Circular stapling device with anvil rotation locking structure

Information

  • Patent Grant
  • 11576678
  • Patent Number
    11,576,678
  • Date Filed
    Tuesday, October 12, 2021
    4 years ago
  • Date Issued
    Tuesday, February 14, 2023
    2 years ago
Abstract
A circular stapling device includes an anvil assembly and an adaptor assembly including a shell assembly. The adaptor assembly includes an anvil retainer including an asymmetric tip. The anvil assembly has a center rod, an anvil head supported on the center rod, and an alignment member. The center rod has a proximal portion and a distal portion and defines a channel that extends from the proximal portion to the distal portion. The alignment member is positioned within the channel and is configured to engage the asymmetric trocar tip of the anvil retainer of the adaptor when the anvil assembly is attached to the anvil retainer to properly align the anvil assembly with the shell assembly.
Description
BACKGROUND
1. Technical Description

The present disclosure is directed to a circular stapling device, and more particularly, to a circular stapling device with structure to maintain rotational alignment between an anvil assembly and a shell assembly of the circular stapling device when the anvil assembly is attached to the circular stapling device.


2. Background of Related Art

Conventional circular stapling devices include a shell assembly having a circular staple cartridge and an anvil assembly having a circular anvil head. The circular staple cartridge includes a body defining a plurality of staple receiving pockets that receive staples. The circular anvil head defines staple deforming recesses that receive the staples during firing of the circular stapling device to form the staples. When the circular stapling device is fired, the staple receiving pockets of the staple cartridge must be properly aligned with the staple deforming recesses of the anvil head to properly form the staples within tissue.


Typically, the anvil assembly includes a center rod that supports the anvil head and the shell assembly includes a housing that defines an inner bore that receives the center rod when the anvil assembly and the shell assembly are approximated. In order to provide proper alignment between the anvil head and the staple cartridge, the center rod of the anvil assembly and the inner bore of the housing of the shell assembly include splines that mesh to cam and rotate the anvil head into alignment with staple cartridge.


In certain instances, the splines on the center rod of the anvil assembly crash head on into the splines on the housing of the shell assembly. When this occurs, the anvil head may not be properly aligned with the staple cartridge during firing of the circular stapling device. This may result in malformed staples which may result in ineffective sealing of tissue.


Accordingly, a continuing need exists in the stapling arts for a circular stapling device including improved structure to properly align the anvil with the staple cartridge to improve staple formation and operation of the stapling device.


SUMMARY

One aspect of the present disclosure is directed to a circular stapling device including an adaptor assembly and an anvil assembly. The adaptor assembly includes an elongate body, a shell assembly, and an anvil retainer. The anvil retainer includes a trocar having an asymmetric trocar tip. The shell assembly is supported on a distal portion of the elongate body and includes a staple cartridge and a housing. The staple cartridge includes a body supported on the housing defining an annular array of staple receiving pockets. The anvil assembly has a center rod, an anvil head, and an alignment member. The center rod has a proximal portion and a distal portion and a channel that extends from the proximal portion to the distal portion. The anvil head has an annular array of staple deforming pockets. The alignment member is positioned within the channel and is configured to engage the asymmetric trocar tip of the anvil retainer when the anvil assembly is attached to the anvil retainer to rotate the anvil assembly in relation to the trocar and move the annular array of staple receiving pockets into alignment with the annular array of staple deforming pockets.


Another aspect of the disclosure is directed to an anvil assembly including a center rod, and anvil head and an alignment member. The center rod has a proximal portion and a distal portion and defines a channel that extends from the proximal portion to the distal portion. The anvil head has an annular array of staple deforming pockets. The alignment member is positioned within the channel and is configured to engage an anvil retainer of a circular stapling device when the anvil assembly is attached to the anvil retainer to rotate the annular array of staple deforming pockets into alignment with the circular stapling device.


In embodiments, the stapling device includes a handle assembly that supports a proximal portion of the elongate body.


In some embodiments, the alignment member includes a distal face and a plurality of protrusions that are spaced about the distal face.


In certain embodiments, the protrusions define recesses there between, wherein the recesses are configured to receive the trocar tip of the anvil retainer when the anvil assembly is attached to the anvil retainer.


In embodiments, each of the protrusions has a triangular configuration and includes a side wall that defines in part one of the recesses.


In some embodiments, the side wall is angled and is positioned to engage the trocar tip as the trocar tip is advanced into the channel such that continued advancement of the trocar tip into the channel after the trocar tip engages the angled side wall causes the alignment member and the anvil assembly to rotate in relation to the trocar to move the annular array of staple receiving pockets into alignment with the annular array of staple deforming pockets.


In certain embodiments, the alignment member includes a distal face having a plurality of concavities that are spaced about the distal face.


In embodiments, each of the concavities has a spherical configuration.


In some embodiments, the trocar tip has a spherical configuration.


In certain embodiments, the proximal portion of the center rod includes a plurality of resilient fingers, wherein each of the resilient fingers has an inner surface that defines a portion of the channel.


In embodiments, each of the resilient fingers includes a rib and the trocar defines a recess, wherein the rib of each of the resilient fingers is received within the recess of the trocar to releasably secure the anvil assembly to the trocar.


In some embodiments, the housing includes an inner housing portion defining a bore that is configured to receive the center rod and the center rod supports at least one first spline. In certain embodiments, the inner housing portion includes a plurality of second splines extending into the bore that define channels there between, wherein the at least one first spline is positioned to be received in the channels of the inner housing portion.


