Circular stapling device and method of use

Information

  • Patent Grant
  • 11678885
  • Patent Number
    11,678,885
  • Date Filed
    Tuesday, March 21, 2017
    7 years ago
  • Date Issued
    Tuesday, June 20, 2023
    a year ago
Abstract
A circular stapling device is described that is particularly suited for creating stomas. The circular stapling device includes two tool assemblies. The first tool assembly is adapted to create a reinforced incision in tissue, e.g., the rectus sheath, through which a vessel portion, e.g., colon, small intestine, etc. can be pulled through during a surgical procedure. The second tool assembly is adapted to attach a stomal sleeve within the vessel portion such that the stomal sleeve extends from the stoma.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a U.S. National Stage Application filed under 35 U.S.C. § 371(a) of International Patent Application Serial No. PCT/US2017/023353, filed Mar. 21, 2017, which claims the benefit of and priority to India Patent Application Serial No. 201741002959, filed Jan. 25, 2017, the entire disclosure of which is incorporated by reference herein.


BACKGROUND
1. Technical Description

The present disclosure is directed to circular stapling devices and methods of use and, more particularly, to circular stapling devices including a plurality of different tool assemblies configured for creating stomas.


2. Background of Related Art

During an ostomy procedure, a bisected portion of an intestine is secured to an exterior surface of the abdominal wall to provide internal access into the intestine for collecting fecal matter. The exteriorization of the intestine is called a stoma. Ostomy procedures include ileostomies and colostomies. In an ileostomy procedure, an end of the ileum (i.e., small intestine) is pulled through the abdominal wall and is flared outwardly and sutured to the skin, leaving a smooth, rounded, inside-out ileum as the stoma. In a colostomy procedure, an end or portion of the colon is pulled through the abdominal wall and flared outwardly and fastened (e.g., stitched) to the skin of the patient to form a stoma.


Ostomy surgery is sometimes performed on an emergency basis due to diverticulitis, trauma, radiation complications, volvulus, necrotic bowel, bowel perforation, etc. Children and adults alike may require an ostomy. An ostomy may only be temporary to allow for healing of the bowel or a decrease of inflammation at the surgical site. In some instances an ostomy may be permanent.


In known ostomy procedures, stomas are created by manually stitching the colon to the top layer of skin of the abdomen. Complications associated with manual suturing of the colon include suture granuloma, suture give away, and leaks. Other complications such as parastomal herniation which results from an improper incision or closure of the incision created in the anterior rectus sheath may require reoperation.


An improved device and method for creating a stoma to minimize complications resulting from stoma creation are desirable.


SUMMARY

One aspect of the present disclosure is directed to a method of creating a stoma including creating an abdominal incision accessing a rectus sheath of an abdominal wall; inserting a first tool assembly including an anvil assembly and a shell assembly having a staple cartridge through the abdominal incision; clamping the rectus sheath between the anvil assembly and the staple cartridge; and actuating the first tool assembly to create a circular incision through the rectus sheath.


In embodiments, actuating the first tool assembly includes advancing a knife of the shell assembly to form the circular incision through the rectus sheath.


In some embodiments, actuating the first tool assembly includes securing a buttress material to the rectus sheath to reinforce the circular incision.


In certain embodiments, the method further includes pulling a vessel portion through the circular incision and through the abdominal incision.


In embodiments, the vessel portion is selected from a colon, a small intestine, and a large intestine.


In some embodiments, the method further includes securing the vessel portion to the buttress material.


In certain embodiments, the method further includes inserting a second tool assembly through the abdominal incision and into the vessel portion, the second tool assembly including an anvil head supporting a stomal sleeve and a staple cartridge.


In embodiments, the method further includes clamping the stomal sleeve, the vessel portion, and a layer of skin between the anvil head and the staple cartridge of the second tool assembly.


In some embodiments, the method further includes actuating the second tool assembly to secure the stomal sleeve to the layer of skin and the vessel portion within the vessel portion.


In certain embodiments, actuating the second tool assembly includes separating a first end portion of the stomal sleeve from the anvil head with a knife of the second tool assembly.


In embodiments, the method further includes pulling the stomal sleeve through the vessel portion and the abdominal incision.


In some embodiments, the method further includes separating a second end portion of the stomal sleeve from the anvil head.


In certain embodiments, the step of separating the second end portion of the stomal sleeve from the anvil head includes manually cutting the second end portion of the stomal sleeve with a cutting device.


Another aspect of the present disclosure is directed to a kit including an actuator, a first tool assembly, and a second tool assembly. The actuator includes a housing and a distal coupling member. The first tool assembly is releasably couplable to the distal coupling member of the actuator and includes a first anvil assembly and a first shell assembly. The first shell assembly includes a staple cartridge having an annular array of staple pockets, each of the staple pockets supporting a staple. The second tool assembly is releasably couplable from the distal coupling member of the actuator and includes a second anvil assembly and a second shell assembly. The second anvil assembly includes an anvil head supporting a stomal sleeve.


In some embodiments, the anvil head of the first tool assembly supports a first buttress material and the staple cartridge of the first shell assembly supports a second buttress material.


Another aspect of the present disclosure is directed to a circular stapling device including an actuator having a housing, a clamping knob, and a firing knob. The firing knob and the clamping knob are rotatably supported on the housing. An approximation assembly is supported within the housing and includes a drive screw and an anvil retainer assembly secured to the drive screw. The anvil retainer assembly extends from a distal portion of the housing. The clamping knob is operably associated with the drive screw such that rotation of the clamping knob causes axial movement of the drive screw and the anvil retainer assembly in relation to the housing. A firing assembly is supported within the housing and includes at least one drive member and a pusher member engaged with a distal portion of the at least one drive member. The at least one drive member has a proximal portion positioned to be engaged by the firing knob. The firing knob is rotatably supported about the housing to cause axial movement of the firing knob in relation to the housing, wherein axial movement of the firing knob in relation to the housing causes axial movement of the at least one drive member and the pusher member in relation to the housing. A tool assembly is supported on a distal portion of the housing.


In some embodiments, the firing knob is threadably coupled to the housing.


In certain embodiments, the at least one drive member includes a transverse extension that extends through an opening in the housing, wherein the transverse extension is positioned to engage the firing knob.


In embodiments, the at least one drive member includes first and second drive members.


In some embodiments, the circular stapling device further includes a biasing member positioned to urge the pusher member and the at least one drive member proximally within the housing.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the presently disclosed circular stapling device and methods of use are described herein below with reference to the drawings, wherein:



FIG. 1 is a side perspective view of an exemplary embodiment of the presently disclosed circular stapling device including the first and second tool assemblies with both tool assemblies with the tool assemblies separated from an actuator of the circular stapling device;



FIG. 2 is an exploded, side perspective view of the actuator of the circular stapling device shown in FIG. 1;



FIG. 3 is a side perspective view of the assembled screw assembly of the actuator of the circular stapling device shown in FIG. 2;



FIG. 4 is a side view of the cartridge shaft assembly of the actuator of the circular stapling device shown in FIG. 9;



FIG. 5 is a side perspective view of the actuator of the circular stapling device shown in FIG. 1 with a housing half-section removed;



FIG. 6 is a side perspective view of the actuator of the circular stapling device shown in FIG. 5 with additional internal components of the actuator removed;



FIG. 7 is a side cross-sectional view of the actuator of the circular stapling device shown in FIG. 2;



FIG. 8 is a cross-sectional view taken along section line 8-8 of FIG. 7;



FIG. 9 is a cutaway view of a firing lock assembly of the circular stapling device shown in FIG. 8;



FIG. 10 is a side perspective view of the circular stapling device shown in FIG. 1 with the first tool assembly in an unapproximated position attached to the actuator;



FIG. 11 is a side perspective view of the first tool assembly shown in FIG. 1 with a coupling assembly separated from a shell assembly of the first tool assembly;



FIG. 12 is a side perspective, exploded view of the first tool assembly shown in FIG. 10;



FIG. 13 is an enlarged view of the indicated area of detail shown in FIG. 10;



FIG. 14 is a side perspective view of the second tool assembly shown in FIG. 1;



FIG. 15 is a cross-sectional view taken along section line 15-15 of FIG. 14;



