Circular stapler with tissue gap indicator assembly

Information

  • Patent Grant
  • 10973522
  • Patent Number
    10,973,522
  • Date Filed
    Tuesday, October 20, 2015
    9 years ago
  • Date Issued
    Tuesday, April 13, 2021
    3 years ago
Abstract
A surgical stapler includes a handle assembly, a central body extending distally from the handle assembly, an anvil assembly and a cartridge assembly. The handle assembly includes a stationary handle defining a window and a tissue gap indicator assembly that includes a slide that supports indicia that is visible through the window. The indicator assembly includes a lever which couples the slide to a drive screw of the surgical stapler to translate movement of the drive screw into movement of the slide. The lever is configured and adapted to translate movement of the drive screw over a distance of X1 into movement of the slide over a distance of X2, wherein X2 is greater than X1.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a U.S. National Stage Application filed under 35 U.S.C. § 371(a) which claims the benefit of and priority to International Patent Application Serial No. PCT/CN2015/092271, filed Oct. 20, 2015, the entire disclosure of which is incorporated by reference herein.


BACKGROUND
1. Technical Field

The present disclosure relates to surgical staplers, and more particularly, to circular staplers including tissue gap indicator assemblies.


2. Background of Related Art

Anastomosis is the surgical joining of separate hollow organ sections. In known circular anastomosis procedures, two ends of organ sections are joined by means of a surgical stapler which drives a circular array of staples through each organ section and simultaneously cores any tissue interior of the driven circular array of staples to free a tubular passage. Examples of such devices are described in U.S. Pat. Nos. 7,234,624, 6,945,444, 6,053,390, 5,568,579, 5,119,983, 4,646,745, 4,576,167, and 4,473,077, the content of each of which is incorporated herein by reference in its entirety.


Typically, a circular stapling device has an elongated shaft having a handle portion at a proximal end and a staple cartridge at a distal end. An anvil assembly including an anvil rod with an attached anvil head is mounted to the distal end of the device. The anvil is approximated to clamp tissue between a staple holding component of the staple cartridge and an anvil plate of the anvil assembly. The clamped tissue is stapled by actuation of the handle portion to drive circular arrays of staples through the clamped tissue. Concurrently, an annular knife is advanced by actuation of the handle portion to core tissue inboard of the staple arrays.


Circular stapling devices that have tissue gap indicator assemblies for providing a visual indication of the size of the gap defined between the staple holding component of the staple cartridge and the anvil plate of the anvil assembly are conventional. In such devices, the indicator assembly typically identifies to a clinician when the staple cartridge and the anvil assembly have been approximated within a fire-ready zone, i.e., the zone in which the cartridge assembly and anvil assembly have been approximated sufficiently to allow for the proper formation of staples. Because of the small size of the staples being ejected and thus, the small range of tissue gaps that allow for proper staple formation, visualization of the degree of approximation within the fire-ready zone by a clinician is limited.


It would be advantageous to provide an improved tissue indicator assembly that allows for better visualization of the tissue gap size as the anvil and cartridge assemblies are approximated within the fire-ready zone.


SUMMARY

The present disclosure in one aspect is directed to a surgical stapler including a handle assembly having a stationary handle defining a window and a firing trigger. A central body extends distally from the handle assembly and a cartridge assembly is supported on a distal end of the central body. An anvil assembly is supported adjacent the distal end of the central body and is movable in relation to the cartridge assembly between spaced and approximated positions. An approximation mechanism includes a longitudinally movable drive screw that is operatively connected to the anvil assembly such that longitudinal movement of the drive screw effects movement of the anvil assembly in relation to the cartridge assembly between the spaced and approximated positions. The drive screw supports an abutment. An indicator assembly includes a slide and a lever. The slide has indicia visible through the window in the stationary handle. The lever is operatively engaged with the slide and positioned to engage the abutment on the drive screw when the drive screw is moved proximally within the stationary handle to translate longitudinal movement of the drive screw into longitudinal movement of the slide and to effect longitudinal movement of the indicia within the window. The lever is engaged with the abutment and the slide and is configured to translate movement of the abutment over a distance of X1 into movement of the slide over a distance of X2, wherein X2 is greater than X1.


In embodiments, the indicator assembly further includes a biasing member positioned to urge the slide distally within the stationary handle.


In some embodiments, the lever is pivotally mounted within the stationary housing about a post defining a pivot axis and includes an engagement surface positioned to engage the abutment that is spaced from the pivot axis of the post by a distance of R1.


In certain embodiments, the lever includes a protrusion that is operatively engaged with the slide and is spaced from the pivot axis defined by the post by a distance of R2, wherein R2 is greater than R1.


In embodiments, the engagement surface of the lever includes a first engagement member and a second engagement member. The first engagement member is spaced from the pivot axis defined by the post the distance R1 and the second engagement member is spaced from the pivot axis defined by the post a distance R1′, wherein the R1′ is greater than R1 but less than R2.


In some embodiments, the abutment defines a curved abutment surface.


In certain embodiments, the slide has a proximal portion, a central portion, and a distal portion and the central portion defines a channel that receives the lever.


In embodiments, the central portion of the slide defines a vertical groove and the lever includes a protrusion received within the vertical groove. The protrusion is movable within the vertical groove to facilitate longitudinal movement of the slide when the lever is pivoted.


In some embodiments, the biasing member is positioned about the proximal portion of the slide.


In certain embodiments, the indicia is formed on the distal portion of the slide.


In embodiments, the indicia includes a colored line.


In embodiments, the stationary handle defines second indicia positioned about the window, the second indicia being associated with the indicia on the slide to identify to a clinician when the cartridge and anvil assemblies are approximated into a fire-ready zone.


In some embodiments, the approximation mechanism includes a rotation knob that is rotatable in relation to the stationary handle to effect longitudinal movement of the drive screw within the stationary handle.


In certain embodiments, the indicator assembly includes a non-rigid link having a first end attached to a distal end of the lever and a second end attached to a proximal end of the slide.


In embodiments, the link is supported on a support post positioned between the distal end of the lever and the proximal end of the slide.