In embodiments, the alignment member is positioned to rotate the anvil assembly in relation to the trocar to move the at least one first spline into alignment with one of the channels defines between the plurality of second splines.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the presently disclosed circular stapling device are described herein below with reference to the drawings, wherein:



FIG. 1 is a side perspective view of an exemplary embodiment of the presently disclosed circular stapling device with the anvil in an unapproximated position;



FIG. 2 is an enlarged view of the area of detail shown in FIG. 1;



FIG. 3 is a side perspective view of a distal portion of the adaptor and the anvil assembly of the circular stapling device shown in FIG. 1 with parts separated;



FIG. 4 is a side perspective view of the distal portion of the adaptor and the anvil assembly of the circular stapling device shown in FIG. 3 with parts separated with the trocar of the adaptor shown in phantom;



FIG. 5 is a side perspective view of a proximal portion of a center rod of the anvil assembly, an alignment member, and the trocar of the adaptor assembly of the circular stapling device shown in FIG. 4 with parts separated;



FIG. 6 is a side view of the trocar of the adaptor shown in FIG. 5;



FIG. 7 is a front view of the trocar shown in FIG. 6;



FIG. 8 is a side perspective view from the distal end of the trocar shown in FIG. 8;



FIG. 9 is an enlarged view of the indicated area of detail shown in FIG. 5;



FIG. 10 is a side perspective view from the distal end of the alignment member shown in FIG. 9;



FIG. 11 is a side perspective view of the proximal portion of the center rod, the alignment member, and the trocar of the circular stapling device shown in FIG. 5 assembled with the trocar shown in phantom;



FIG. 12 is an enlarged view of the indicated area of detail shown in FIG. 11;



FIG. 13 is a cross-sectional view taken along section lines 13-13 of FIG. 12;



FIG. 14 is a view from the proximal end of another embodiment of the alignment member of the presently disclosed circular stapling device shown in FIG. 1;



FIG. 15 is a side view of the alignment member shown in FIG. 1; and



FIG. 16 is a side view of the alignment member shown in FIG. 15 engaged with the trocar of the adaptor shown in FIG. 6.





DETAILED DESCRIPTION OF EMBODIMENTS

The presently disclosed circular stapling device will now be described in detail with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. However, it is to be understood that the disclosed embodiments are merely exemplary of the disclosure and may be embodied in various forms. Well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure.


In this description, the term “proximal” is used generally to refer to that portion of the device that is closer to a clinician, while the term “distal” is used generally to refer to that portion of the device that is farther from the clinician. In addition, the term “endoscopic” is used generally used to refer to endoscopic, laparoscopic, arthroscopic, and/or any other procedure conducted through small diameter incision or cannula. Further, the term “clinician” is used generally to refer to medical personnel including doctors, nurses, and support personnel.



FIG. 1 illustrates a circular stapling device shown generally as stapling device 10. The stapling device 10 includes a handle assembly 12, an elongate body or adaptor assembly 14, and an anvil assembly 16. The adaptor assembly 14 includes an elongate body 17, a shell assembly 18, and an anvil retainer 22 that is configured to releasably support the anvil assembly 16. The shell assembly 18 has a proximal portion supported on a distal portion of the elongate body 17 and a distal portion that supports a staple cartridge 20. The staple cartridge 20 defines a plurality of annular rows of staple receiving pockets 24. Each of the staple receiving pockets 24 receives a staple (not shown) such that the staple cartridge 20 supports annular rows of staples.


The handle assembly 12 is illustrated as a powered assembly and includes a stationary grip 30 and actuation buttons 32 for controlling operation of stapling device functions including approximation of the anvil and shell assemblies 16, 18, respectively, and firing of staples (not shown) from the staple cartridge 20 of the shell assembly 18. The adaptor assembly 14 is coupled to the handle assembly 12 to translate power from the handle assembly 12 to the anvil and shell assemblies 16, 18. Although the present disclosure illustrates powered handle and adaptor assemblies 12, 14, respectively, it is envisioned that the advantages of the present disclosure as described in detail below are also applicable to circular stapling devices having manually operated handle and adaptor assemblies. U.S. Pat. No. 7,303,106 (“the '106 Patent”) discloses an example of a surgical stapling device including a manually actuated handle assembly and is incorporated herein by reference in its entirety. U.S. Pat. No. 9,023,014 (“the '014 Patent”) and U.S. Pat. No. 9,055,943 (“the '943 Patent”) disclose examples of surgical stapling devices including exemplary powered handle assemblies. Each of these patents is incorporated herein by reference in its entirety.


Referring to FIGS. 2-5, the anvil assembly 16 includes an anvil head 40 and an anvil center rod 42 having a proximal portion 42a and a distal portion 42b. The distal portion 42b of the anvil center rod 42 is coupled to the anvil head 40. The proximal portion 42a of the center rod 42 includes a plurality of resilient fingers 44. The distal portion 42b and the resilient fingers 44 of the anvil center rod 42 define a central channel 46 (FIG. 5) that is dimensioned to receive the anvil retainer 22 of the adaptor assembly 14 as described in further detail below. Each of the resilient fingers 44 includes an inner surface that defines a rib 48 (FIG. 5). The ribs 48 of the resilient fingers 44 together define an annular engagement surface that is positioned to engage the anvil retainer 22 to releasably secure the anvil assembly 16 to the anvil retainer 22. The anvil center rod 42 also supports one or more splines 50 that are positioned between the anvil head 40 and the resilient fingers 44. The splines 50 function to maintain alignment between the anvil assembly 16 and the shell assembly 18 after the anvil and shell assemblies 16, 18 are approximated to facilitate proper formation of staples when the stapling device 10 (FIG. 1) is approximated and fired as described in further detail below.


The anvil head 40 supports a circular anvil 41 (FIG. 4) that defines a plurality of annular rows of staple deforming recesses 41a. Each of the staple deforming recesses 41a is configured to receive the legs of a respective staple (not shown) to properly form the staples into a desired configuration, e.g., B-shape. In order to accomplish this function, the staple deforming recesses 41a must be properly aligned with the staple receiving pockets 24 of the staple cartridge 20 to receive the legs of the staples.