FIG. 16 is a side cross-sectional view of the circular stapling device shown in FIG. 1 with the first tool assembly in the unapproximated position within abdominal tissue;



FIG. 17 is a side cross-sectional view of the circular stapling device shown in FIG. 16 with the first tool assembly in an approximated position within abdominal tissue prior to firing of the circular stapling device;



FIG. 18 is a side cross-sectional view of the circular stapling device shown in FIG. 17 with the first tool assembly in an approximated position within abdominal tissue as the circular stapling device is being fired;



FIG. 19 is an enlarged view of the indicated area of detail shown in FIG. 18;



FIG. 20 is a side view of the abdominal tissue after the first tool assembly has been fired, the circular stapling device is removed from the abdominal tissue, and a portion of the bowel has been pulled through an opening formed in the abdominal tissue by the first tool assembly to form a stoma;



FIG. 21 is a side cross-sectional view of the actuator of the circular stapling device shown in FIG. 1 attached to the second tool assembly prior to movement of the second tool assembly to the approximated position with the second tool assembly positioned within the stoma;



FIG. 22 is a side cross-sectional view of the circular stapling device shown in FIG. 21 with the second tool assembly in the approximated position within the stoma as the second tool assembly is being fired to secure a stomal sleeve beneath a skin layer of the abdominal tissue;



FIG. 23 is a side cross-sectional view of the circular stapling device shown in FIG. 22 after the second tool assembly has been fired and withdrawn from the stoma with the stomal sleeve attached to the second tool assembly and extending through the stoma; and



FIG. 24 is a side perspective view of the abdominal tissue with the stomal sleeve separated from the second tool assembly and extending from the stoma.





DETAILED DESCRIPTION OF EMBODIMENTS

The presently disclosed circular stapling device and methods of use will now be described in detail with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. In this description, the term “proximal” is used generally to refer to that portion of the device that is closer to a clinician, while the term “distal” is used generally to refer to that portion of the device that is farther from the clinician. In addition, the term “endoscopic” is used generally used to refer to endoscopic, laparoscopic, arthroscopic, and/or any other procedure conducted through small diameter incision or cannula. In addition, the term clinician is used generally to refer to medical personnel including doctors, nurses, and support personnel.



FIG. 1 illustrates an exemplary embodiment of the presently disclosed circular stapling device shown generally as 10. The stapling device 10 includes an actuator 12 and first and second tool assemblies 200, 300, respectively. Although the stapling device 10 is shown to include two tool assemblies, it is noted that the actuator 12 of the circular stapling device 10 can be used with any one of a number of different types of tool assemblies including the first tool assembly 200, the second tool assembly 300, and other tool assemblies known in the art. The first and second tool assemblies 200, 300, respectively, are illustrated in this application to describe embodiments of a method of creating a stoma in abdominal tissue which is described in further detail below. This does not diminish the fact that the presently disclosed actuator 12 of the stapling device 10 may be used with a variety of tool assemblies to perform a variety of different surgical procedures. It is also envisioned that the presently disclosed tool assemblies and method can be actuated using a variety of manually and electro-mechanically driven actuators known in the art.


The actuator 12 of the stapling device 10 includes a housing 14 that functions as a grip, a clamping knob 16, a firing knob 18, an indicator member 20, and a firing lockout assembly 22. The housing 14 includes one or more protrusions 26 to enhance the grip ability of the housing 14. Although the protrusions 26 are illustrated as having a triangular configuration, it is envisioned that the configuration of the protrusions 26 and/or the housing 14 may be adapted to be more ergonomic and graspable. The housing 14 also supports a distal coupling member 24 that is configured to be releasably coupled to a proximal portion of one of the first and second tool assemblies 200, 300, respectively.


Referring to FIG. 2, in embodiments, the housing 14 is formed from molded half-sections 14a, 14b that can be secured together using any known fastening technique including, for example, welding, screws, adhesives, snap-fit connectors, etc. The molded half-sections 14a and 14b of the housing 14 define a cavity 30 that receives various components of the actuator 12 including an approximation assembly 31, a firing assembly 34, and a firing lockout assembly 36.


Referring also to FIG. 3, the approximation assembly 31 includes the clamping knob 16, a hollow sleeve 40, a drive screw 42, and an anvil retainer assembly 34. The clamping knob 16 is secured to a proximal portion of the hollow sleeve 40 such that rotation of the clamping knob 16 in relation to the housing 14 of the actuator 12 causes rotation of the hollow sleeve 40 within the housing 14. The hollow sleeve 40 defines a channel 40a (FIG. 2) and includes a distal portion that supports an annular collar 46. The annular collar 46 supports a pin 48 that extends through the collar 46 and into the channel 40a of the hollow sleeve 40. The annular collar 46 defines an annular slot 50 that receives a rib 52 (FIG. 6) formed on an interior surface of the housing half-sections 14a, 14b. The rib 52 fixes the axial position of the hollow sleeve 40 in relation to the housing 14.


The drive screw 42 includes a proximal portion that defines a helical channel 54 and is received within the channel 40a of the hollow sleeve 40. The helical channel 54 receives the pin 48. When the clamping knob 16 is rotated to rotate the hollow sleeve 40 about the drive screw 42, the pin 48 moves within the helical channel 54 of the drive screw 42 to cause axial movement of the drive screw 42 within the hollow sleeve 40.


The indicator member 20 is secured to a central portion of the drive screw 42 and extends through an elongated slot 56 in the housing half-section 14b. The indicator member 20 is movable within the elongated slot 56 to provide an indication to a clinician of the axial location of the drive screw 42 within housing 14. By identifying the axial location of the drive screw 42 within the housing 14, the clinician can identify the degree of approximation of a tool assembly secured to the distal coupling member 24, e.g., the tool assembly 200 or 300. The indicator member 20 and elongated slot 56 also prevent rotation of the drive screw 42 within the housing 14 to restrict the drive screw 42 to axial movement within the housing 14.


A distal portion of the drive screw 42 defines an elongated slot 59 (FIG. 2). A distal end of the distal portion of the drive screw 42 is secured to a proximal portion of the anvil retainer assembly 32. In embodiments, the anvil retainer assembly 32 includes a base member 60 and a trocar member 62. The base member 60 defines a slot 64 that receives a distal extension 66 formed on the drive screw 42 such that the base member 60 can be secured to the drive screw 42 using screws or rivets 68. The trocar member 62 of the anvil retainer assembly 32 defines a proximal opening 62a (FIG. 7) that receives a distal portion of the base member 60 to secure the base member 60 to the trocar member 62. The distal portion of the base member 60 can be secured within the proximal opening of the trocar member 62 using any known fastening technique including welding, crimping, or the like. A distal portion of the trocar member 62 is tapered to facilitate passage of the trocar member 62 through tissue. The trocar member 62 also defines an annular rib 70 to facilitate coupling of the trocar member 62 to an anvil assembly of a tool assembly, e.g., tool assemblies 200 or 300.


In use, when the clamping knob 16 is manually rotated by a clinician, engagement of the pin 48 with the walls defining the helical channel 54 of the drive screw 42 causes the drive screw 42 to move axially within the channel 40a of the hollow sleeve 40. As the drive screw 42 moves axially within the channel 40a of the hollow sleeve 40, the anvil retainer assembly 32 moves axially with the drive screw 42 in relation to the housing 14. As discussed above, an anvil assembly of the tool assembly 200, 300 is secured to the trocar member 62 of the anvil retainer assembly 32 such that axial movement of the trocar member 62 causes axial movement of the anvil assembly.


Referring to FIGS. 2 and 4, the firing assembly 34 includes the firing knob 18, a pair of drive members 74, a pusher member 76, and a biasing member 78. The firing knob 18 is supported about a proximal portion of the housing 14 for axial movement. In embodiments, the proximal portion of the housing 14, including housing half-sections 14a, 14b, includes screw threads 80 that mate with internal threads 82 (FIG. 2) formed on an inner wall of the firing knob 18 such that rotation of the firing knob 18 about the housing 14 causes axial movement of the firing knob 18 about the housing 14. It is envisioned that other structures that facilitate axial movement of the firing knob 18 in a controlled manner along the housing 14 can be substituted for the threaded arrangement shown.