In some embodiments, the lever is pivotally mounted within the stationary handle about a post defining a pivot axis and includes a proximal end defining an engagement surface. The post is positioned between the proximal and distal ends of the lever. The engagement surface is positioned a distance of R1 from the pivot axis of the post and the distal end of the lever that is attached to the non-rigid link is positioned a distance of R2 from the pivot axis of the post, wherein R2 is greater than R1.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of a surgical stapler including the presently disclosed tissue gap indicator assembly are described herein below with reference to the drawings, wherein:



FIG. 1 is a perspective view of a surgical stapler with one embodiment of the presently disclosed tissue gap indicator assembly;



FIG. 2 is an enlarged view of the area of detail of FIG. 1;



FIG. 3 is a side perspective view of the stationary handle of the surgical stapler shown in FIG. 1 with a body half-section removed to expose the screw stop and tissue gap indicator assembly;



FIG. 3A is a side perspective, cross-sectional, cutaway view of the indicator lever and indicator slide of the indicator assembly shown in FIG. 3;



FIG. 4 is a top view of the stationary handle of the surgical stapler shown in FIG. 1 illustrating the surgical stapler prior to approximation of the cartridge and anvil assemblies into a fire-ready zone;



FIG. 4A is a side cross-sectional, cutaway view of the indicator lever and indicator slide of the indicator assembly shown in FIG. 3 prior to approximation of the cartridge and anvil assemblies into a fire-ready zone;



FIG. 5 is a top view of the stationary handle of the surgical stapler shown in FIG. 1 illustrating the surgical stapler in a maximum tissue gap position of the fire-ready zone;



FIG. 5A is a side cross-sectional, cutaway view of the indicator lever and indicator slide of the indicator assembly shown in FIG. 3 after approximation of the cartridge and anvil assemblies into the maximum tissue gap position of the fire-ready zone;



FIG. 6 is a top view of the stationary handle of the surgical stapler shown in FIG. 1 illustrating the surgical stapler in a minimum tissue gap position of the fire-ready zone;



FIG. 6A is a side cross-sectional, cutaway view of the indicator lever and indicator slide of the indicator assembly shown in FIG. 3 after approximation of the cartridge and anvil assemblies into the minimum tissue gap position of the fire-ready zone;



FIG. 7 is a side cross-sectional view of the stationary handle of the surgical stapler shown in FIG. 1 as the indictor slide is returned to a unactuated position; and



FIG. 8 is a side perspective view of another embodiment of the presently disclosed surgical stapler with a tissue gap indicator assembly.





DETAILED DESCRIPTION OF EMBODIMENTS

The presently disclosed surgical stapler will now be described in detail with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. In this description, the term “proximal” is used generally to refer to the portion of the apparatus that is closer to a clinician, while the term “distal” is used generally to refer to the portion of the apparatus that is farther from the clinician. In addition, the term “endoscopic” is used generally to refer to endoscopic, laparoscopic, arthroscopic, and any other surgical procedure performed through a small incision or a cannula inserted into a patient's body. Finally, the term clinician is used generally to refer to medical personnel including doctors, nurses, and support personnel.


The presently disclosed surgical stapler includes a handle assembly supporting an indicator assembly that includes an indicator slide and an indicator lever. The handle assembly defines a window that allows for visualization of the indicator slide. The indicator slide has indicia that is visible through the window in the handle assembly. The indicator lever is operatively engaged with the indicator slide to effect movement of the indicator slide from a non-actuated position within the handle assembly to an actuated position within the handle assembly. As the indicator slide moves between the non-actuated position and the actuated position, the indicia on the indicator slide moves beneath the window and provides an indication to a clinician as to the existing tissue gap defined between an anvil assembly and a cartridge assembly and whether the anvil and cartridge assemblies are in a fire-ready zone. In the presently disclosed indicator assembly, the indictor lever interconnects the indicator lever and a drive screw and amplifies to provide movement of the indicator slide to allow a clinician to more easily visualize approximation of the anvil and cartridge assemblies within the firing zone.



FIG. 1 illustrates one embodiment of the presently disclosed surgical stapler 10. Briefly, surgical stapler 10 includes a handle assembly 12, a central body or elongated portion 14, a shell or cartridge assembly 16, and an anvil assembly 18. Although the central body portion 14 is shown to be slightly curved, it is to be understood that the central body portion 14 can be straight or have any degree of curvature suitable to perform a desired surgical procedure.


Except where otherwise noted, the components of stapler 10 are generally formed from thermoplastics including polycarbonates, and metals including stainless steel and aluminum. The particular material selected to form a particular component will depend upon the strength requirements of the particular component and upon whether the component is a reusable or disposable component. For example, the anvil may be formed from a metal such as stainless steel, whereas portions of handle assembly 12 may be formed from thermoplastic such as a polycarbonate. In addition, the handle assembly 12 may be formed of an autoclavable material to allow for reuse whereas portions of the cartridge assembly may be formed of thermoplastics to allow for disposal. It is envisioned that other materials having the requisite strength requirements which are suitable for surgical use may be used to form the components of surgical stapler 10.


Handle assembly 12 includes a stationary handle 22, a firing trigger 24, an approximation knob 26, an indicator assembly 28, and a lockout mechanism 30. The approximation knob 26 functions to retract and advance a drive screw 40 (FIG. 3) to advance or retract the anvil assembly 18 in relation to the cartridge assembly 16 between spaced and approximated positions. The lockout mechanism 30 functions to prevent actuation of the firing trigger 24 until the anvil assembly 18 and the cartridge assembly 16 have been approximated into a firing zone, i.e., a position in which the tissue gap between the anvil and cartridge assemblies is reduced to allow for proper formation of staples. The firing trigger 24 functions to actuate a pusher (not shown) to eject staples from cartridge assembly 16 after the cartridge and anvil assemblies 16 and 18, respectively have been approximated within the firing zone.


Each of the components of handle assembly 12 identified above are substantially as described in U.S. Pat. No. 7,303,106 (“'106 patent”) entitled “Surgical Stapling Device With Visual Indicator” which issued on Dec. 4, 2007. The '106 patent is incorporated herein by reference in its entirety. Accordingly, only those components of the handle assembly 12 that interact with the presently disclosed indicator assembly will be described in further detail herein. The remaining components and assemblies will not be described in further detail herein.


Referring to FIG. 2, the anvil assembly 18 includes an anvil shaft or center rod 32 and an anvil head 34. In embodiments, the anvil head 34 is fixedly mounted to a distal end of anvil shaft 32. Alternatively, the anvil head 34 may be pivotally mounted to the distal end of anvil shaft 32 such that the anvil head 34 can move between an operative non-tilted position to a tilted position (not shown). This is described in detail in the '106 patent.


The cartridge assembly 16 is secured to the distal end of central body portion 14 of the surgical stapler 10 and includes a shell or housing 38. The housing 38 supports a pusher (not shown), a knife (not shown), and a staple guide 43 housing one or more rows of staples. Details of the components of the cartridge assembly 16 are provided in the '106 patent which is incorporated herein by reference in its entirety.


Referring to FIGS. 3 and 3A, the stationary handle 22 of the handle assembly 12 includes a housing 44 that defines a window 48 and supports a tissue gap indicator assembly 50. The tissue gap indicator assembly 50 includes a slide 52, a lever 54, and a biasing member 56. The slide 52 includes a proximal portion 60, a central portion 62, and a distal portion 64. The proximal portion 60 of the slide 52 is supported within a cutout 66a of a bracket 66 that is fixedly secured to an inner wall of the housing 44 of the stationary handle 22. The central portion 62 defines a proximal shoulder 68, a channel 70 that receives the lever 54 as discussed in detail below, and a vertical groove 72. The biasing member 56 is positioned between the bracket 66 and the proximal shoulder 68 of the central portion 62 of the slide 52 to urge the slide 52 in a distal direction to an unactuated position. The distal portion 64 of the slide 52 supports indicia 80 which is positioned beneath the window 48 of the housing 44 of the stationary handle 22. In embodiments, the indicia 80 may include a colored line, e.g., a black line. In some embodiments, the indicia 80 may include a raised protrusion that extends at least partly into the window 48. The raised protrusion may be linear and colored, e.g., a raised black line. The slide 52 is movable from a distal position in which the indicia 80 is positioned at the distal end of the window 48 to a proximal position in which the indicia 80 is positioned at the proximal end of the window 48 as described in detail below.