Referring to FIG. 5, the shell assembly 18 includes a housing 26 having an inner housing portion 26a defining a bore 28 that receives the anvil retainer 22 as the anvil retainer 22 is translated between approximated and unapproximated positions. The inner housing portion 26a includes splines 34 that define channels between adjacent splines 34. The channels defined between the splines 34 receive the splines 50 of the center rod 42 of the anvil assembly 16 to maintain alignment between the anvil assembly 16 and the shell assembly 18 during approximation and firing of the stapling device 10. For a more detailed description of the approximation assembly of the stapling device 10, see, e.g., the '106, '014, and '943 Patents which are incorporated herein by reference.


Although not described in detail herein, the anvil head 40 can be mounted to the anvil center rod 42 in a pivotal manner to facilitate pivotal movement of the anvil head 40 in relation to the anvil center rod 42 between operative and inoperative (tilted) positions. Alternately, the anvil head 40 can be fixedly secured to the anvil center rod 42 in the operative position.


Referring also to FIGS. 5-8, in embodiments, the anvil retainer 22 includes a trocar 52 having a body 54 defining a longitudinal axis “X”. The body 54 is connected to an approximation assembly (not shown) supported within the adaptor assembly 14 (FIG. 1). For a more detailed description of the approximation assembly of the adaptor assembly 14, see, e.g., the '014 and '943 Patents which are incorporated herein by reference. The body 54 defines an annular recess 56 that is defined in part by a shoulder 58, and a tapered body portion 60 (FIG. 6) that is positioned immediately distal to the annular recess 56. The tapered body portion 60 of the body 54 of the trocar 52 has a diameter that increases in a proximal direction along a length of the trocar 52. The shoulder 58 is positioned on the trocar 52 to engage the ribs 48 on the resilient fingers 44 of the anvil center rod 42 to releasably secure the trocar 52 to the anvil center rod 42. More specifically, when the trocar 52 is inserted into the channel 46 of the anvil center rod 42 (FIG. 11), the resilient fingers 44 of the anvil center rod 42 engage the tapered body portion 60 of the trocar 52 and are flexed outwardly as the trocar 52 is advanced into the channel 46. When the ribs 48 of the resilient fingers 44 pass proximally over the shoulder 58 of the trocar 52, the resilient fingers 44 snap inwardly to position the ribs 48 in engagement with the shoulder 58 of the trocar 52 to releasably secure the anvil center rod 42 about the trocar 52. The annular recess 56 extends entirely about the center rod 42. As such, receipt of the ribs 48 within the recess 56 does not prohibit rotation of the anvil assembly 16 in relation to the trocar 52.


The body 54 of the trocar 52 includes a distal tapered trocar portion 62 including a trocar tip 64. In embodiments, the tapered trocar portion 62 is asymmetric such that the trocar tip 64 is positioned at a location offset from the longitudinal axis “X”. In embodiments, the trocar tip 64 is rounded or blunt. Alternately, the trocar tip 64 can have a sharper configuration to more effectively pierce tissue.


Referring to FIGS. 5, 9, and 10, an alignment member 70 is fixedly supported in the channel 46 (FIG. 5) in the distal portion 42b of the anvil center rod 42. The alignment member 70 includes a plurality of protrusions 72 that are spaced apart about a distal face of the alignment member 70. The protrusions 72 define valleys or recesses 74 between each of the adjacent protrusions 72. In embodiments, the protrusions 72 have a triangular configuration and include angled walls 76 that are positioned to engage the trocar tip 64 of the trocar 52 when the anvil assembly 16 is received on the trocar 52. Alternately, it is envisioned that the protrusions 72 may have a variety of configurations to achieve the objectives summarized below.


Referring also to FIGS. 11-13, the alignment member 70 is positioned within the channel 46 in the distal portion 42b of the center rod 42. In embodiments, the alignment member 70 includes an insert that is secured within the channel 46 by welding or the like. Alternately, the alignment member 70 can be integrally formed with the center rod 42 or secured within the channel 46 of the center rod 42 using any of a variety of known fastening techniques.


When the trocar 52 is advanced into the channel 46 of the anvil center rod 42 to couple the anvil assembly 16 to the anvil retainer 22, the trocar tip 64 is dimensioned to engage the protrusions 72 of the alignment member 70 as the anvil assembly 16 is coupled to the trocar 52. When the trocar tip 64 engages one of the angled walls 76 of a respective one of the protrusions 72, continued advancement of the trocar 22 into the channel 46 of the center rod 42 cams the alignment member 70 into rotation about the longitudinal axis “X” of the trocar 52. Since the alignment member 70 is fixed within the channel 46 of the center rod 42 of the anvil assembly 16, rotation of the alignment member 70 causes the anvil assembly 16 to rotate in relation to the trocar 52 to position the anvil assembly 16 in proper alignment with the shell assembly 18. In this position, the splines 50 on the center rod 42 and the splines 34 on the inner housing portion 26 of the housing 26 of the shell assembly 18 are positioned to mesh without crashing. When the trocar tip 52 bottoms out in one of the recesses 74 of the alignment member 70, the trocar tip 64 is dimensioned to engage adjacent protrusions 72 in a manner to prevent further rotation of the anvil assembly 16 about the trocar 52 (FIG. 12).



FIGS. 14-16 illustrate another exemplary embodiment of an alignment member of the presently disclosed circular stapling device 10 (FIG. 1) shown generally as alignment member 170. The alignment member 170 includes a distal face that defines a circular array of recesses or concavities 172. Each of the concavities 172 have a configuration that corresponds to the shape of the trocar tip 64. In use, when the trocar tip 64 is received within one of the concavities 172, engagement between the trocar tip 64 and side walls defining the concavity 172 will cam the alignment member 170 into rotation about the trocar 52 to move the anvil assembly 16 (FIG. 2) into alignment with the staple cartridge 20 of the shell assembly 18. When the trocar tip 64 bottoms out within a respective protrusion 172 of the alignment member 170, engagement between the trocar tip 64 and the alignment member 170 prevents further rotation of the alignment member 170 in relation to the trocar 52 and, thus prevents further rotation of the anvil assembly 16 in relation to the staple cartridge 20 of the shell assembly 18.