Each of the housing half-sections 14a and 14b defines an opening 84 (FIG. 2). Each of the drive members 74 includes an elongated leg 86, a transverse extension 88 positioned on a proximal portion of the elongated leg 86, and a notch 90. Each of the transverse extensions 88 extends through a respective one of the openings 84 and is positioned to engage the firing knob 18 such that axial advancement of the firing knob 18 along the housing 14 causes corresponding axial movement of the drive members 74 within the housing 14.


The pusher member 76 includes a body 92 and a pair of fingers 94 that extend distally from the body 92. In embodiments, the body 92 defines a pair of diametrically spaced cutouts 96 (FIG. 2) that receive the distal ends of the elongated legs 86 of the drive members 74 such that axial advancement of the drive members 74 causes axial movement of the pusher member 76 within the housing 14. The fingers 94 are dimensioned to extend from the distal portion of the housing 14, through the distal coupling member 24, and into the tool assembly, e.g., 200, 300. The fingers 94 and slots 98 defined between the fingers 94 facilitate movement of the fingers 94 into and within a shell assembly of the tool assembly, e.g., tool assembly 200, 300, to eject staples from the tool assembly.


Referring also to FIGS. 5-9, the body 92 of the pusher member 76 includes a distal face that defines a shoulder 100 that is positioned about the fingers 94. The biasing member 78, which can be in the form of a torsion spring, is positioned between on annular flange 95 formed about the distal coupling member 24 and the shoulder 100 of the body 92 of the pusher member 76 to urge the pusher member 76 towards a retracted position within the housing 14.


In use, when the firing knob 18 is rotated and advanced axially about the housing 14, the firing knob 18 engages the transverse extensions 88 of the drive members 74 to advance the drive members 74 within the housing 14. As the drive members 74 are advanced, the distal ends of the drive members 74 which are received within the cutouts 96 of the pusher member 76 advance the pusher member 76 within the housing 14 against the bias of the biasing member 78. As the pusher member 76 is advanced, the fingers 94 of the pusher member 76 are extended further distally from the distal end of the housing 14 and the distal coupling member 24 into a shell assembly of a tool assembly, e.g., 200, 300, to eject staples from the tool assembly.


When the firing knob 18 is moved proximally along the housing 14 towards a retracted position, the biasing member 78 urges the pusher member 76 and the drive members 74 back to their retracted positions. Alternately, the firing knob 18 could be coupled to the drive members 74 and the drive members 74 could be secured to the pusher member 76 such that proximal movement of the firing knob 18 would return the drive members 74 and the pusher member 76 to their retracted position.


The distal coupling member 24 includes a cylindrical body 102 having an annular flange 104. The annular flange 104 is received within an annular slot 106 (FIG. 2) formed in the housing half-sections of the housing 14 to axially secure the distal coupling member 24 on the distal end of the housing 14 between the housing half-sections 14a and 14b. The body 102 defines a pair of diametrically opposed openings 108 that receive a coupling member described below to secure the tool assembly to the distal coupling member 24.


The distal portion of the drive member 42 extends through the pusher member 76. A pin 101 extends through the body 92 of the pusher member 76 and through the elongated slot 59 of the drive screw 42 to prevent rotation of the drive screw 42 within the pusher member 76.


The housing supports a first pair of spacers 110a, 110b that are positioned within the cavity 30 defined by the housing 14 about the drive members 74 to maintain the position of the drive members 74 within the cavity 30. In addition, the housing 18 supports a second pair of spacers 112a, 112b that are positioned about the body 92 of the pusher member 76 to maintain the position of the pusher member within the housing 14. The body 92 of the pusher member 76 includes wings 114 that extend between the spacers 112a, 112b and are received in cutouts 116 (FIG. 2) formed in the housing half-sections 14a, 14b to prevent the pusher member 76 from rotating within the housing 14.


The firing lockout assembly 22 includes an actuator 120, a biasing member 122, and a stop member 124. The actuator 120 extends through an opening 126 (FIG. 2) formed in the housing half-section 14b (FIG. 2) and into a recess 128 defined within the housing half-section 14a (FIG. 2). The actuator 120 defines an opening 130 (FIG. 2) that receives the stop member 124 such that the stop member 124 extends along an axis substantially transverse to the axis defined by the actuator 120. The biasing member 122, which may be in the form of a torsion spring, is positioned about the actuator 120 between an actuator head 120a to urge the actuator 120 outwardly from the hole 126 formed in the housing 14 such that the stop member 124 is received within the notch 90 of the elongated leg 86 of one of the drive members 74. The stop member 124 defines a flat 124a (FIG. 9). The flat 124a engages a surface defining the notch 90 to prevent axial movement of the drive member 74 in relation to the housing 14 when the stop member 124 is positioned within the notch 90. The actuator 120 can be pressed inwardly through the opening 126 in housing half-section 14b to lift the stop member 124 from the notch 90 to facilitate advancement of the drive members 74.


Referring to FIGS. 10 and 11, as discussed above the tool assemblies 200 and 300 (FIG. 1) can be releasably coupled to the distal coupling member 24 of the housing 14 of the actuator 12. Both of the anvil assemblies 200, 300 include a retainer assembly 180 including a retainer ring 182 and a locking collar 184. The retainer assembly 180 releasably couples a respective tool assembly to the distal coupling member 24 of the actuator 12. The structure and operation of the retainer assembly 180 are described in further detail in U.S. Publication No. 2016/0192939 which is incorporated herein by reference in its entirety. Since the retainer assembly 180 is not the focus of this application, the retainer assembly 180 will not be described in further detail herein. U.S. Publication Nos. 2016/0157856, 2016/0192934, and 2016/0192938, and U.S. application Ser. No. 15/205,169 disclose different embodiments of retainer assemblies for releasably coupling a tool assembly to an actuator of a surgical stapling device and are also incorporated herein in their entirety by reference.


Referring to FIGS. 12 and 13, the first tool assembly 200 includes an anvil assembly 210, a shell assembly 212, and the retainer assembly 180. The anvil assembly 210 includes an anvil head 214 defining a tissue contact surface (not shown), a center rod 216, and a first buttress material 218 that is supported on the tissue contact surface of the anvil head 214. The center rod 216 is configured to be releasably coupled to the trocar member 62 of the anvil retainer assembly 32 (FIG. 5) such that movement of the trocar member 62 between retracted and advanced positions causes movement of the anvil assembly 210 in relation to the shell assembly 212 between spaced and approximated positions. Although not shown in detail, the anvil head 214 can be pivotally secured to the center rod 216 and movable from an operative position shown in FIG. 13 to a tilted position. U.S. Pat. No. 8,540,132 discloses an anvil assembly having a tiltable anvil head and is incorporated herein by reference in its entirety.


The shell assembly 212 includes a staple cartridge 220 and a second buttress material 222. The staple cartridge 220 includes a tissue contact surface 220a that defines a plurality of staple pockets 224 arranged in annular arrays. The second buttress material 222 is secured to the tissue contact surface 220a of the staple cartridge 220. Each staple pocket 224 receives a staple (not shown). Although not described in detail, the shell assembly 212 includes a staple pusher and an knife “K” (FIG. 22) which can be advanced in response to advancement of the pusher member 76 (FIG. 2) to eject staples from the staple cartridge 220 and cut tissue. U.S. Pat. No. 7,364,060 (“the '060 patent”) discloses the inner components of a known shell assembly and is incorporated herein by reference. Alternately, only one of the anvil head 214 and the staple cartridge 220 can include a buttress material.


Referring to FIGS. 14 and 15, the second tool assembly 300 includes an anvil assembly 310, a shell assembly 312, and the retainer assembly 180. The anvil assembly 310 includes an anvil head 314 defining a tissue contact surface 315, a center rod 316, and a stomal sleeve 318 that is supported on the anvil head 314. The tissue contact surface 315 defines staple deforming pockets (not shown). The center rod 316 is configured to be releasably coupled to the trocar member 62 of the anvil retainer assembly 32 (FIG. 5) such that movement of the trocar member 62 between retracted and advanced positions causes movement of the anvil assembly 310 in relation to the shell assembly 312 between spaced and approximated positions.