As discussed above, the lever 54 is supported in the channel 70 of the central portion 62 of the slide 52. The lower portion of the lever 54 is pivotally supported within the housing 44 of the stationary handle 22 by a post 82. The upper portion of the lever 54 supports a pair of radially extending protrusions 84 that are received within the vertical grooves 72 defined in the outer walls defining the channel 70 and spaced from the post 82. The vertical grooves 72 allow for rotatable or pivotal movement of the lever 54 to facilitate longitudinal movement of the slide 52. The lever 54 also defines an engagement surface 86 that is positioned near to the post 82. In embodiments, the engagement surface 86 includes two engagement members 86a and 86b which are described in detail below.


As described above, the approximation knob 26 functions to retract and advance a drive screw 40 to advance or retract the anvil assembly 18 in relation to the cartridge assembly 16 between spaced and approximated positions. A screw stop 90 is fixedly supported on the drive screw 40. The screw stop 90 includes an abutment 92 that is positioned to engage the engagement surface 86 of the lever 54 when the drive screw 40 is moved from an advanced position towards a retracted position to move the anvil assembly 18 and the cartridge assembly 16 from the spaced position towards the approximated position. The abutment 92 has a curved engagement surface 92a that allows the abutment 92 to transition between the first and second engagement members 86a and 86b of the lever 54 as the abutment 92 pivots the lever 54 about the post 82.


Referring also to FIGS. 4 and 4A, when the anvil assembly 18 and cartridge assembly 16 are in a spaced position, the abutment 92 is positioned distally of the engagement surface 86 of the lever 54. In this position, the biasing member 56 of the indicator assembly 50 urges the slide 52 distally to position the indicia 80 in the distal end of the window 48. Since the protrusions 84 on the lever 54 are received in the vertical grooves 72 of the central portion 62 of the slide 52, when the slide is urged to its distal-most or unactuated position, the lever 54 is pivoted in a clockwise direction to the position viewed in FIG. 3.


As shown in FIG. 3, outer edges of the housing 44 of the stationary housing 22 defining the window 48 may include indicia 96. Indicia 96 is positioned to align with the indicia 80 to indicate to a clinician when the anvil assembly 18 and cartridge assembly 16 are in a fire-ready zone, i.e., the zone in which the cartridge and anvil assemblies 16, 18, respectively, are approximated sufficiently to facilitate the proper formation of staples. The indicia 96 on the housing 44 may include a colored band 96a that is positioned to align with the indicia 80. When the indicia 80 is moved to a position within the band 96a, an indication is provided to the clinician that the cartridge and anvil assemblies 16, 18 are sufficiently approximated and are in the fire-ready zone.


Referring to FIGS. 5 and 5A, when the drive screw 40 is retracted to begin approximation of the cartridge and anvil assemblies 16, 18 (FIG. 1), the abutment 92 of the screw stop 90 moves towards and engages the first engagement member 86a of the engagement surface 86 of the lever 54 to initiate pivotal movement of the lever 54 about the post 82 in a counter-clockwise direction as viewed in FIG. 5A. As the lever 54 pivots, the protrusions 86 of the lever 54 that are received in the vertical grooves 72, engage the walls defining the vertical grooves 72 to move the slide 52 longitudinally in a proximal direction to move the indicia 80 within the window 48. As shown in FIG. 5, when a predetermined degree of approximation is reached, the indicia 80 will become aligned with a proximal end of the band 96a to indicate to a clinician that the cartridge and anvil assemblies 16, 18 have reached a maximum gap position within the fire-ready zone.


Referring to FIGS. 6 and 6A, as the drive screw 40 is retracted further to move the cartridge and anvil assemblies 16, 18 towards the fully approximated position, the lever 54 continues to pivot in a counter-clockwise direction as viewed in FIG. 6A. At some point in time during approximation of the cartridge and anvil assemblies 16, 18, the abutment 92 on the screw stop 90 will disengage from the first engagement member 86a of the lever 54 and move into engagement with the second engagement member 86b of the lever 54 to continue pivotal movement of the lever 54. As the lever 54 is pivoted, the protrusions 84 on the lever 54 that are received in the vertical grooves 72 of the central portion 62 of the slide 52 continue to urge the slide 52 proximally against the force of the biasing member 56 to move the indicia 80 to the proximal end of the window 46 of the stationary housing 22. As shown in FIG. 5, when the cartridge and anvil assemblies 16 and 18 are fully approximated, the indicia 80 will become aligned with a distal end of the band 96a to indicate to a clinician that the cartridge and anvil assemblies 16, 18 have reached a minimum gap position within the fire-ready zone.


Referring to FIG. 6A, the radii R1 and R1′ defined between the central axis of the post 82 and the engagement surfaces 86a and 86b, respectively, of the lever 54 is substantially smaller than the radius R2 defined between the central axis of the post 82 and the protrusions 84. As such, as the abutment 92 of the screw stop 90 is moved a longitudinal distance of X1 to pivot the lever 54 about the axis defined by the post 82, pivotal movement of the lever 54 will effect longitudinal movement of the slide 52 over a greater distance X2. By providing a lever 54 that has engagement members 86a and 86b spaced closer to the pivot axis of the lever 54 than the protrusions 84 that drive the slide 52, the longitudinal movement of the slide 52 effected by the longitudinal movement of the abutment 92 of the screw stop 90 and drive screw 40 will be multiplied by a factor of R2/R1 or R2/R1′ to allow for a larger distance of movement of the indicia 80 within the window 48 as the cartridge and anvil assemblies 16, 18 are approximated through the fire-ready zone. This allows a clinician to better visualize the progression of approximation of the cartridge and anvil assemblies through the fire-ready zone.


Referring to FIG. 7, when the drive screw 40 is moved distally to move the cartridge and anvil assemblies 16, 18 from the approximated position to the spaced position, the abutment 92 of the screw stop 90 moves distally with the drive screw 40 and moves away from the lever 54. As the abutment 92 moves distally away from the lever 54, the biasing spring 56 urges the slide 52 distally. As discussed above, when the slide 52 moves distally, the lever 54, with the protrusions 84 received in the vertical grooves 72 of the slide 52, is pivoted in a clockwise direction as viewed in FIG. 7. Distal movement of the slide 52 effects movement of the indicia 80 back to the distal end of the window 48.