As discussed above in regard to the alignment member 70 (FIG. 5), the alignment member 170 can be formed integrally with the center rod 42 of the anvil assembly 16, or, in the alternative, separately as an insert that is positioned within the channel 46 (FIG. 5) in the distal portion 42b of the center rod 42 and subsequently secured to the center rod 42. In embodiments, the concavities 172 in the alignment member 170 are substantially spherical in shape. Alternately, it is envisioned that the concavities 172 may assume a variety of different configurations. In embodiments, the trocar tip 64 and the concavities 172 each have a substantially spherical configuration.


Although the presently disclosed circular stapling device is shown to include both splines 34, 50 on the shell and anvil assemblies 18, 16 and an alignment member 70, 170, it is envisioned that the circular stapling device need only include the alignment member 70, 170 and the asymmetric trocar 52 to effect and maintain alignment between the anvil assembly 16 and the staple cartridge 20 of the shell assembly 18.


Persons skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments. It is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another without departing from the scope of the present disclosure. As well, one skilled in the art will appreciate further features and advantages of the disclosure based on the above-described embodiments. Accordingly, the disclosure is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.

Claims
  • 1. An anvil retainer comprising: a body defining a central longitudinal axis and having a proximal end and a distal trocar portion, the body defining an annular recess that is positioned between the distal trocar portion and the proximal end, the annular recess being defined in part by a shoulder, the distal trocar portion having an asymmetric configuration and including a trocar tip that is positioned outwardly of the central longitudinal axis of the body.
  • 2. The anvil retainer of claim 1, wherein the body includes a proximal portion that includes the proximal end of the body, the proximal portion configured to be coupled to a surgical stapling device.
  • 3. The anvil retainer of claim 1, wherein the body includes a tapered portion that is positioned distally of and adjacent to the annular recess, the tapered portion having a diameter that increases in a proximal direction.
  • 4. The anvil retainer of claim 1, wherein the trocar tip is rounded or blunt.
  • 5. A circular stapling device comprising: an adaptor assembly including an elongate body and an anvil retainer, the elongate body having a proximal portion and a distal portion, the anvil retainer extending from the distal portion of the elongate body and including a body defining a central longitudinal axis, the body having a proximal end and a distal trocar portion, the body defining an annular recess that is positioned between the distal trocar portion and the proximal end, the annular recess being defined in part by a shoulder, the distal trocar portion having an asymmetric configuration and including a trocar tip that is positioned outwardly of the central longitudinal axis of the body.
  • 6. The circular stapling device of claim 5, further including a shell assembly supported on the distal portion of the elongate body, the shell assembly including a staple cartridge and a housing, the staple cartridge including a body supported on the housing, the body defining an annular array of staple receiving pockets.
  • 7. The circular stapling device of claim 6, further including an anvil assembly, the anvil assembly including a center rod, an anvil head, and an alignment member, the center rod having a proximal portion and a distal portion and defining a channel that extends from the proximal portion to the distal portion, the anvil head having an annular array of staple forming pockets, the alignment member being positioned within the channel and configured to engage the trocar tip of the anvil retainer when the anvil assembly is attached to the anvil retainer, engagement of the alignment member with the trocar tip rotating the anvil assembly in relation to the anvil retainer to move the annular array of staple receiving pockets into alignment with the annular array of staple deforming pockets.
  • 8. The circular stapling device of claim 7, further including a handle assembly supported on the proximal portion of the elongate body.
  • 9. The circular stapling device of claim 8, wherein the alignment member defines recesses positioned between the protrusions, the recesses configured to receive the trocar tip of the anvil retainer when the anvil assembly is attached to the anvil retainer.
  • 10. The circular stapling device of claim 9, wherein each of the protrusions has a triangular configuration and includes a side wall that defines in part one of the recesses.
  • 11. The circular stapling device of claim 10, wherein the side wall is angled and is positioned to engage the trocar tip as the trocar tip is advanced into the channel such that continued advancement of the trocar tip into the channel after the trocar tip engages the angled side wall causes the alignment member and the anvil assembly to rotate in relation to the trocar to move the annular array of staple receiving pockets into alignment with the annular array of staple deforming pockets.
  • 12. The circular stapling device of claim 7, wherein the alignment member includes a distal face and a plurality of protrusions that are spaced about the distal face.
  • 13. The circular stapling device of claim 7, wherein the alignment member includes a distal face having a plurality of concavities that are spaced about the distal face.
  • 14. The circular stapling device of claim 13, wherein each of the concavities has a spherical configuration.
  • 15. The circular stapling device of claim 14, wherein the trocar tip has a spherical configuration.
  • 16. The circular stapling device of claim 7, wherein the proximal portion of the center rod includes a plurality of resilient fingers, each of the resilient fingers having an inner surface that defines a portion of the channel.
  • 17. The circular stapling device of claim 16, wherein each of the resilient fingers includes a rib that is received within the annular recess of the of the body of the anvil retainer to releasably secure the anvil assembly to the anvil retainer.
  • 18. The circular stapling device of claim 17, wherein the housing includes an inner housing portion defining a bore, the bore configured to receive the center rod.
  • 19. The circular stapling device of claim 18, wherein the center rod supports at least one first spline and the inner housing portion includes a plurality of second splines that extend into the bore, the plurality of second splines defining channels there between, the at least one first spline received within the channels of the inner housing portion.
  • 20. The circular stapling device of claim 19, wherein the alignment member is positioned to rotate the anvil assembly in relation to the trocar to move the at least one first spline into alignment with one of the channels defined between the plurality of second splines.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/550,935 filed Aug. 26, 2019, which claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 62/741,319 filed Oct. 4, 2018. The entire disclosure of each of these applications is incorporated by reference herein.