The stomal sleeve 318 has a tubular configuration and may be formed from a biocompatible, non-degradable, pliable material, e.g., a polymeric material. In embodiments, the stomal sleeve 318 has a first end portion 321 that is secured to the tissue contact surface 315 of the anvil head 314 at a location radially inwardly of the annular array of staple deforming pockets 319 and a second end portion 322 that is secured to the distally facing surface 324 of the anvil head 314 such that a central portion 326 of the stomal sleeve 318 is positioned distally of the second end portion 322 of the stomal sleeve 318. The end portions 321, 322 of the stomal sleeve 318 can be secured to the anvil head 314 using adhesives or the like. In embodiments, the first end portion 321 of the stomal sleeve 318 defines an opening 330 (FIG. 3A) and the second end portion 322 is closed. It is envisioned that both of the first and second end portions 321, 322 of the stomal sleeve 318 can initially define an opening or be closed.


The shell assembly 312 includes a staple cartridge 320 that includes a tissue contact surface 321a that defines a plurality of staple pockets 324 arranged in annular arrays. Although not described in detail, the shell assembly 312 includes a staple pusher 382 and an annular knife “K” (FIG. 22) which can be advanced in response to advancement of the pusher member 76 (FIG. 2) to eject staples 380 from the staple cartridge 320 and cut tissue. The '060 patent discloses the inner components of a known shell assembly and is incorporated herein by reference.


The surgical stapling device 10 including the actuator 12 and the first and second tool assemblies 200, 300 are particularly suited for performing ostomy procedures. Ostomy procedures include ileostomies and colostomies. In an ileostomy procedure, an end of the ileum (i.e., small intestine) is pulled through the abdominal wall and is flared outwardly and sutured to the skin, leaving a smooth, rounded, inside-out ileum as the stoma. In a colostomy procedure, an end or portion of the colon is pulled through the abdominal wall and flared outwardly and fastened (e.g., stitched) to the skin of the patient to form a stoma.


Referring to FIGS. 16-22, during an ostomy procedure using the surgical stapling device 10, an incision “I” is created in the abdominal wall and fat and tissue “F” located between the rectus sheath “RS” and the outer layer of skin “S” is removed through the incision “I” to allow the skin to be pulled close for suturing. The first tool assembly 200 is secured to the actuator 12 (FIG. 1) and the tool assembly 200 is inserted through the incision “I” with the anvil assembly 210 spaced in relation to the staple cartridge 220 of the shell assembly 212. The tool assembly 200 is positioned with the anvil head 214 on one side of the rectus sheath “RS” and the staple cartridge 220 is positioned on the other side of the rectus sheath “RS” (FIG. 16). In some embodiments, the anvil head 214 is positioned on one side of the peritoneum “P” and the posterior rectus sheath “RS”. When the tool assembly 200 is properly positioned adjacent the peritoneum “P” and the rectus sheath “RS”, the anvil head 214 is drawn towards the staple cartridge 220 in the direction indicated by arrow “A” in FIG. 17 by rotating the clamping knob 16 in the direction indicated by arrow “B”. As the clamping knob 16 is rotated, the drive screw 42 is drawn into the hollow sleeve 40 to draw the anvil retainer assembly 32 into the shell assembly 212 and draw the anvil head 214 towards the staple cartridge 220 to clamp the peritoneum “P” and the rectus sheath “RS” and other tissue between the anvil head 214 and the staple cartridge 220 (FIG. 17).


Referring to FIGS. 18-20, after the peritoneum “P” and the rectus sheath “RS” is clamped between the anvil head 214 and the staple cartridge 220, the stapling device 10 is fired to create a reinforced circular incision “CI” through the rectus sheath “RS”. In order to fire the stapling device 10, the firing lockout assembly 22 must be actuated to remove the stop member 124 (FIG. 18) from within the notch 90 of one of the drive members 74. In order to actuate the firing lockout assembly 22, the actuator 120 is pressed inwardly in the direction indicated by arrow “C” in FIG. 18 against the urging of the biasing member 122 (FIG. 2) to lift the stop member 124 from within the notch 90. When the stop member 124 is lifted from the notch 90, the firing knob 18 can be rotated in the direction indicated by arrow “D” in FIG. 18 to advance the drive members 74 in the direction indicated by arrow “E”.


As discussed above, advancement of the drive members 74 advances the pusher member 76 distally within the housing 14 to move the fingers 94 of the pusher member 76 into the shell assembly 212 to eject an annular array of staples 280 (FIG. 20) from the staple cartridge 220 and advance an annular knife “K” to cut tissue. When the staples 280 are ejected from the staple cartridge 220, the staples 280 pass through the second buttress material 222, the rectus sheath “RS”, and the first buttress material 218 such that the first and second buttress materials 218 and 222 are stapled to opposite sides of the peritoneum “P” and the rectus sheath “RS”. In addition, the knife “K” of the shell assembly 212 forms a circular incision through the peritoneum “P” and the rectus sheath “RS” that is bound by the first and second buttress materials. 218, 222. The use of the buttress materials 218 and 222 reinforces the circular incision “CI” and minimizes the risk of parastomal herniation. Alternately, the first tool assembly 200 need not include buttress materials such that the staples 280 provide reinforcement for the circular incision “CI”.


Referring to FIG. 20, after the circular incision “CI” is formed through the peritoneum “P” and the rectus sheath “RS”, a vessel portion “VP”, e.g., colon, small intestine, large intestine, is pulled in the direction indicated by arrow “F” through the circular incision “CI” and through the incision “I”. Thereafter, the vessel portion “VP” is sutured using a suture “SU” to the first and second buttress materials 218, 222.


Referring to FIG. 21, after the vessel portion “VP” is pulled through the incision “I” in the skin “S”, the second tool assembly 300 is secured to the actuator 12 (FIG. 1) and the anvil head 314 of the tool assembly 300 of the surgical stapling device 10 is inserted through the vessel portion “VP” and the incision “I” with the staple cartridge 320 and anvil head 314 in an unapproximated position. In this position, the stomal sleeve 318 of the second tool assembly 300 is supported on the anvil head 314 within the vessel portion “VP” distally of the anvil head 314. With the anvil head 314 of the tool assembly 300 positioned within the vessel portion “VP” beneath the layer of skin “S” and the staple cartridge 320 positioned above the layer of skin “S”, tissue including a portion of the vessel portion “VP” and the layer of skin “S” and the stomal sleeve 318 are drawn into the tissue gap defined between the staple cartridge 320 and the anvil head 314. As discussed above, the stomal sleeve 318 has a first end portion 321 that is secured to the tissue contact surface 315 of the anvil head 314 at a location radially inwardly of the annular array of staple deforming pockets 319 and a second end portion 54 that is secured to a distal face 324 of the anvil head 314.


Referring to FIG. 22, after tissue has been drawn into the tissue gap, the stapling device 10 is approximated to clamp tissue between the staple cartridge 320 and the anvil head 314. More specifically, after the tool assembly 300 is properly positioned within the vessel portion “VP” and the incision “I”, the anvil head 314 is drawn towards the staple cartridge 320 by rotating the clamping knob 16 in the direction indicated by arrow “B” (FIG. 17). As the clamping knob 16 is rotated, the drive screw 42 is drawn into the hollow sleeve 40 to draw the anvil retainer assembly 32FIG. 17) into the shell assembly 312 and draw the anvil head 314 towards the staple cartridge 320 to clamp the vessel portion “VP”, the layer of skin “S”, and other tissue between the anvil head 314 and the staple cartridge 320. As shown, the first end portion 321 of the stomal sleeve 318 which is secured to the tissue contact surface 315 of the anvil head 314 is also clamped between the tissue contact surface 321a of the staple cartridge 320 and the tissue contact surface 315 of the anvil head 314.


In order to fire the stapling device 10, as discussed above with reference to FIG. 18, the firing lockout assembly 22 must be actuated to remove the stop member 124 from within the notch 90 of the drive member 74. In order to actuate the firing lockout assembly 22, the actuator 120 is pressed inwardly in the direction indicated by arrow “C” against the urging of the biasing member 122 to lift the stop member 124 from within the notch 90. When the stop member 124 is lifted from the notch 90, the firing knob 18 can be rotated in the direction indicated by arrow “D” to advance the drive members 74 in the direction indicated by arrow ‘E”.


As discussed above with reference to FIG. 18, advancement of the drive members 74 advances the pusher member 76 distally within the housing 14 to move the fingers 94 of the pusher member 76 into the shell assembly 312 (FIG. 22) to eject staples 380 (FIG. 22) from the staple cartridge 320 and advance an annular knife “K” to cut tissue. When the staples 380 are ejected from the staple cartridge 320, the staples 380 pass through the layer of skin “S”, the vessel portion “VP”, and the stomal sleeve 318 to secure the vessel portion “VP” to the inside surface of the layer of skin “S” to create a stoma 400 and to secure the stomal sleeve 318 to the vessel portion “VP” and to the layer of skin “S”. Simultaneously, the knife “K” is advanced towards the anvil head 314 to cut the tissue positioned radially inwardly of the annular knife “K” and the first end portion 321 of the stomal sleeve 318 to separate the first end portion 321 of the stomal sleeve 318 from the anvil head 314.


Referring to FIG. 23, after the tool assembly 300 of the stapling device 10 is unapproximated to release the clamped tissue from between the staple cartridge 320 and the anvil head 314, the tool assembly 300 can be withdrawn from the incision “I” in the direction indicated by arrows “F” to withdraw the tool assembly 300 from the stoma 400. As discussed above, the second end portion 322 of the stomal sleeve 318 is attached to the distal face 324a of the anvil head 314. Thus, as the tool assembly 300 is withdrawn from the stoma 400, the second end portion 322 of the stomal sleeve 314 is pulled through the stoma 400 to a position externally of the stoma 400 such that the stomal sleeve 318 defines an internal liner from the within the vessel portion “VP” through the stoma 400.


Referring also to FIG. 24, when the stomal sleeve 318 is positioned externally of the stoma 400, the second end portion 322 of the stomal sleeve 318 can be separated from the anvil head 314 to define an opening or mouth 402 adjacent the second end portion 322 of the stomal sleeve 318. In embodiments, the second end portion 322 of the stomal sleeve 322 is closed and is separated from the anvil head 314 by cutting the second end portion 322 using a scissor or cutting device 404 (FIG. 23) along a cut line “CL”. As illustrated, in this position, the stomal sleeve 318 provides an insulative barrier from a position within the vessel portion “VP” through the stoma 400. It is also envisioned that the second end portion 322 of the stomal sleeve 318 may define an opening and be secured to the anvil head 314 by an adhesive. In this embodiment, instead of cutting the second end portion 322 of the stomal sleeve 318, the second end portion 322 of the stomal sleeve 318 can be separated from the distal surface 324 of the anvil head 314 by pulling the second end portion 322 in a direction away from the anvil head 314 to disengage the second end portion 322 from the adhesive on the anvil head 314. Other methods of releasably securing the second end portion 322 of the stomal sleeve 318 to the anvil head 314 are envisioned.


Persons skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments. It is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another without departing from the scope of the present disclosure. As well, one skilled in the art will appreciate further features and advantages of the disclosure based on the above-described embodiments. Accordingly, the disclosure is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.

Claims
  • 1. A circular stapling device comprising: an actuator having a housing including screw threads, a clamping knob, and a firing knob, the firing knob and the clamping knob being rotatably supported on the housing;an approximation assembly supported within the housing, the approximation assembly including a drive screw and an anvil retainer assembly secured to the drive screw and extending from a distal portion of the housing, the clamping knob being operably associated with the drive screw such that rotation of the clamping knob causes axial movement of the drive screw and the anvil retainer assembly in relation to the housing;a firing assembly supported within the housing, the firing assembly including at least one drive member and a pusher member engaged with a distal portion of the at least one drive member, the at least one drive member having a proximal portion positioned to be engaged by the firing knob, the firing knob including internal threads engaged with the screw threads on the housing, the firing knob being rotatable about the housing to effect axial movement of the firing knob in relation to the housing, wherein axial movement of the firing knob in relation to the housing causes axial movement of the at least one drive member and the pusher member in relation to the housing; anda tool assembly supported on a distal portion of the housing.
  • 2. The circular stapling device of claim 1, wherein the at least one drive member includes a transverse extension that extends through an opening in the housing, the transverse extension being positioned to engage the firing knob.
  • 3. The circular stapling device of claim 2, wherein the at least one drive member includes first and second drive members.
  • 4. The circular stapling device of claim 2, further including a biasing member positioned to urge the pusher member and the at least one drive member proximally within the housing.
  • 5. A circular stapling device comprising: an actuator having a housing including screw threads, a clamping knob, and a firing knob, the firing knob and the clamping knob being rotatably supported on the housing, the housing defining an opening;an approximation assembly supported within the housing, the approximation assembly including a drive screw and an anvil retainer assembly secured to the drive screw and extending from a distal portion of the housing, the clamping knob being operably associated with the drive screw such that rotation of the clamping knob causes axial movement of the drive screw and the anvil retainer assembly in relation to the housing;a firing assembly supported within the housing, the firing assembly including a drive member and a pusher member engaged with a distal portion of the drive member, the drive member having a proximal portion including a transverse extension that extends through the opening in the housing and is positioned to be engaged by the firing knob, the firing knob including internal threads engaged with the screw threads of the housing, the firing knob rotatable about the housing to effect axial movement of the firing knob in relation to the housing, wherein axial movement of the firing knob in relation to the housing causes axial movement of the drive member and the pusher member in relation to the housing; anda tool assembly supported on a distal portion of the housing.
  • 6. The circular stapling device of claim 5, wherein the drive member includes first and second drive members and the opening includes first and second openings.
  • 7. The circular stapling device of claim 5, further including a biasing member positioned to urge the pusher member and the drive member proximally within the housing.
  • 8. The circular stapling device of claim 7, further including a coupling member positioned between the actuator and the tool assembly.
  • 9. The circular stapling device of claim 8, wherein the biasing member is positioned in compression between the pusher member and the coupling member.
Priority Claims (1)
Number Date Country Kind
201741002959 Jan 2017 IN national
PCT Information
Filing Document Filing Date Country Kind
PCT/US2017/023353 3/21/2017 WO
Publishing Document Publishing Date Country Kind
WO2018/140066 8/2/2018 WO A
US Referenced Citations (535)
Number Name Date Kind
3193165 Akhalaya et al. Jul 1965 A
3388847 Kasulin et al. Jun 1968 A
3552626 Astafiev et al. Jan 1971 A
3638652 Kelley Feb 1972 A
3771526 Rudie Nov 1973 A
4198982 Fortner et al. Apr 1980 A
4207898 Becht Jun 1980 A
4289133 Rothfuss Sep 1981 A
4304236 Conta et al. Dec 1981 A
4319576 Rothfuss Mar 1982 A
4350160 Kolesov et al. Sep 1982 A
4351466 Noiles Sep 1982 A
4379457 Gravener Apr 1983 A
4473077 Noiles et al. Sep 1984 A
4476863 Kanshin et al. Oct 1984 A
4485817 Swiggett Dec 1984 A
4488523 Shichman Dec 1984 A
4505272 Utyamyshev et al. Mar 1985 A
4505414 Filipi Mar 1985 A
4520817 Green Jun 1985 A
4550870 Krumme et al. Nov 1985 A
4573468 Conta et al. Mar 1986 A
4576167 Noiles Mar 1986 A
4592354 Rothfuss Jun 1986 A
4603693 Conta et al. Aug 1986 A
4606343 Conta et al. Aug 1986 A
4632290 Green et al. Dec 1986 A
4646745 Noiles Mar 1987 A
4665917 Clanton et al. May 1987 A
4667673 Li May 1987 A
4671445 Barker Jun 1987 A
4700703 Resnick et al. Oct 1987 A
4703887 Clanton et al. Nov 1987 A
4708141 Inoue et al. Nov 1987 A
4717063 Ebihara Jan 1988 A
4752024 Green et al. Jun 1988 A
4754909 Barker et al. Jul 1988 A
4776506 Green Oct 1988 A
4817847 Redtenbacher et al. Apr 1989 A
4873977 Avant et al. Oct 1989 A
4893622 Green Jan 1990 A
4893662 Gervasi Jan 1990 A
4903697 Resnick et al. Feb 1990 A
4907591 Vasconcellos et al. Mar 1990 A
4917114 Green et al. Apr 1990 A
4957499 Lipatov et al. Sep 1990 A
4962877 Hervas Oct 1990 A
5005749 Aranyi Apr 1991 A
5042707 Taheri Aug 1991 A
5047039 Avant et al. Sep 1991 A
5104025 Main et al. Apr 1992 A
5119983 Green et al. Jun 1992 A
5122156 Granger et al. Jun 1992 A
5139513 Segato Aug 1992 A
5158222 Green et al. Oct 1992 A
5188638 Tzakis Feb 1993 A
5193731 Aranyi Mar 1993 A
5197648 Gingold Mar 1993 A
5197649 Bessler et al. Mar 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5221036 Takase Jun 1993 A
5222963 Brinkerhoff et al. Jun 1993 A
5253793 Green et al. Oct 1993 A
5261920 Main et al. Nov 1993 A
5269794 Rexroth Dec 1993 A
5271543 Grant et al. Dec 1993 A
5271544 Fox et al. Dec 1993 A
5275322 Brinkerhoff et al. Jan 1994 A
5282810 Allen et al. Feb 1994 A
5285944 Green et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5292053 Bilotti et al. Mar 1994 A
5309927 Welch May 1994 A
5312024 Grant et al. May 1994 A
5314435 Green et al. May 1994 A
5314436 Wilk May 1994 A
5330486 Wilk Jul 1994 A
5333773 Main et al. Aug 1994 A
5344059 Green et al. Sep 1994 A
5346115 Perouse et al. Sep 1994 A
5348259 Blanco et al. Sep 1994 A
5350104 Main et al. Sep 1994 A
5355897 Pietrafitta et al. Oct 1994 A
5360154 Green Nov 1994 A
5368215 Green et al. Nov 1994 A
5383880 Hooven Jan 1995 A
5392979 Green et al. Feb 1995 A
5395030 Kuramoto et al. Mar 1995 A
5395033 Byrne Mar 1995 A
5403333 Kaster et al. Apr 1995 A
5404870 Brinkerhoff et al. Apr 1995 A
5411508 Bessler et al. May 1995 A
5425738 Gustafson et al. Jun 1995 A
5433721 Hooven et al. Jul 1995 A
5437684 Calabrese et al. Aug 1995 A
5439156 Grant et al. Aug 1995 A
5443198 Viola et al. Aug 1995 A
5447514 Gerry et al. Sep 1995 A
5454824 Fontayne Oct 1995 A
5454825 Van Leeuwen et al. Oct 1995 A
5464415 Chen Nov 1995 A
5470006 Rodak Nov 1995 A
5474223 Viola Dec 1995 A
5497934 Brady et al. Mar 1996 A
5503635 Sauer et al. Apr 1996 A
5522534 Viola et al. Jun 1996 A
5533661 Main et al. Jul 1996 A
5588579 Schnut et al. Dec 1996 A
5609285 Grant et al. Mar 1997 A
5626591 Kockerling et al. May 1997 A
5632433 Grant et al. May 1997 A
5639008 Gallagher et al. Jun 1997 A
5641111 Ahrens et al. Jun 1997 A
5658300 Bito et al. Aug 1997 A
5669918 Balazs et al. Sep 1997 A
5685474 Seeber Nov 1997 A
5709335 Heck Jan 1998 A
5715987 Kelley et al. Feb 1998 A
5718360 Green et al. Feb 1998 A
5720742 Zacharias Feb 1998 A
5720755 Dakov Feb 1998 A
5732872 Bolduc et al. Mar 1998 A
5749896 Cook May 1998 A
5758814 Gallagher et al. Jun 1998 A
5799857 Robertson et al. Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5833698 Hinchliffe et al. Nov 1998 A
5836503 Ehrenfels et al. Nov 1998 A
5839639 Sauer et al. Nov 1998 A
5855312 Toledano Jan 1999 A
5860581 Robertson et al. Jan 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5881943 Heck et al. Mar 1999 A
5915616 Viola et al. Jun 1999 A
5947363 Bolduc et al. Sep 1999 A
5951576 Wakabayashi Sep 1999 A
5957363 Heck Sep 1999 A
5993468 Rygaard Nov 1999 A
6024748 Manzo et al. Feb 2000 A
6050472 Shibata Apr 2000 A
6053390 Green et al. Apr 2000 A
6068636 Chen May 2000 A
6083241 Longo et al. Jul 2000 A
6102271 Longo et al. Aug 2000 A
6117148 Ravo et al. Sep 2000 A
6119913 Adams et al. Sep 2000 A
6126058 Adams et al. Oct 2000 A
6142933 Longo et al. Nov 2000 A
6149667 Hovland et al. Nov 2000 A
6176413 Heck et al. Jan 2001 B1
6179195 Adams et al. Jan 2001 B1
6193129 Bittner et al. Feb 2001 B1
6203553 Robertson et al. Mar 2001 B1
6209773 Bolduc et al. Apr 2001 B1
6241140 Adams et al. Jun 2001 B1
6253984 Heck et al. Jul 2001 B1
6258107 Balazs et al. Jul 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6269997 Balazs et al. Aug 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6279809 Nicolo Aug 2001 B1
6302311 Adams et al. Oct 2001 B1
6338737 Toledano Jan 2002 B1
6343731 Adams et al. Feb 2002 B1
6387105 Gifford, III et al. May 2002 B1
6398795 McAlister et al. Jun 2002 B1
6402008 Lucas Jun 2002 B1
6439446 Perry et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6450390 Heck et al. Sep 2002 B2
6478210 Adams et al. Nov 2002 B2
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6494877 Odell et al. Dec 2002 B2
6503259 Huxel et al. Jan 2003 B2
6517566 Hovland et al. Feb 2003 B1
6520398 Nicolo Feb 2003 B2
6533157 Whitman Mar 2003 B1
6551334 Blatter et al. Apr 2003 B2
6578751 Hartwick Jun 2003 B2
6585144 Adams et al. Jul 2003 B2
6588643 Bolduc et al. Jul 2003 B2
6592596 Geitz Jul 2003 B1
6601749 Sullivan et al. Aug 2003 B2
6605078 Adams Aug 2003 B2
6605098 Nobis et al. Aug 2003 B2
6626921 Blatter et al. Sep 2003 B2
6629630 Adams Oct 2003 B2
6631837 Heck Oct 2003 B1
6632227 Adams Oct 2003 B2
6632237 Ben-David et al. Oct 2003 B2
6652542 Blatter et al. Nov 2003 B2
6659327 Heck et al. Dec 2003 B2
6676671 Robertson et al. Jan 2004 B2
6681979 Whitman Jan 2004 B2
6685079 Sharma et al. Feb 2004 B2
6695198 Adams et al. Feb 2004 B2
6695199 Whitman Feb 2004 B2
6698643 Whitman Mar 2004 B2
6716222 McAlister et al. Apr 2004 B2
6716233 Whitman Apr 2004 B1
6726697 Nicholas et al. Apr 2004 B2
6742692 Hartwick Jun 2004 B2
6743244 Blatter et al. Jun 2004 B2
6763993 Bolduc et al. Jul 2004 B2
6769590 Vresh et al. Aug 2004 B2
6769594 Orban, III Aug 2004 B2
6820791 Adams Nov 2004 B2
6821282 Perry et al. Nov 2004 B2
6827246 Sullivan et al. Dec 2004 B2
6840423 Adams et al. Jan 2005 B2
6843403 Whitman Jan 2005 B2
6846308 Whitman et al. Jan 2005 B2
6852122 Rush Feb 2005 B2
6866178 Adams et al. Mar 2005 B2
6872214 Sonnenschein et al. Mar 2005 B2
6874669 Adams et al. Apr 2005 B2
6884250 Monassevitch et al. Apr 2005 B2
6905504 Vargas Jun 2005 B1
6938814 Sharma et al. Sep 2005 B2
6942675 Vargas Sep 2005 B1
6945444 Gresham et al. Sep 2005 B2
6953138 Dworak et al. Oct 2005 B1
6957758 Aranyi Oct 2005 B2
6959851 Heinrich Nov 2005 B2
6978922 Bilotti et al. Dec 2005 B2
6981941 Whitman et al. Jan 2006 B2
6981979 Nicolo Jan 2006 B2
7032798 Whitman et al. Apr 2006 B2
7059331 Adams et al. Jun 2006 B2
7059510 Orban, III Jun 2006 B2
7077856 Whitman Jul 2006 B2
7080769 Vresh et al. Jul 2006 B2
7086267 Dworak et al. Aug 2006 B2
7114642 Whitman Oct 2006 B2
7118528 Piskun Oct 2006 B1
7122044 Bolduc et al. Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7141055 Abrams et al. Nov 2006 B2
7168604 Milliman et al. Jan 2007 B2
7179267 Nolan et al. Feb 2007 B2
7182239 Myers Feb 2007 B1
7195142 Orban, III Mar 2007 B2
7207168 Doepker et al. Apr 2007 B2
7220237 Gannoe et al. May 2007 B2
7234624 Gresham et al. Jun 2007 B2
7235089 McGuckin, Jr. Jun 2007 B1
RE39841 Bilotti et al. Sep 2007 E
7285125 Viola Oct 2007 B2
7303106 Milliman et al. Dec 2007 B2
7303107 Milliman et al. Dec 2007 B2
7309341 Ortiz et al. Dec 2007 B2
7322994 Nicholas et al. Jan 2008 B2
7325713 Aranyi Feb 2008 B2
7334718 McAlister et al. Feb 2008 B2
7335212 Edoga et al. Feb 2008 B2
7364060 Milliman Apr 2008 B2
7398908 Holsten et al. Jul 2008 B2
7399305 Csiky et al. Jul 2008 B2
7401721 Holsten et al. Jul 2008 B2
7401722 Hur Jul 2008 B2
7407075 Holsten et al. Aug 2008 B2
7410086 Ortiz et al. Aug 2008 B2
7422137 Manzo Sep 2008 B2
7422138 Bilotti et al. Sep 2008 B2
7431191 Milliman Oct 2008 B2
7438718 Milliman et al. Oct 2008 B2
7455676 Holsten et al. Nov 2008 B2
7455682 Viola Nov 2008 B2
7481347 Roy Jan 2009 B2
7494038 Milliman Feb 2009 B2
7506791 Omaits et al. Mar 2009 B2
7516877 Aranyi Apr 2009 B2
7527185 Harari et al. May 2009 B2
7537602 Whitman May 2009 B2
7540839 Butler et al. Jun 2009 B2
7546939 Adams et al. Jun 2009 B2
7546940 Milliman et al. Jun 2009 B2
7547312 Bauman et al. Jun 2009 B2
7556186 Milliman Jul 2009 B2
7559451 Sharma et al. Jul 2009 B2
7585306 Abbott et al. Sep 2009 B2
7588174 Holsten et al. Sep 2009 B2
7600663 Green Oct 2009 B2
7611038 Racenet et al. Nov 2009 B2
7635385 Milliman et al. Dec 2009 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7686201 Csiky Mar 2010 B2
7694864 Okada et al. Apr 2010 B2
7699204 Viola Apr 2010 B2
7708181 Cole et al. May 2010 B2
7717313 Criscuolo et al. May 2010 B2
7721932 Cole et al. May 2010 B2
7726539 Holsten et al. Jun 2010 B2
7743958 Orban, III Jun 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7770776 Chen et al. Aug 2010 B2
7771440 Ortiz et al. Aug 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7793813 Bettuchi Sep 2010 B2
7802710 Hung Sep 2010 B1
7802712 Milliman et al. Sep 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837080 Schwemberger Nov 2010 B2
7837081 Holsten et al. Nov 2010 B2
7845536 Viola et al. Dec 2010 B2
7845538 Whitman Dec 2010 B2
7857187 Milliman Dec 2010 B2
7886951 Hessler Feb 2011 B2
7896215 Adams et al. Mar 2011 B2
7900806 Chen et al. Mar 2011 B2
7909039 Hur Mar 2011 B2
7909219 Cole et al. Mar 2011 B2
7909222 Cole et al. Mar 2011 B2
7909223 Cole et al. Mar 2011 B2
7913892 Cole et al. Mar 2011 B2
7918377 Measamer et al. Apr 2011 B2
7922062 Cole et al. Apr 2011 B2
7922743 Heinrich et al. Apr 2011 B2
7931183 Orban, III Apr 2011 B2
7938307 Bettuchi May 2011 B2
7942302 Roby et al. May 2011 B2
7951166 Orban, III et al. May 2011 B2
7959050 Smith et al. Jun 2011 B2
7967181 Viola et al. Jun 2011 B2
7975895 Milliman Jul 2011 B2
8002795 Beetel Aug 2011 B2
8006701 Bilotti et al. Aug 2011 B2
8006889 Adams et al. Aug 2011 B2
8011551 Marczyk et al. Sep 2011 B2
8011554 Milliman Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016858 Whitman Sep 2011 B2
8020741 Cole et al. Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8028885 Smith et al. Oct 2011 B2
8038046 Smith et al. Oct 2011 B2
8043207 Adams Oct 2011 B2
8066167 Measamer et al. Nov 2011 B2
8066169 Viola Nov 2011 B2
8070035 Holsten et al. Dec 2011 B2
8070037 Csiky Dec 2011 B2
8096458 Hessler Jan 2012 B2
8109426 Milliman et al. Feb 2012 B2
8109427 Orban, III Feb 2012 B2
8113405 Milliman Feb 2012 B2
8113406 Holsten et al. Feb 2012 B2
8113407 Holsten et al. Feb 2012 B2
8123103 Milliman Feb 2012 B2
8128645 Sonnenschein et al. Mar 2012 B2
8132703 Milliman et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8146790 Milliman Apr 2012 B2
8146791 Bettuchi et al. Apr 2012 B2
8181838 Milliman et al. May 2012 B2
8192460 Orban, III et al. Jun 2012 B2
8201720 Hessler Jun 2012 B2
8203782 Brueck et al. Jun 2012 B2
8211130 Viola Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8225981 Criscuolo et al. Jul 2012 B2
8231041 Marczyk et al. Jul 2012 B2
8231042 Hessler et al. Jul 2012 B2
8257391 Orban, III et al. Sep 2012 B2
8267301 Milliman et al. Sep 2012 B2
8272552 Holsten et al. Sep 2012 B2
8276802 Kostrzewski Oct 2012 B2
8281975 Criscuolo et al. Oct 2012 B2
8286845 Perry et al. Oct 2012 B2
8308045 Bettuchi et al. Nov 2012 B2
8312885 Bettuchi et al. Nov 2012 B2
8313014 Bettuchi Nov 2012 B2
8317073 Milliman et al. Nov 2012 B2
8317074 Ortiz et al. Nov 2012 B2
8322590 Patel et al. Dec 2012 B2
8328060 Jankowski et al. Dec 2012 B2
8328062 Viola Dec 2012 B2
8328063 Milliman et al. Dec 2012 B2
8343185 Milliman et al. Jan 2013 B2
8353438 Baxter, III et al. Jan 2013 B2
8353439 Baxter, III et al. Jan 2013 B2
8353930 Heinrich et al. Jan 2013 B2
8360295 Milliman et al. Jan 2013 B2
8365974 Milliman Feb 2013 B2
8403942 Milliman et al. Mar 2013 B2
8408441 Wenchell et al. Apr 2013 B2
8413870 Pastorelli et al. Apr 2013 B2
8413872 Patel Apr 2013 B2
8418905 Milliman Apr 2013 B2
8418909 Kostrzewski Apr 2013 B2
8424535 Hessler et al. Apr 2013 B2
8424741 McGuckin, Jr. et al. Apr 2013 B2
8430291 Heinrich et al. Apr 2013 B2
8430292 Patel et al. Apr 2013 B2
8453910 Bettuchi et al. Jun 2013 B2
8453911 Milliman et al. Jun 2013 B2
8485414 Criscuolo et al. Jul 2013 B2
8490853 Criscuolo et al. Jul 2013 B2
8511533 Viola et al. Aug 2013 B2
8540132 Marczyk et al. Sep 2013 B2
8551138 Orban, III et al. Oct 2013 B2
8567655 Nalagatla et al. Oct 2013 B2
8579178 Holsten et al. Nov 2013 B2
8590763 Milliman Nov 2013 B2
8590764 Hartwick et al. Nov 2013 B2
8608047 Holsten et al. Dec 2013 B2
8616428 Milliman et al. Dec 2013 B2
8616429 Viola Dec 2013 B2
8622275 Baxter, III et al. Jan 2014 B2
8631993 Kostrzewski Jan 2014 B2
8636187 Hueil et al. Jan 2014 B2
8640940 Ohdaira Feb 2014 B2
8662370 Takei Mar 2014 B2
8663258 Bettuchi et al. Mar 2014 B2
8672931 Goldboss et al. Mar 2014 B2
8678264 Racenet et al. Mar 2014 B2
8684248 Milliman Apr 2014 B2
8684250 Bettuchi et al. Apr 2014 B2
8684251 Rebuffat et al. Apr 2014 B2
8684252 Patel et al. Apr 2014 B2
8684253 Giordano Apr 2014 B2
8733611 Milliman May 2014 B2
9010608 Casasanta, Jr. Apr 2015 B2
10478189 Bear Nov 2019 B2
10709452 DiNardo Jul 2020 B2
20010000903 Heck May 2001 A1
20020025243 Heck Feb 2002 A1
20030111507 Nunez Jun 2003 A1
20040073090 Butler et al. Apr 2004 A1
20050051597 Toledano Mar 2005 A1
20050107813 Gilete Garcia May 2005 A1
20050131390 Heinrich Jun 2005 A1
20060000869 Fontayne Jan 2006 A1
20060011698 Okada et al. Jan 2006 A1
20060201989 Ojeda Sep 2006 A1
20060273135 Beetel Dec 2006 A1
20060278680 Viola Dec 2006 A1
20070027473 Vresh et al. Feb 2007 A1
20070029363 Popov Feb 2007 A1
20070060952 Roby et al. Mar 2007 A1
20070118157 Zuidema May 2007 A1
20080185419 Smith Aug 2008 A1
20090236392 Cole et al. Sep 2009 A1
20090236398 Cole et al. Sep 2009 A1
20090236401 Cole et al. Sep 2009 A1
20100019016 Edoga et al. Jan 2010 A1
20100051668 Milliman et al. Mar 2010 A1
20100069942 Shelton, IV Mar 2010 A1
20100084453 Hu Apr 2010 A1
20100096431 Smith Apr 2010 A1
20100147923 D'Agostino et al. Jun 2010 A1
20100163598 Belzer Jul 2010 A1
20100224668 Fontayne et al. Sep 2010 A1
20100230465 Smith et al. Sep 2010 A1
20100258611 Smith et al. Oct 2010 A1
20100264195 Bettuchi Oct 2010 A1
20100327041 Milliman et al. Dec 2010 A1
20110011916 Levine Jan 2011 A1
20110114697 Baxter, III et al. May 2011 A1
20110114700 Baxter, III et al. May 2011 A1
20110144640 Heinrich et al. Jun 2011 A1
20110147432 Heinrich et al. Jun 2011 A1
20110192882 Hess et al. Aug 2011 A1
20110278346 Hull et al. Nov 2011 A1
20110290851 Shelton, IV Dec 2011 A1
20120055972 Marczyk Mar 2012 A1
20120145755 Kahn Jun 2012 A1
20120193395 Pastorelli et al. Aug 2012 A1
20120193398 Williams et al. Aug 2012 A1
20120232339 Csiky Sep 2012 A1
20120273548 Ma et al. Nov 2012 A1
20120325888 Qiao et al. Dec 2012 A1
20130015232 Smith et al. Jan 2013 A1
20130020372 Jankowski et al. Jan 2013 A1
20130020373 Smith et al. Jan 2013 A1
20130032628 Li et al. Feb 2013 A1
20130056516 Viola Mar 2013 A1
20130060258 Giacomantonio Mar 2013 A1
20130105544 Mozdzierz et al. May 2013 A1
20130105546 Milliman et al. May 2013 A1
20130105551 Zingman May 2013 A1
20130126580 Smith et al. May 2013 A1
20130153630 Miller et al. Jun 2013 A1
20130153631 Vasudevan et al. Jun 2013 A1
20130153633 Casasanta, Jr. et al. Jun 2013 A1
20130153634 Carter et al. Jun 2013 A1
20130153638 Carter et al. Jun 2013 A1
20130153639 Hodgkinson et al. Jun 2013 A1
20130175315 Milliman Jul 2013 A1
20130175318 Felder et al. Jul 2013 A1
20130175319 Felder et al. Jul 2013 A1
20130175320 Mandakolathur Vasudevan et al. Jul 2013 A1
20130181035 Milliman Jul 2013 A1
20130181036 Olson et al. Jul 2013 A1
20130186930 Wenchell et al. Jul 2013 A1
20130193185 Patel Aug 2013 A1
20130193187 Milliman Aug 2013 A1
20130193190 Carter et al. Aug 2013 A1
20130193191 Stevenson et al. Aug 2013 A1
20130193192 Casasanta, Jr. et al. Aug 2013 A1
20130200131 Racenet et al. Aug 2013 A1
20130206816 Penna Aug 2013 A1
20130214027 Hessler et al. Aug 2013 A1
20130214028 Patel et al. Aug 2013 A1
20130228609 Kostrzewski Sep 2013 A1
20130240597 Milliman et al. Sep 2013 A1
20130240600 Bettuchi Sep 2013 A1
20130248581 Smith et al. Sep 2013 A1
20130277411 Hodgkinson et al. Oct 2013 A1
20130277412 Gresham et al. Oct 2013 A1
20130284792 Ma Oct 2013 A1
20130292449 Bettuchi et al. Nov 2013 A1
20130299553 Mozdzierz Nov 2013 A1
20130299554 Mozdzierz Nov 2013 A1
20130306701 Olson Nov 2013 A1
20130306707 Viola et al. Nov 2013 A1
20140008413 Williams Jan 2014 A1
20140012317 Orban et al. Jan 2014 A1
20150053743 Yates Feb 2015 A1
20150083774 Measamer Mar 2015 A1
20150351769 Lee Dec 2015 A1
20160143641 Sapienza et al. May 2016 A1
20160157856 Williams et al. Jun 2016 A1
20160174988 D'Agostino et al. Jun 2016 A1
20160192934 Williams et al. Jul 2016 A1
20160192938 Sgroi, Jr. Jul 2016 A1
20160302792 Motai Oct 2016 A1
20180008272 Sgroi, Jr. Jan 2018 A1
20180085124 Nativ Mar 2018 A1
20180168635 Shelton, IV Jun 2018 A1
20190125455 Shelton, IV May 2019 A1
20190133588 Aravalli May 2019 A1
20210169487 Nicholas Jun 2021 A1
20220225995 Nicholas Jul 2022 A1
Foreign Referenced Citations (34)
Number Date Country
908529 Aug 1972 CA
2805365 Aug 2013 CA
103536329 Jan 2014 CN
1057729 May 1959 DE
3301713 Jul 1984 DE
0152382 Aug 1985 EP
0173451 Mar 1986 EP
0190022 Aug 1986 EP
0282157 Sep 1988 EP
0503689 Sep 1992 EP
1354560 Oct 2003 EP
1588667 Oct 2005 EP
2138118 Dec 2009 EP
2168510 Mar 2010 EP
2238926 Oct 2010 EP
2524656 Nov 2012 EP
2620105 Jul 2013 EP
1136020 May 1957 FR
1461464 Feb 1966 FR
1588250 Apr 1970 FR
2443239 Jul 1980 FR
1185292 Mar 1970 GB
2016991 Sep 1979 GB
2070499 Sep 1981 GB
2004147969 May 2004 JP
2013138860 Jul 2013 JP
7711347 Apr 1979 NL
1509052 Sep 1989 SU
8706448 Nov 1987 WO
8900406 Jan 1989 WO
9006085 Jun 1990 WO
9835614 Aug 1998 WO
0154594 Aug 2001 WO
2008107918 Sep 2008 WO
Non-Patent Literature Citations (3)
Entry
European Search Report dated Apr. 17, 2020, issued in EP Appln. No. 19207263, 9 pages.
Partial European Search Report dated Oct. 15, 2020, issued in corresponding EP Appln. No. 17894018, 13 pages.
Chinese Office Action dated Dec. 27, 2021, issued in corresponding Chinese Appln. No. 201780083140, 11 pages.
Related Publications (1)
Number Date Country
20210353294 A1 Nov 2021 US