FIG. 8 illustrates an alternative embodiment of the presently disclosed tissue gap indicator assembly for multiplying the distance of movement of the slide shown generally as 150. Indicator assembly 150 includes a slide 152, a lever 154, a biasing member 156, and a link 158. In embodiments, the link is a non-rigid member, e.g., string, rope, cable, or the like. The slide 152 has a proximal portion 160 that extends through the cutout 66a formed in the bracket 66, a central portion 162 defining a shoulder 168, and a distal portion 164 that supports indicia 180 which is positioned beneath the window 48 of the housing 44 of the stationary handle 22. The lever 154 is pivotally supported about a post 182 supported within the housing 44 of the stationary handle 22 and includes a first end 186 having an engagement member 186a and a second end 186b secured to a proximal end of the link 158. The link 158 extends over a support post 188 that is fixedly supported within the housing 44 of the stationary handle 22 and has a distal end secured to a proximal end of the proximal portion 160 of the slide 152. The biasing member 156 is positioned about the proximal portion 160 of the slide 152 between the shoulder 168 and the bracket 66 to urge the slide 152 distally within the stationary handle 22.


In use, when the drive screw 40 is retracted to approximate the cartridge and anvil assemblies 16, 18 (FIG. 1), the abutment 92 of the screw stop 90 moves toward and engages the engagement member 186a of the lever 154 to initiate pivotal movement of the lever 154 about the post 182 in a clockwise direction as viewed in FIG. 8. As the lever 154 pivots about the post 182, the link 158 is pulled downwardly over the support post 188 to pull the slide 152 longitudinally in a proximal direction to move the indicia 180 proximally within the window 48. As illustrated, the distance between the pivot axis of the lever 154, and the engagement member 186a of the lever 154 is shorter than the distance between the pivot axis of the lever 152 and the second end 186b of the lever 154 that is secured to a proximal end of the link 158. As such, when the abutment 92 engages the engagement member 186a of the lever 154 and the lever 154 is pivoted about the post 182, longitudinal movement of the slide 152 effected by the pivotal movement of the lever 154 is amplified or multiplied such that the distance of movement of the indicia 180 within the window 48 as the cartridge and anvil assemblies 16, 18 are approximated through the fire-ready zone is greater than the distance of movement of the abutment 92.


Persons skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments. It is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another without departing from the scope of the present disclosure. As well, one skilled in the art will appreciate further features and advantages of the disclosure based on the above-described embodiments. Accordingly, the disclosure is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.