US Referenced Citations (516)
Number Name Date Kind
3388847 Kasulin et al. Jun 1968 A
3552626 Astafiev et al. Jan 1971 A
3638652 Kelley Feb 1972 A
3771526 Rudie Nov 1973 A
4198982 Fortner et al. Apr 1980 A
4207898 Becht Jun 1980 A
4289133 Rothfuss Sep 1981 A
4304236 Conta et al. Dec 1981 A
4319576 Rothfuss Mar 1982 A
4350160 Kolesov et al. Sep 1982 A
4351466 Noiles Sep 1982 A
4379457 Gravener et al. Apr 1983 A
4473077 Noiles et al. Sep 1984 A
4476863 Kanshin et al. Oct 1984 A
4485817 Swiggett Dec 1984 A
4488523 Shichman Dec 1984 A
4505272 Utyamyshev et al. Mar 1985 A
4505414 Filipi Mar 1985 A
4520817 Green Jun 1985 A
4550870 Krumme et al. Nov 1985 A
4573468 Conta et al. Mar 1986 A
4576167 Noiles Mar 1986 A
4592354 Rothfuss Jun 1986 A
4603693 Conta et al. Aug 1986 A
4606343 Conta et al. Aug 1986 A
4632290 Green et al. Dec 1986 A
4646745 Noiles Mar 1987 A
4665917 Clanton et al. May 1987 A
4667673 Li May 1987 A
4671445 Barker et al. Jun 1987 A
4700703 Resnick et al. Oct 1987 A
4703887 Clanton et al. Nov 1987 A
4708141 Inoue et al. Nov 1987 A
4717063 Ebihara Jan 1988 A
4752024 Green et al. Jun 1988 A
4754909 Barker et al. Jul 1988 A
4776506 Green Oct 1988 A
4817847 Redtenbacher et al. Apr 1989 A
4873977 Avant et al. Oct 1989 A
4893662 Gervasi Jan 1990 A
4903697 Resnick et al. Feb 1990 A
4907591 Vasconcellos et al. Mar 1990 A
4917114 Green et al. Apr 1990 A
4957499 Lipatov et al. Sep 1990 A
4962877 Hervas Oct 1990 A
5005749 Aranyi Apr 1991 A
5042707 Taheri Aug 1991 A
5047039 Avant et al. Sep 1991 A
5104025 Main et al. Apr 1992 A
5119983 Green et al. Jun 1992 A
5122156 Granger et al. Jun 1992 A
5139513 Segato Aug 1992 A
5158222 Green et al. Oct 1992 A
5188638 Tzakis Feb 1993 A
5193731 Aranyi Mar 1993 A
5197648 Gingold Mar 1993 A
5197649 Bessler et al. Mar 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5221036 Takase Jun 1993 A
5222963 Brinkerhoff et al. Jun 1993 A
5253793 Green et al. Oct 1993 A
5261920 Main et al. Nov 1993 A
5271543 Grant et al. Dec 1993 A
5271544 Fox et al. Dec 1993 A
5275322 Brinkerhoff et al. Jan 1994 A
5282810 Mien et al. Feb 1994 A
5285944 Green et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5292053 Bilotti et al. Mar 1994 A
5309927 Welch May 1994 A
5312024 Grant et al. May 1994 A
5314435 Green et al. May 1994 A
5314436 Wilk May 1994 A
5330486 Wilk Jul 1994 A
5333773 Main et al. Aug 1994 A
5344059 Green et al. Sep 1994 A
5346115 Perouse et al. Sep 1994 A
5348259 Blanco et al. Sep 1994 A
5350104 Main et al. Sep 1994 A
5355897 Pietrafitta et al. Oct 1994 A
5360154 Green Nov 1994 A
5368215 Green et al. Nov 1994 A
5392979 Green et al. Feb 1995 A
5395030 Kuramoto et al. Mar 1995 A
5403333 Kaster et al. Apr 1995 A
5404870 Brinkerhoff et al. Apr 1995 A
5411508 Bessler et al. May 1995 A
5425738 Gustafson et al. Jun 1995 A
5433721 Hooven et al. Jul 1995 A
5437684 Calabrese et al. Aug 1995 A
5439156 Grant et al. Aug 1995 A
5443198 Viola et al. Aug 1995 A
5447514 Gerry et al. Sep 1995 A
5454825 Van Leeuwen et al. Oct 1995 A
5464415 Chen Nov 1995 A
5470006 Rodak Nov 1995 A
5474223 Viola et al. Dec 1995 A
5497934 Brady et al. Mar 1996 A
5503635 Sauer et al. Apr 1996 A
5522534 Viola et al. Jun 1996 A
5533661 Main et al. Jul 1996 A
5588579 Schnut et al. Dec 1996 A
5609285 Grant et al. Mar 1997 A
5626591 Kockerling et al. May 1997 A
5632433 Grant et al. May 1997 A
5639008 Gallagher et al. Jun 1997 A
5641111 Ahrens et al. Jun 1997 A
5658300 Bito et al. Aug 1997 A
5669918 Balazs et al. Sep 1997 A
5685474 Seeber Nov 1997 A
5709335 Heck Jan 1998 A
5715987 Kelley et al. Feb 1998 A
5718360 Green et al. Feb 1998 A
5720755 Dakov Feb 1998 A
5732872 Bolduc et al. Mar 1998 A
5749896 Cook May 1998 A
5758814 Gallagher et al. Jun 1998 A
5799857 Robertson et al. Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5833698 Hinchliffe et al. Nov 1998 A
5836503 Ehrenfels et al. Nov 1998 A
5839639 Sauer et al. Nov 1998 A
5855312 Toledano Jan 1999 A
5860581 Robertson et al. Jan 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5881943 Heck et al. Mar 1999 A
5915616 Viola et al. Jun 1999 A
5947363 Bolduc et al. Sep 1999 A
5951576 Wakabayashi Sep 1999 A
5957363 Heck Sep 1999 A
5993468 Rygaard Nov 1999 A
6024748 Manzo et al. Feb 2000 A
6050472 Shibata Apr 2000 A
6053390 Green et al. Apr 2000 A
6068636 Chen May 2000 A
6083241 Longo et al. Jul 2000 A
6102271 Longo et al. Aug 2000 A
6117148 Ravo et al. Sep 2000 A
6119913 Adams et al. Sep 2000 A
6126058 Adams et al. Oct 2000 A
6142933 Longo et al. Nov 2000 A
6149667 Hovland et al. Nov 2000 A
6176413 Heck et al. Jan 2001 B1
6179195 Adams et al. Jan 2001 B1
6193129 Billner et al. Feb 2001 B1
6203553 Robertson et al. Mar 2001 B1
6209773 Bolduc et al. Apr 2001 B1
6241140 Adams et al. Jun 2001 B1
6253984 Heck et al. Jul 2001 B1
6258107 Balazs et al. Jul 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6269997 Balazs et al. Aug 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6279809 Nicolo Aug 2001 B1
6302311 Adams et al. Oct 2001 B1
6338737 Toledano Jan 2002 B1
6343731 Adams et al. Feb 2002 B1
6387105 Gifford, III et al. May 2002 B1
6398795 McAlister et al. Jun 2002 B1
6402008 Lucas Jun 2002 B1
6439446 Perry et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6450390 Heck et al. Sep 2002 B2
6478210 Adams et al. Nov 2002 B2
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6494877 Dell et al. Dec 2002 B2
6503259 Huxel et al. Jan 2003 B2
6517566 Hovland et al. Feb 2003 B1
6520398 Nicolo Feb 2003 B2
6533157 Whitman Mar 2003 B1
6551334 Blatter et al. Apr 2003 B2
6578751 Hartwick Jun 2003 B2
6585144 Adams et al. Jul 2003 B2
6588643 Bolduc et al. Jul 2003 B2
6592596 Geitz Jul 2003 B1
6601749 Sullivan et al. Aug 2003 B2
6605078 Adams Aug 2003 B2
6605098 Nobis et al. Aug 2003 B2
6626921 Blatter et al. Sep 2003 B2
6629630 Adams Oct 2003 B2
6631837 Heck Oct 2003 B1
6632227 Adams Oct 2003 B2
6632237 Ben-David et al. Oct 2003 B2
6652542 Blatter et al. Nov 2003 B2
6659327 Heck et al. Dec 2003 B2
6676671 Robertson et al. Jan 2004 B2
6681979 Whitman Jan 2004 B2
6685079 Sharma et al. Feb 2004 B2
6695198 Adams et al. Feb 2004 B2
6695199 Whitman Feb 2004 B2
6698643 Whitman Mar 2004 B2
6716222 McAlister et al. Apr 2004 B2
6716233 Whitman Apr 2004 B1
6726697 Nicholas et al. Apr 2004 B2
6742692 Hartwick Jun 2004 B2
6743244 Blatter et al. Jun 2004 B2
6763993 Bolduc et al. Jul 2004 B2
6769590 Vresh et al. Aug 2004 B2
6769594 Orban, III Aug 2004 B2
6820791 Adams Nov 2004 B2
6821282 Perry et al. Nov 2004 B2
6827246 Sullivan et al. Dec 2004 B2
6840423 Adams et al. Jan 2005 B2
6843403 Whitman Jan 2005 B2
6846308 Whitman et al. Jan 2005 B2
6852122 Rush Feb 2005 B2
6866178 Adams et al. Mar 2005 B2
6872214 Sonnenschein et al. Mar 2005 B2
6874669 Adams et al. Apr 2005 B2
6884250 Monassevitch et al. Apr 2005 B2
6905504 Vargas Jun 2005 B1
6938814 Sharma et al. Sep 2005 B2
6942675 Vargas Sep 2005 B1
6945444 Gresham et al. Sep 2005 B2
6953138 Dworak et al. Oct 2005 B1
6957758 Aranyi Oct 2005 B2
6959851 Heinrich Nov 2005 B2
6978922 Bilotti et al. Dec 2005 B2
6981941 Whitman et al. Jan 2006 B2
6981979 Nicolo Jan 2006 B2
7032798 Whitman et al. Apr 2006 B2
7059331 Adams et al. Jun 2006 B2
7059510 Orban, III Jun 2006 B2
7077856 Whitman Jul 2006 B2
7080769 Vresh et al. Jul 2006 B2
7086267 Dworak et al. Aug 2006 B2
7114642 Whitman Oct 2006 B2
7118528 Piskun Oct 2006 B1
7122044 Bolduc et al. Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7141055 Abrams et al. Nov 2006 B2
7168604 Milliman et al. Jan 2007 B2
7179267 Nolan et al. Feb 2007 B2
7182239 Myers Feb 2007 B1
7195142 Orban, III Mar 2007 B2
7207168 Doepker et al. Apr 2007 B2
7220237 Gannoe et al. May 2007 B2
7234624 Gresham et al. Jun 2007 B2
7235089 McGuckin, Jr. Jun 2007 B1
RE39841 Bilotti et al. Sep 2007 E
7285125 Viola Oct 2007 B2
7303106 Milliman et al. Dec 2007 B2
7303107 Milliman et al. Dec 2007 B2
7309341 Ortiz et al. Dec 2007 B2
7322994 Nicholas et al. Jan 2008 B2
7325713 Aranyi Feb 2008 B2
7334718 McAlister et al. Feb 2008 B2
7335212 Edoga et al. Feb 2008 B2
7364060 Milliman Apr 2008 B2
7398908 Holsten et al. Jul 2008 B2
7399305 Csiky et al. Jul 2008 B2
7401721 Holsten et al. Jul 2008 B2
7401722 Hur Jul 2008 B2
7407075 Holsten et al. Aug 2008 B2
7410086 Ortiz et al. Aug 2008 B2
7422137 Manzo Sep 2008 B2
7422138 Bilotti et al. Sep 2008 B2
7431191 Milliman Oct 2008 B2
7438718 Milliman et al. Oct 2008 B2
7455676 Holsten et al. Nov 2008 B2
7455682 Viola Nov 2008 B2
7481347 Roy Jan 2009 B2
7494038 Milliman Feb 2009 B2
7506791 Omaits et al. Mar 2009 B2
7516877 Aranyi Apr 2009 B2
7527185 Harari et al. May 2009 B2
7537602 Whitman May 2009 B2
7540839 Butler et al. Jun 2009 B2
7546939 Adams et al. Jun 2009 B2
7546940 Milliman et al. Jun 2009 B2
7547312 Bauman et al. Jun 2009 B2
7556186 Milliman Jul 2009 B2
7559451 Sharma et al. Jul 2009 B2
7585306 Abbott et al. Sep 2009 B2
7588174 Holsten et al. Sep 2009 B2
7600663 Green Oct 2009 B2
7611038 Racenet et al. Nov 2009 B2
7635385 Milliman et al. Dec 2009 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7686201 Csiky Mar 2010 B2
7694864 Okada et al. Apr 2010 B2
7699204 Viola Apr 2010 B2
7708181 Cole et al. May 2010 B2
7717313 Criscuolo et al. May 2010 B2
7721932 Cole et al. May 2010 B2
7726539 Holsten et al. Jun 2010 B2
7743958 Orban, III Jun 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7770776 Chen et al. Aug 2010 B2
7771440 Ortiz et al. Aug 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7793813 Bettuchi Sep 2010 B2
7802712 Milliman et al. Sep 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837080 Schwemberger Nov 2010 B2
7837081 Holsten et al. Nov 2010 B2
7845536 Viola et al. Dec 2010 B2
7845538 Whitman Dec 2010 B2
7857187 Milliman Dec 2010 B2
7886951 Hessler Feb 2011 B2
7896215 Adams et al. Mar 2011 B2
7900806 Chen et al. Mar 2011 B2
7909039 Hur Mar 2011 B2
7909219 Cole et al. Mar 2011 B2
7909222 Cole et al. Mar 2011 B2
7909223 Cole et al. Mar 2011 B2
7913892 Cole et al. Mar 2011 B2
7918377 Measamer et al. Apr 2011 B2
7922062 Cole et al. Apr 2011 B2
7922743 Heinrich et al. Apr 2011 B2
7931183 Orban, III Apr 2011 B2
7938307 Bettuchi May 2011 B2
7942302 Roby et al. May 2011 B2
7951166 Orban, III et al. May 2011 B2
7959050 Smith et al. Jun 2011 B2
7967181 Viola et al. Jun 2011 B2
7975895 Milliman Jul 2011 B2
8002795 Beetel Aug 2011 B2
8006701 Bilotti et al. Aug 2011 B2
8006889 Adams et al. Aug 2011 B2
8011551 Marczyk et al. Sep 2011 B2
8011554 Milliman Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016858 Whitman Sep 2011 B2
8020741 Cole et al. Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8028885 Smith et al. Oct 2011 B2
8038046 Smith et al. Oct 2011 B2
8043207 Adams Oct 2011 B2
8066167 Measamer et al. Nov 2011 B2
8066169 Viola Nov 2011 B2
8070035 Holsten et al. Dec 2011 B2
8070037 Csiky Dec 2011 B2
8096458 Hessler Jan 2012 B2
8109426 Milliman et al. Feb 2012 B2
8109427 Orban, III Feb 2012 B2
8113405 Milliman Feb 2012 B2
8113406 Holsten et al. Feb 2012 B2
8113407 Holsten et al. Feb 2012 B2
8123103 Milliman Feb 2012 B2
8128645 Sonnenschein et al. Mar 2012 B2
8132703 Milliman et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8146790 Milliman Apr 2012 B2
8146791 Bettuchi et al. Apr 2012 B2
8181838 Milliman et al. May 2012 B2
8192460 Orban, III et al. Jun 2012 B2
8201720 Hessler Jun 2012 B2
8203782 Brueck et al. Jun 2012 B2
8211130 Viola Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8225981 Criscuolo et al. Jul 2012 B2
8231041 Marczyk et al. Jul 2012 B2
8231042 Hessler et al. Jul 2012 B2
8257391 Orban, III et al. Sep 2012 B2
8267301 Milliman et al. Sep 2012 B2
8272552 Holsten et al. Sep 2012 B2
8276802 Kostrzewski Oct 2012 B2
8281975 Criscuolo et al. Oct 2012 B2
8286845 Perry et al. Oct 2012 B2
8308045 Bettuchi et al. Nov 2012 B2
8312885 Bettuchi et al. Nov 2012 B2
8313014 Bettuchi Nov 2012 B2
8317073 Milliman et al. Nov 2012 B2
8317074 Ortiz et al. Nov 2012 B2
8322590 Patel et al. Dec 2012 B2
8328060 Jankowski et al. Dec 2012 B2
8328062 Viola Dec 2012 B2
8328063 Milliman et al. Dec 2012 B2
8343185 Milliman et al. Jan 2013 B2
8353438 Baxter, III et al. Jan 2013 B2
8353439 Baxter, III et al. Jan 2013 B2
8353930 Heinrich et al. Jan 2013 B2
8360295 Milliman et al. Jan 2013 B2
8365974 Milliman Feb 2013 B2
8403942 Milliman et al. Mar 2013 B2
8408441 Wenchell et al. Apr 2013 B2
8413870 Pastorelli et al. Apr 2013 B2
8413872 Patel Apr 2013 B2
8418905 Milliman Apr 2013 B2
8418909 Kostrzewski Apr 2013 B2
8424535 Hessler et al. Apr 2013 B2
8424741 McGuckin, Jr. et al. Apr 2013 B2
8430291 Heinrich et al. Apr 2013 B2
8430292 Patel et al. Apr 2013 B2
8453910 Bettuchi et al. Jun 2013 B2
8453911 Milliman et al. Jun 2013 B2
8485414 Criscuolo et al. Jul 2013 B2
8490853 Criscuolo et al. Jul 2013 B2
8511533 Viola et al. Aug 2013 B2
8551138 Orban, III et al. Oct 2013 B2
8567655 Nalagatla et al. Oct 2013 B2
8579178 Holsten et al. Nov 2013 B2
8590763 Milliman Nov 2013 B2
8590764 Hartwick et al. Nov 2013 B2
8608047 Holsten et al. Dec 2013 B2
8616428 Milliman et al. Dec 2013 B2
8616429 Viola Dec 2013 B2
8622275 Baxter, III et al. Jan 2014 B2
8631993 Kostrzewski Jan 2014 B2
8636187 Hueil et al. Jan 2014 B2
8640940 Ohdaira Feb 2014 B2
8662370 Takei Mar 2014 B2
8663258 Bettuchi et al. Mar 2014 B2
8672931 Goldboss et al. Mar 2014 B2
8678264 Racenet et al. Mar 2014 B2
8684248 Milliman Apr 2014 B2
8684250 Bettuchi et al. Apr 2014 B2
8684251 Rebuffat et al. Apr 2014 B2
8684252 Patel et al. Apr 2014 B2
8733611 Milliman May 2014 B2
9010605 Olson Apr 2015 B2
10111668 Penna Oct 2018 B2
11141163 Eisinger et al. Oct 2021 B2
20030111507 Nunez Jun 2003 A1
20040073090 Butler et al. Apr 2004 A1
20050051597 Toledano Mar 2005 A1
20050107813 Gilete Garcia May 2005 A1
20060000869 Fontayne Jan 2006 A1
20060011698 Okada et al. Jan 2006 A1
20060097025 Milliman May 2006 A1
20060201989 Ojeda Sep 2006 A1
20070027473 Vresh et al. Feb 2007 A1
20070029363 Popov Feb 2007 A1
20070060952 Roby et al. Mar 2007 A1
20070175963 Bilotti et al. Aug 2007 A1
20090230170 Milliman Sep 2009 A1
20090236392 Cole et al. Sep 2009 A1
20090236398 Cole et al. Sep 2009 A1
20090236401 Cole et al. Sep 2009 A1
20100019016 Edoga et al. Jan 2010 A1
20100051668 Milliman et al. Mar 2010 A1
20100084453 Hu Apr 2010 A1
20100147923 D'Agostino et al. Jun 2010 A1
20100163598 Belzer Jul 2010 A1
20100170932 Wenchell Jul 2010 A1
20100224668 Fontayne et al. Sep 2010 A1
20100230465 Smith et al. Sep 2010 A1
20100258611 Smith et al. Oct 2010 A1
20100264195 Bettuchi Oct 2010 A1
20100327041 Milliman et al. Dec 2010 A1
20110011916 Levine Jan 2011 A1
20110114697 Baxter, III et al. May 2011 A1
20110114700 Baxter, III et al. May 2011 A1
20110144640 Heinrich et al. Jun 2011 A1
20110147432 Heinrich et al. Jun 2011 A1
20110192882 Hess et al. Aug 2011 A1
20120145755 Kahn Jun 2012 A1
20120193395 Pastorelli et al. Aug 2012 A1
20120193398 Williams et al. Aug 2012 A1
20120232339 Csiky Sep 2012 A1
20120273548 Ma et al. Nov 2012 A1
20120325888 Qiao et al. Dec 2012 A1
20130015232 Smith et al. Jan 2013 A1
20130020372 Jankowski et al. Jan 2013 A1
20130020373 Smith et al. Jan 2013 A1
20130032628 Li et al. Feb 2013 A1
20130056516 Viola Mar 2013 A1
20130060258 Giacomantonio Mar 2013 A1
20130105544 Mozdzierz May 2013 A1
20130105546 Milliman et al. May 2013 A1
20130105551 Zingman May 2013 A1
20130126580 Smith et al. May 2013 A1
20130153630 Miller et al. Jun 2013 A1
20130153631 Vasudevan et al. Jun 2013 A1
20130153633 Casasanta, Jr. et al. Jun 2013 A1
20130153634 Carter et al. Jun 2013 A1
20130153638 Carter et al. Jun 2013 A1
20130153639 Hodgkinson et al. Jun 2013 A1
20130175315 Milliman Jul 2013 A1
20130175318 Felder et al. Jul 2013 A1
20130175319 Felder et al. Jul 2013 A1
20130175320 Mandakolathur Vasudevan et al. Jul 2013 A1
20130181035 Milliman Jul 2013 A1
20130181036 Olson et al. Jul 2013 A1
20130186930 Wenchell et al. Jul 2013 A1
20130193185 Patel Aug 2013 A1
20130193187 Milliman Aug 2013 A1
20130193190 Carter et al. Aug 2013 A1
20130193191 Stevenson et al. Aug 2013 A1
20130193192 Casasanta, Jr. et al. Aug 2013 A1
20130200131 Racenet et al. Aug 2013 A1
20130206816 Penna Aug 2013 A1
20130214027 Hessler et al. Aug 2013 A1
20130214028 Patel et al. Aug 2013 A1
20130228609 Kostrzewski Sep 2013 A1
20130240597 Milliman et al. Sep 2013 A1
20130240600 Bettuchi Sep 2013 A1
20130248581 Smith et al. Sep 2013 A1
20130277411 Hodgkinson et al. