20130327807 | Olson | Dec 2013 | A1 |
20140012317 | Orban | Jan 2014 | A1 |
20140021242 | Hodgkinson | Jan 2014 | A1 |
20140027490 | Marczyk | Jan 2014 | A1 |
20140034704 | Ingmanson | Feb 2014 | A1 |
20140048580 | Merchant | Feb 2014 | A1 |
20140061280 | Ingmanson | Mar 2014 | A1 |
20140061281 | Hodgkinson | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
1 99 24 311 | Nov 2000 | DE |
199 24 311 | Nov 2000 | DE |
0 594 148 | Apr 1994 | EP |
0 327 022 | Apr 1995 | EP |
0 667 119 | Aug 1995 | EP |
1 064 883 | Jan 2001 | EP |
1 256 317 | Nov 2002 | EP |
1 520 525 | Apr 2005 | EP |
1 621 141 | Feb 2006 | EP |
1 702 570 | Sep 2006 | EP |
1 759 640 | Mar 2007 | EP |
1 815 804 | Aug 2007 | EP |
1 825 820 | Aug 2007 | EP |
1 929 958 | Jun 2008 | EP |
1 994 890 | Nov 2008 | EP |
2 005 894 | Dec 2008 | EP |
2 005 895 | Dec 2008 | EP |
2 008 595 | Dec 2008 | EP |
2 090 231 | Aug 2009 | EP |
2 090 244 | Aug 2009 | EP |
2 090 252 | Aug 2009 | EP |
2 198 787 | Jun 2010 | EP |
2 236 098 | Oct 2010 | EP |
2 311 386 | Apr 2011 | EP |
2 462 880 | Jun 2012 | EP |
2 517 637 | Oct 2012 | EP |
2 620 106 | Jul 2013 | EP |
2 630 922 | Aug 2013 | EP |
2 644 125 | Oct 2013 | EP |
2000-166933 | Jun 2000 | JP |
2002-202213 | Jul 2002 | JP |
07-124166 | May 2007 | JP |
WO 9005489 | May 1990 | WO |
WO 9516221 | Jun 1995 | WO |
WO 9622055 | Jul 1996 | WO |
WO 9701989 | Jan 1997 | WO |
WO 9713463 | Apr 1997 | WO |
WO 9817180 | Apr 1998 | WO |
WO 9945849 | Sep 1999 | WO |
WO 03082126 | Oct 2003 | WO |
WO 03088845 | Oct 2003 | WO |
WO 03094743 | Nov 2003 | WO |
WO 03105698 | Dec 2003 | WO |
WO 2005079675 | Sep 2005 | WO |
WO 2006023578 | Mar 2006 | WO |
WO 2006044490 | Apr 2006 | WO |
WO 2006083748 | Aug 2006 | WO |
WO 2007121579 | Nov 2007 | WO |
WO 2008057281 | May 2008 | WO |
WO 2008109125 | Sep 2008 | WO |
WO 2010075298 | Jul 2010 | WO |
WO 2012044848 | Apr 2012 | WO |
Entry |
---|
International Search Report corresponding to European Application No. EP 11 18 8309.6, completed on Dec. 15, 2011 and mailed on Jan. 12, 2012; 3 pages. |
International Search Report corresponding to European Application No. EP 12 15 2229.6, completed on Feb. 23, 2012 and mailed on Mar. 1, 2012; 4 pages. |
International Search Report corresponding to European Application No. EP 12 15 0511.9, completed on Apr. 16, 2012 and mailed on Apr. 24, 2012; 7 pages. |
International Search Report corresponding to European Application No. EP 12 15 2541.4, completed on Apr. 23, 2012 and mailed on May 3, 2012; 10 pages. |
International Search Report corresponding to European Application No. EP 12 15 8861.0, completed on Jul. 17, 2012 and mailed on Jul. 24, 2012; 9 pages. |
International Search Report corresponding to European Application No. EP 12 16 5878.5, completed on Jul. 24, 2012 and mailed on Aug. 6, 2012; 8 pages. |
International Search Report corresponding to European Application No. EP 06 00 4598, completed on Jun. 22, 2006; 2 pages. |
International Search Report corresponding to European Application No. EP 06 01 6962.0, completed on Jan. 3, 2007 and mailed on Jan. 11, 2007; 10 pages. |
International Search Report corresponding to International Application No. PCT/US05/36740, completed on Feb. 20, 2007 and mailed on Mar. 23, 2007; 8 pages. |
International Search Report corresponding to International Application No. PCT/US2008/002981, completed on Jun. 9, 2008 and mailed on Jun. 26, 2008; 2 pages. |
International Search Report corresponding to European Application No. EP 08 25 1779, completed on Jul. 14, 2008 and mailed on Jul. 23, 2008; 5 pages. |
International Search Report corresponding to European Application No. EP 08 25 1989.3, completed on Mar. 11, 2010 and mailed on Mar. 24, 2010; 3 pages. |
International Search Report corresponding to European Application No. EP 10 25 0715.9, completed on Jun. 30, 2010 and mailed on Jul. 20, 2010; 3 pages. |
International Search Report corresponding to European Application No. EP 05 80 4382.9, completed on Oct. 5, 2010 and mailed on Oct. 12, 2010; 3 pages. |
International Search Report corresponding to European Application No. EP 10 25 1437.9, completed on Nov. 22, 2010 and mailed on Dec. 16, 2010; 3 pages. |
International Search Report corresponding to European Application No. EP 09 25 2897.5, completed on Feb. 7, 2011 and mailed on Feb. 15, 2011; 3 pages. |
International Search Report corresponding to European Application No. EP 10 25 0642.5, completed on Mar. 25, 2011 and mailed on Apr. 4, 2011; 4 pages. |
Extended European Search Report corresponding to EP No. 12 19 1035.0, completed Jan. 11, 2013 and mailed Jan. 18, 2013; 7 pages. |
Extended European Search Report corresponding to EP No. 12 18 6175.1, completed Jan. 15, 2013 and mailed Jan. 23, 2013; 7 pages. |
Extended European Search Report corresponding to EP No. 12 19 1114.3, completed Jan. 23, 2013 and mailed Jan. 31, 2013; 10 pages. |
Extended European Search Report corresponding to EP No. 12 19 2224.9, completed Mar. 14, 2013 and mailed Mar. 26, 2013; 8 pages. |
Extended European Search Report corresponding to EP No. 12 19 6911.7, completed Apr. 18, 2013 and mailed Apr. 24, 2013; 8 pages. |
Extended European Search Report corresponding to EP 12 19 1035.0, completed Jan. 11, 2013 and mailed Jan. 18, 2013; 7 pages. |
Extended European Search Report corresponding to EP 12 19 6904.2, completed Mar. 28, 2013 and mailed Jul. 26, 2013; 8 pages. |
Extended European Search Report corresponding to EP 12 19 8749.9, completed May 21, 2013 and mailed May 31, 2013; 8 pages. |
Extended European Search Report corresponding to EP 07 00 5842.5, completed May 13, 2013 and mailed May 29, 2013; 7 pages. |
Extended European Search Report corresponding to EP 12 19 8776.2, completed May 16, 2013 and mailed May 27, 2013; 8 pages. |
Extended European Search Report corresponding to EP 13 15 6297.7, completed Jun. 4, 2013 and mailed Jun. 13, 2013; 7 pages. |
Extended European Search Report corresponding to EP 13 17 3985.6, completed Aug. 19, 2013 and mailed Aug. 28, 2013; 6 pages. |
Extended European Search Report corresponding to EP 13 17 3986.4, completed Aug. 20, 2013 and mailed Aug. 29, 2013; 7 pages. |
Extended European Search Report corresponding to EP 13 17 7437.4, completed Sep. 11, 2013 and mailed Sep. 19, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 17 7441.6, completed Sep. 11, 2013 and mailed Sep. 19, 2013; (6 pp). |
Extended European Search Report corresponding to EP 07 86 1534.1, completed Sep. 20, 2013 and mailed Sep. 30, 2013; (5 pp). |
Extended European Search Report corresponding to EP 13 18 3876.5, completed Oct. 14, 2013 and mailed Oct. 24, 2013; (5 pp). |
Extended European Search Report corresponding to EP 13 17 1856.1, completed Oct. 29, 2013 and mailed Nov. 7, 2013; (8 pp). |
Extended European Search Report corresponding to EP 13 18 0373.6, completed Oct. 31, 2013 and mailed Nov. 13, 2013; (7 pp). |
Extended European Search Report corresponding to EP 13 18 0881.8, completed Nov. 5, 2013 and mailed Nov. 14, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 17 6895.4, completed Nov. 29, 2013 and mailed Dec. 12, 2013; (5 pp). |
Extended European Search Report corresponding to EP 13 18 2911.1, completed Dec. 2, 2013 and mailed Dec. 16, 2013; (8 pp). |
Extended European Search Report corresponding to EP 10 25 1795.0, completed Dec. 11, 2013 and mailed Dec. 20, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 18 7911.6, completed Jan. 22, 2014 and mailed Jan. 31, 2014; (8 pp). |
Number | Date | Country | |
---|---|---|---|
20120273547 A1 | Nov 2012 | US |