Claims
  • 1. A surgical stapler comprising: a handle assembly including a stationary handle and a firing trigger, the stationary handle defining a window;a central body extending distally from the handle assembly;a cartridge assembly supported on a distal end of the central body;an anvil assembly supported adjacent the distal end of the central body, the anvil assembly being movable in relation to the cartridge assembly between spaced and approximated positions;an approximation mechanism including a drive screw that is longitudinally movable, the drive screw being operatively connected to the anvil assembly such that longitudinal movement of the drive screw effects movement of the anvil assembly in relation to the cartridge assembly between the spaced and approximated positions, the drive screw supporting an abutment; andan indicator assembly including a slide and a lever, the slide having indicia visible through the window in the stationary handle, the lever being operatively engaged with the slide and positioned to engage the abutment on the drive screw when the drive screw is moved proximally within the stationary handle to translate longitudinal movement of the drive screw into longitudinal movement of the slide to effect longitudinal movement of the indicia within the window, wherein the lever is engaged with the abutment and is configured to translate movement of the abutment over a distance of X1 into movement of the slide over a distance of X2, wherein X2 is greater than X1.
  • 2. The surgical stapler according to claim 1, wherein the indicator assembly further includes a biasing member, the biasing member being positioned to urge the slide distally within the stationary handle.
  • 3. The surgical stapler according to claim 1, wherein the lever is pivotally mounted within the stationary housing about a post defining a pivot axis, the lever having an engagement surface spaced from the pivot axis of the post by a distance of R1, the engagement surface being positioned to engage the abutment.
  • 4. The surgical stapler according to claim 3, wherein the lever includes a protrusion that is operatively engaged with the slide, the protrusion being spaced from the pivot axis defined by the post by a distance of R2, wherein R2 is greater than R1.
  • 5. The surgical stapler according to claim 1, wherein the lever includes a first engagement member and a second engagement member, the first engagement member being spaced from the pivot axis defined by the post the distance R1 and the second engagement member being spaced from the pivot axis defined by the post a distance R1′, wherein the R1′ is greater than R1 but less than R2.
  • 6. The surgical stapler according to claim 5, wherein the abutment defines a curved abutment surface.
  • 7. The surgical stapler according to claim 2, wherein the slide has a proximal portion, a central portion, and a distal portion, the central portion defining a channel that receives the lever.
  • 8. The surgical stapler according to claim 7, wherein the central portion of the slide defines a vertical groove and the lever includes a protrusion received within the vertical groove, the protrusion being movable within the vertical groove to facilitate longitudinal movement of the slide when the lever is pivoted.
  • 9. The surgical stapler according to claim 7, wherein the biasing member is positioned about the proximal portion of the slide.
  • 10. The surgical stapler according to claim 7, wherein the indicia is formed on the distal portion of the slide.
  • 11. The surgical stapler according to claim 10, wherein the indicia includes a colored line.
  • 12. The surgical stapler according to claim 11, wherein the stationary handle defines second indicia positioned about the window, the second indicia being associated with the indicia on the slide to identify to a clinician when the cartridge and anvil assemblies are approximated into a fire-ready zone.
  • 13. The surgical stapler according to claim 1, wherein the approximation mechanism includes a rotation knob, the rotation knob being rotatable in relation to the stationary handle to effect longitudinal movement of the drive screw within the stationary handle.
  • 14. The surgical stapler according to claim 1, wherein the indicator assembly further includes a non-rigid link having a first end attached to a distal end of the lever and a second end attached to a proximal end of the slide.
  • 15. The surgical stapler according to claim 14, wherein the non-rigid link is supported on a support post positioned between the distal end of the lever and the proximal end of the slide.
  • 16. The surgical stapler according to claim 14, wherein the lever is pivotally mounted within the stationary handle about a post defining a pivot axis, the lever including a proximal end defining an engagement surface, the post being positioned between the proximal and distal ends of the lever, wherein the engagement surface is positioned a distance of R1 from the pivot axis of the post and the distal end of the lever attached to the non-rigid link is positioned a distance of R2 from the pivot axis of the post, wherein R2 is greater than R1.
  • 17. A surgical stapler comprising: a handle assembly including a stationary handle and a firing trigger, the stationary handle defining a window;a central body extending distally from the handle assembly;a cartridge assembly supported on a distal end of the central body;an anvil assembly supported adjacent the distal end of the central body, the anvil assembly being movable in relation to the cartridge assembly between spaced and approximated positions;an approximation mechanism including a longitudinally movable drive screw, the drive screw being operatively connected to the anvil assembly such that longitudinal movement of the drive screw effects movement of the anvil assembly in relation to the cartridge assembly between the spaced and approximated positions, the drive screw supporting an abutment; andan indicator assembly including a slide and a lever, the slide having indicia visible through the window in the stationary handle and movable along a longitudinal path between advanced and retracted positions, the lever being operatively engaged with the slide and positioned to engage the abutment on the drive screw when the drive screw is moved proximally within the stationary handle to translate longitudinal movement of the drive screw into longitudinal movement of the slide to effect longitudinal movement of the indicia within the window, wherein the lever is engaged with the abutment and is configured to translate movement of the abutment over a distance of X1 into movement of the slide over a distance of X2, wherein X2 is greater than X1.
  • 18. A surgical stapler comprising: a handle assembly including a stationary handle and a firing trigger, the stationary handle defining a window;a central body extending distally from the handle assembly;a cartridge assembly supported on a distal end of the central body;an anvil assembly supported adjacent the distal end of the central body, the anvil assembly being movable in relation to the cartridge assembly between spaced and approximated positions;an approximation mechanism including a longitudinally movable drive screw, the drive screw being operatively connected to the anvil assembly such that longitudinal movement of the drive screw effects movement of the anvil assembly in relation to the cartridge assembly between the spaced and approximated positions, the drive screw supporting an abutment; andan indicator assembly including a slide and a lever, the slide having indicia visible through the window in the stationary handle, the lever being operatively engaged with the slide and positioned to engage the abutment on the drive screw when the drive screw is moved proximally within the stationary handle to translate longitudinal movement of the drive screw into longitudinal movement of the slide to effect longitudinal movement of the indicia within the window, wherein the lever is engaged with the abutment and is configured to translate movement of the abutment over a distance of X1 into movement of the slide over a distance of X2, wherein X2 is greater than X1, the lever configured to change the rate of longitudinal movement of the slide as the slide moves along a longitudinal path between advanced and retracted positions.
PCT Information
Filing Document Filing Date Country Kind
PCT/CN2015/092271 10/20/2015 WO 00
Publishing Document Publishing Date Country Kind
WO2017/066918 4/27/2017 WO A
US Referenced Citations (503)
Number Name Date Kind
3193165 Akhalaya et al. Jul 1965 A
3388847 Kasulin et al. Jun 1968 A
3552626 Astafiev et al. Jan 1971 A
3638652 Kelley Feb 1972 A
3771526 Rudie Nov 1973 A
4198982 Fortner et al. Apr 1980 A
4207898 Becht Jun 1980 A
4289133 Rothfuss Sep 1981 A
4304236 Conta et al. Dec 1981 A
4319576 Rothfuss Mar 1982 A
4350160 Kolesov et al. Sep 1982 A
4351466 Noiles Sep 1982 A
4379457 Gravener et al. Apr 1983 A
4473077 Noiles et al. Sep 1984 A
4476863 Kanshin et al. Oct 1984 A
4485817 Swiggett Dec 1984 A
4488523 Shichman Dec 1984 A
4505272 Utyamyshev et al. Mar 1985 A
4505414 Filipi Mar 1985 A
4520817 Green Jun 1985 A
4550870 Krumme et al. Nov 1985 A
4573468 Conta et al. Mar 1986 A
4576167 Noiles Mar 1986 A
4592354 Rothfuss Jun 1986 A
4603693 Conta et al. Aug 1986 A
4606343 Conta et al. Aug 1986 A
4632290 Green et al. Dec 1986 A
4646745 Noiles Mar 1987 A
4665917 Clanton et al. May 1987 A
4667673 Li May 1987 A
4671445 Barker et al. Jun 1987 A
4700703 Resnick et al. Oct 1987 A
4703887 Clanton et al. Nov 1987 A
4708141 Inoue et al. Nov 1987 A
4717063 Ebihara Jan 1988 A
4752024 Green et al. Jun 1988 A
4754909 Barker et al. Jul 1988 A
4776506 Green Oct 1988 A
4817847 Redtenbacher et al. Apr 1989 A
4873977 Avant et al. Oct 1989 A
4893662 Gervasi Jan 1990 A
4903697 Resnick et al. Feb 1990 A
4907591 Vasconcellos et al. Mar 1990 A
4917114 Green et al. Apr 1990 A
4957499 Lipatov et al. Sep 1990 A
4962877 Hervas Oct 1990 A
5005749 Aranyi Apr 1991 A
5042707 Taheri Aug 1991 A
5047039 Avant et al. Sep 1991 A
5104025 Main et al. Apr 1992 A
5119983 Green et al. Jun 1992 A
5122156 Granger et al. Jun 1992 A
5139513 Segato Aug 1992 A
5158222 Green et al. Oct 1992 A
5188638 Tzakis Feb 1993 A
5193731 Aranyi Mar 1993 A
5197648 Gingold Mar 1993 A
5197649 Bessler et al. Mar 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5221036 Takase Jun 1993 A
5222963 Brinkerhoff et al. Jun 1993 A
5253793 Green et al. Oct 1993 A
5261920 Main et al. Nov 1993 A
5271543 Grant et al. Dec 1993 A
5271544 Fox et al. Dec 1993 A
5275322 Brinkerhoff et al. Jan 1994 A
5282810 Allen et al. Feb 1994 A
5285944 Green et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5292053 Bilotti et al. Mar 1994 A
5309927 Welch May 1994 A
5312024 Grant et al. May 1994 A
5314435 Green et al. May 1994 A
5314436 Wilk May 1994 A
5330486 Wilk Jul 1994 A
5333773 Main et al. Aug 1994 A
5344059 Green et al. Sep 1994 A
5346115 Perouse et al. Sep 1994 A
5348259 Blanco et al. Sep 1994 A
5350104 Main et al. Sep 1994 A
5355897 Pietrafitta et al. Oct 1994 A
5360154 Green Nov 1994 A
5368215 Green et al. Nov 1994 A
5392979 Green et al. Feb 1995 A
5395030 Kuramoto et al. Mar 1995 A
5403333 Kaster et al. Apr 1995 A
5404870 Brinkerhoff et al. Apr 1995 A
5411508 Bessler et al. May 1995 A
5425738 Gustafson et al. Jun 1995 A
5433721 Hooven et al. Jul 1995 A
5437684 Calabrese et al. Aug 1995 A
5439156 Grant et al. Aug 1995 A
5443198 Viola et al. Aug 1995 A
5447514 Gerry et al. Sep 1995 A
5454825 Van Leeuwen et al. Oct 1995 A
5464415 Chen Nov 1995 A
5470006 Rodak Nov 1995 A
5474223 Viola et al. Dec 1995 A
5497934 Brady et al. Mar 1996 A
5503635 Sauer et al. Apr 1996 A
5522534 Viola et al. Jun 1996 A
5533661 Main et al. Jul 1996 A
5588579 Schnut et al. Dec 1996 A
5609285 Grant et al. Mar 1997 A
5626591 Kockerling et al. May 1997 A
5632433 Grant et al. May 1997 A
5639008 Gallagher et al. Jun 1997 A
5641111 Ahrens et al. Jun 1997 A
5658300 Bito et al. Aug 1997 A
5669918 Balazs et al. Sep 1997 A
5685474 Seeber Nov 1997 A
5709335 Heck Jan 1998 A
5715987 Kelley et al. Feb 1998 A
5718360 Green et al. Feb 1998 A
5720755 Dakov Feb 1998 A
5732872 Bolduc et al. Mar 1998 A
5749896 Cook May 1998 A
5758814 Gallagher et al. Jun 1998 A
5799857 Robertson et al. Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5833698 Hinchliffe et al. Nov 1998 A
5836503 Ehrenfels et al. Nov 1998 A
5839639 Sauer et al. Nov 1998 A
5855312 Toledano Jan 1999 A
5860581 Robertson et al. Jan 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5881943 Heck et al. Mar 1999 A
5915616 Viola et al. Jun 1999 A
5947363 Bolduc et al. Sep 1999 A
5951576 Wakabayashi Sep 1999 A
5957363 Heck Sep 1999 A
5993468 Rygaard Nov 1999 A
6024748 Manzo et al. Feb 2000 A
6050472 Shibata Apr 2000 A
6053390 Green et al. Apr 2000 A
6068636 Chen May 2000 A
6083241 Longo et al. Jul 2000 A
6102271 Longo et al. Aug 2000 A
6117148 Ravo et al. Sep 2000 A
6119913 Adams et al. Sep 2000 A
6126058 Adams et al. Oct 2000 A
6142933 Longo et al. Nov 2000 A
6149667 Hovland et al. Nov 2000 A
6176413 Heck et al. Jan 2001 B1
6179195 Adams et al. Jan 2001 B1
6193129 Bittner et al. Feb 2001 B1
6203553 Robertson et al. Mar 2001 B1
6209773 Bolduc et al. Apr 2001 B1
6241140 Adams et al. Jun 2001 B1
6253984 Heck et al. Jul 2001 B1
6258107 Balazs et al. Jul 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6269997 Balazs et al. Aug 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6279809 Nicolo Aug 2001 B1
6302311 Adams et al. Oct 2001 B1
6338737 Toledano Jan 2002 B1
6343731 Adams et al. Feb 2002 B1
6387105 Gifford, III et al. May 2002 B1
6398795 McAlister et al. Jun 2002 B1
6402008 Lucas Jun 2002 B1
6439446 Perry et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6450390 Heck et al. Sep 2002 B2
6478210 Adams et al. Nov 2002 B2
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6494877 Odell et al. Dec 2002 B2
6503259 Huxel et al. Jan 2003 B2
6517566 Hovland et al. Feb 2003 B1
6520398 Nicolo Feb 2003 B2
6533157 Whitman Mar 2003 B1
6551334 Blatter et al. Apr 2003 B2
6578751 Hartwick Jun 2003 B2
6585144 Adams et al. Jul 2003 B2
6588643 Bolduc et al. Jul 2003 B2
6592596 Geitz Jul 2003 B1
6601749 Sullivan et al. Aug 2003 B2
6605078 Adams Aug 2003 B2
6605098 Nobis et al. Aug 2003 B2
6626921 Blatter et al. Sep 2003 B2
6629630 Adams Oct 2003 B2
6631837 Heck Oct 2003 B1
6632227 Adams Oct 2003 B2
6632237 Ben-David et al. Oct 2003 B2
6652542 Blatter et al. Nov 2003 B2
6659327 Heck et al. Dec 2003 B2
6676671 Robertson et al. Jan 2004 B2
6681979 Whitman Jan 2004 B2
6685079 Sharma et al. Feb 2004 B2
6695198 Adams et al. Feb 2004 B2
6695199 Whitman Feb 2004 B2
6698643 Whitman Mar 2004 B2
6716222 McAlister et al. Apr 2004 B2
6716233 Whitman Apr 2004 B1
6726697 Nicholas et al. Apr 2004 B2
6742692 Hartwick Jun 2004 B2
6743244 Blatter et al. Jun 2004 B2
6763993 Bolduc et al. Jul 2004 B2
6769590 Vresh et al. Aug 2004 B2
6769594 Orban, III Aug 2004 B2
6820791 Adams Nov 2004 B2
6821282 Perry et al. Nov 2004 B2
6827246 Sullivan et al. Dec 2004 B2
6840423 Adams et al. Jan 2005 B2
6843403 Whitman Jan 2005 B2
6846308 Whitman et al. Jan 2005 B2
6852122 Rush Feb 2005 B2
6866178 Adams et al. Mar 2005 B2
6872214 Sonnenschein et al. Mar 2005 B2
6874669 Adams et al. Apr 2005 B2
6884250 Monassevitch et al. Apr 2005 B2
6905504 Vargas Jun 2005 B1
6938814 Sharma et al. Sep 2005 B2
6942675 Vargas Sep 2005 B1
6945444 Gresham et al. Sep 2005 B2
6953138 Dworak et al. Oct 2005 B1
6957758 Aranyi Oct 2005 B2
6959851 Heinrich Nov 2005 B2
6978922 Bilotti et al. Dec 2005 B2
6981941 Whitman et al. Jan 2006 B2
6981979 Nicolo Jan 2006 B2
7032798 Whitman et al. Apr 2006 B2
7059331 Adams et al. Jun 2006 B2
7059510 Orban, III Jun 2006 B2
7077856 Whitman Jul 2006 B2
7080769 Vresh et al. Jul 2006 B2
7086267 Dworak et al. Aug 2006 B2
7114642 Whitman Oct 2006 B2
7118528 Piskun Oct 2006 B1
7122044 Bolduc et al. Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7141055 Abrams et al. Nov 2006 B2
7168604 Milliman et al. Jan 2007 B2
7179267 Nolan et al. Feb 2007 B2
7182239 Myers Feb 2007 B1
7195142 Orban, III Mar 2007 B2
7207168 Doepker et al. Apr 2007 B2
7220237 Gannoe et al. May 2007 B2
7234624 Gresham et al. Jun 2007 B2
7235089 McGuckin, Jr. Jun 2007 B1
RE39841 Bilotti et al. Sep 2007 E
7285125 Viola Oct 2007 B2
7303106 Milliman Dec 2007 B2
7303107 Milliman et al. Dec 2007 B2
7309341 Ortiz et al. Dec 2007 B2
7322994 Nicholas et al. Jan 2008 B2
7325713 Aranyi Feb 2008 B2
7334718 McAlister et al. Feb 2008 B2
7335212 Edoga et al. Feb 2008 B2
7364060 Milliman Apr 2008 B2
7398908 Holsten et al. Jul 2008 B2
7399305 Csiky et al. Jul 2008 B2
7401721 Holsten et al. Jul 2008 B2
7401722 Hur Jul 2008 B2
7407075 Holsten et al. Aug 2008 B2
7410086 Ortiz et al. Aug 2008 B2
7422137 Manzo Sep 2008 B2
7422138 Bilotti et al. Sep 2008 B2
7431191 Milliman Oct 2008 B2
7438718 Milliman et al. Oct 2008 B2
7455676 Holsten et al. Nov 2008 B2
7455682 Viola Nov 2008 B2
7481347 Roy Jan 2009 B2
7494038 Milliman Feb 2009 B2
7506791 Omaits et al. Mar 2009 B2
7516877 Aranyi Apr 2009 B2
7527185 Harari et al. May 2009 B2
7537602 Whitman May 2009 B2
7540839 Butler et al. Jun 2009 B2
7546939 Adams et al. Jun 2009 B2
7546940 Milliman et al. Jun 2009 B2
7547312 Bauman et al. Jun 2009 B2
7556186 Milliman Jul 2009 B2
7559451 Sharma et al. Jul 2009 B2
7585306 Abbott et al. Sep 2009 B2
7588174 Holsten et al. Sep 2009 B2
7600663 Green Oct 2009 B2
7611038 Racenet et al. Nov 2009 B2
7635385 Milliman et al. Dec 2009 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7686201 Csiky Mar 2010 B2
7694864 Okada et al. Apr 2010 B2
7699204 Viola Apr 2010 B2
7708181 Cole et al. May 2010 B2
7717313 Criscuolo et al. May 2010 B2
7721932 Cole et al. May 2010 B2
7726539 Holsten et al. Jun 2010 B2
7743958 Orban, III Jun 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7770776 Chen et al. Aug 2010 B2
7771440 Ortiz et al. Aug 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7793813 Bettuchi Sep 2010 B2
7802712 Milliman et al. Sep 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837080 Schwemberger Nov 2010 B2
7837081 Holsten et al. Nov 2010 B2
7845536 Viola et al. Dec 2010 B2
7845538 Whitman Dec 2010 B2
7857187 Milliman Dec 2010 B2
7886951 Hessler Feb 2011 B2
7896215 Adams et al. Mar 2011 B2
7900806 Chen et al. Mar 2011 B2
7909039 Hur Mar 2011 B2
7909219 Cole et al. Mar 2011 B2
7909222 Cole et al. Mar 2011 B2
7909223 Cole et al. Mar 2011 B2
7913892 Cole et al. Mar 2011 B2
7918377 Measamer et al. Apr 2011 B2
7922062 Cole et al. Apr 2011 B2
7922743 Heinrich et al. Apr 2011 B2
7931183 Orban, III Apr 2011 B2
7938307 Bettuchi May 2011 B2
7942302 Roby et al. May 2011 B2
7951166 Orban, III et al. May 2011 B2
7959050 Smith et al. Jun 2011 B2
7967181 Viola et al. Jun 2011 B2
7975895 Milliman Jul 2011 B2
8002795 Beetel Aug 2011 B2
8006701 Bilotti et al. Aug 2011 B2
8006889 Adams et al. Aug 2011 B2
8011551 Marczyk et al. Sep 2011 B2
8011554 Milliman Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016858 Whitman Sep 2011 B2
8020741 Cole et al. Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8028885 Smith et al. Oct 2011 B2
8038046 Smith et al. Oct 2011 B2
8043207 Adams Oct 2011 B2
8066167 Measamer et al. Nov 2011 B2
8066169 Viola Nov 2011 B2
8070035 Holsten et al. Dec 2011 B2
8070037 Csiky Dec 2011 B2
8096458 Hessler Jan 2012 B2
8109426 Milliman et al. Feb 2012 B2
8109427 Orban, III Feb 2012 B2
8113405 Milliman Feb 2012 B2
8113406 Holsten et al. Feb 2012 B2
8113407 Holsten et al. Feb 2012 B2
8123103 Milliman Feb 2012 B2
8128645 Sonnenschein et al. Mar 2012 B2
8132703 Milliman et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8146790 Milliman Apr 2012 B2
8146791 Bettuchi et al. Apr 2012 B2
8181838 Milliman et al. May 2012 B2
8192460 Orban, III et al. Jun 2012 B2
8201720 Hessler Jun 2012 B2
8203782 Brueck et al. Jun 2012 B2
8211130 Viola Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8225981 Criscuolo et al. Jul 2012 B2
8231041 Marczyk et al. Jul 2012 B2
8231042 Hessler et al. Jul 2012 B2
8257391 Orban, III et al. Sep 2012 B2
8267301 Milliman et al. Sep 2012 B2
8272552 Holsten et al. Sep 2012 B2
8276802 Kostrzewski Oct 2012 B2
8281975 Criscuolo et al. Oct 2012 B2
8286845 Perry et al. Oct 2012 B2
8308045 Bettuchi et al. Nov 2012 B2
8312885 Bettuchi et al. Nov 2012 B2
8313014 Bettuchi Nov 2012 B2
8317073 Milliman et al. Nov 2012 B2
8317074 Ortiz et al. Nov 2012 B2
8322590 Patel et al. Dec 2012 B2
8328060 Jankowski et al. Dec 2012 B2
8328062 Viola Dec 2012 B2
8328063 Milliman et al. Dec 2012 B2
8343185 Milliman et al. Jan 2013 B2
8353438 Baxter, III et al. Jan 2013 B2
8353439 Baxter, III et al. Jan 2013 B2
8353930 Heinrich et al. Jan 2013 B2
8360295 Milliman et al. Jan 2013 B2
8365974 Milliman Feb 2013 B2
8403942 Milliman et al. Mar 2013 B2
8408441 Wenchell et al. Apr 2013 B2
8413870 Pastorelli et al. Apr 2013 B2
8413872 Patel Apr 2013 B2
8418905 Milliman Apr 2013 B2
8418909 Kostrzewski Apr 2013 B2
8424535 Hessler et al. Apr 2013 B2
8424741 McGuckin, Jr. et al. Apr 2013 B2
8430291 Heinrich et al. Apr 2013 B2
8430292 Patel et al. Apr 2013 B2
8453910 Bettuchi et al. Jun 2013 B2
8453911 Milliman et al. Jun 2013 B2
8485414 Criscuolo et al. Jul 2013 B2
8490853 Criscuolo et al. Jul 2013 B2
8511533 Viola et al. Aug 2013 B2
8551138 Orban, III et al. Oct 2013 B2
8567655 Nalagatla et al. Oct 2013 B2
8579178 Holsten et al. Nov 2013 B2
8590763 Milliman Nov 2013 B2
8590764 Hartwick et al. Nov 2013 B2
8608047 Holsten et al. Dec 2013 B2
8616428 Milliman et al. Dec 2013 B2
8616429 Viola Dec 2013 B2
8622275 Baxter, III et al. Jan 2014 B2
8631993 Kostrzewski Jan 2014 B2
8636187 Hueil et al. Jan 2014 B2
8640940 Ohdaira Feb 2014 B2
8662370 Takei Mar 2014 B2
8663258 Bettuchi et al. Mar 2014 B2
8672931 Goldboss et al. Mar 2014 B2
8678264 Racenet et al. Mar 2014 B2
8684248 Milliman Apr 2014 B2
8684250 Bettuchi et al. Apr 2014 B2
8684251 Rebuffat et al. Apr 2014 B2
8684252 Patel et al. Apr 2014 B2
8733611 Milliman May 2014 B2
20030111507 Nunez Jun 2003 A1
20040073090 Butler et al. Apr 2004 A1
20050023325 Gresham Feb 2005 A1
20050051597 Toledano Mar 2005 A1
20050107813 Gilete Garcia May 2005 A1
20060000869 Fontayne Jan 2006 A1
20060011698 Okada et al. Jan 2006 A1
20060201989 Ojeda Sep 2006 A1
20070027473 Vresh et al. Feb 2007 A1
20070029363 Popov Feb 2007 A1
20070060952 Roby et al. Mar 2007 A1
20090230170 Milliman Sep 2009 A1
20090236392 Cole et al. Sep 2009 A1
20090236398 Cole et al. Sep 2009 A1
20090236401 Cole et al. Sep 2009 A1
20100019016 Edoga et al. Jan 2010 A1
20100051668 Milliman et al. Mar 2010 A1
20100051669 Milliman Mar 2010 A1
20100084453 Hu Apr 2010 A1
20100147923 D'Agostino et al. Jun 2010 A1
20100163598 Belzer Jul 2010 A1
20100224668 Fontayne et al. Sep 2010 A1
20100230465 Smith et al. Sep 2010 A1
20100258611 Smith et al. Oct 2010 A1
20100264195 Bettuchi Oct 2010 A1
20100327041 Milliman et al. Dec 2010 A1
20110011916 Levine Jan 2011 A1
20110114697 Baxter, III et al. May 2011 A1
20110114700 Baxter, III et al. May 2011 A1
20110144640 Heinrich et al. Jun 2011 A1
20110147432 Heinrich et al. Jun 2011 A1
20110192882 Hess et al. Aug 2011 A1
20120145755 Kahn Jun 2012 A1
20120193395 Pastorelli et al. Aug 2012 A1
20120193398 Williams et al. Aug 2012 A1
20120232339 Csiky Sep 2012 A1
20120273548 Ma et al. Nov 2012 A1
20120325888 Qiao et al. Dec 2012 A1
20130015232 Smith et al. Jan 2013 A1
20130020372 Jankowski et al. Jan 2013 A1
20130020373 Smith et al. Jan 2013 A1
20130032628 Li et al. Feb 2013 A1
20130056516 Viola Mar 2013 A1
20130060258 Giacomantonio Mar 2013 A1
20130105544 Mozdzierz et al. May 2013 A1
20130105546 Milliman et al. May 2013 A1
20130105551 Zingman May 2013 A1
20130126580 Smith et al. May 2013 A1
20130153630 Miller et al. Jun 2013 A1
20130153631 Vasudevan et al. Jun 2013 A1
20130153633 Casasanta, Jr. et al. Jun 2013 A1
20130153634 Carter et al. Jun 2013 A1
20130153638 Carter et al. Jun 2013 A1
20130153639 Hodgkinson et al. Jun 2013 A1
20130172929 Hess et al. Jul 2013 A1
20130175315 Milliman Jul 2013 A1
20130175318 Felder et al. Jul 2013 A1
20130175319 Felder et al. Jul 2013 A1
20130175320 Mandakolathur Vasudevan Jul 2013 A1
20130181035 Milliman Jul 2013 A1
20130181036 Olson et al. Jul 2013 A1
20130186930 Wenchell et al. Jul 2013 A1
20130193185 Patel Aug 2013 A1
20130193187 Milliman Aug 2013 A1
20130193190 Carter et al. Aug 2013 A1
20130193191 Stevenson et al. Aug 2013 A1
20130193192 Casasanta, Jr. et al. Aug 2013 A1
20130200131 Racenet et al. Aug 2013 A1
20130206816 Penna Aug 2013 A1
20130214027 Hessler et al. Aug 2013 A1
20130214028 Patel et al. Aug 2013 A1
20130228609 Kostrzewski Sep 2013 A1
20130240597 Milliman et al. Sep 2013 A1
20130240600 Bettuchi Sep 2013 A1
20130248581 Smith et al. Sep 2013 A1
20130277411 Hodgkinson et al. Oct 2013 A1
20130277412 Gresham et al. Oct 2013 A1
20130284792 Ma Oct 2013 A1
20130292449 Bettuchi et al. Nov 2013 A1
20130299553 Mozdzierz Nov 2013 A1
20130299554 Mozdzierz Nov 2013 A1
20130306701 Olson Nov 2013 A1
20130306707 Viola et al. Nov 2013 A1
20140008413 Williams Jan 2014 A1
20140012317 Orban et al. Jan 2014 A1
20160143641 Sapienza et al. May 2016 A1
20160157856 Williams et al. Jun 2016 A1
20160174988 D'Agostino et al. Jun 2016 A1
20160302792 Motai Oct 2016 A1
Foreign Referenced Citations (37)
Number Date Country
908529 Aug 1972 CA
2805365 Aug 2013 CA
101330877 Dec 2008 CN
103140179 Jun 2013 CN
103800043 May 2014 CN
104023653 Sep 2014 CN
1057729 May 1959 DE
3301713 Jul 1984 DE
0152382 Aug 1985 EP
0173451 Mar 1986 EP
0190022 Aug 1986 EP
0282157 Sep 1988 EP
0503689 Sep 1992 EP
1354560 Oct 2003 EP
2138118 Dec 2009 EP
2168510 Mar 2010 EP
2238926 Oct 2010 EP
2524656 Nov 2012 EP
2792308 Oct 2014 EP
1136020 May 1957 FR
1461464 Feb 1966 FR
1588250 Apr 1970 FR
2443239 Jul 1980 FR
1185292 Mar 1970 GB
2016991 Sep 1979 GB
2070499 Sep 1981 GB
2004147969 May 2004 JP
2013138860 Jul 2013 JP
7711347 Apr 1979 NL
1509052 Sep 1989 SU
8706448 Nov 1987 WO
8900406 Jan 1989 WO
9006085 Jun 1990 WO
9835614 Aug 1998 WO
0154594 Aug 2001 WO
2005037084 Apr 2005 WO
2008107918 Sep 2008 WO
Non-Patent Literature Citations (2)
Entry
Chinese Office Action issued in Chinese Application No. 201580083931.5, dated Apr. 8, 2020.
European Search Report dated Jun. 11, 2019, issued in EP Appln. No. 15906437.
Related Publications (1)
Number Date Country
20200237375 A1 Jul 2020 US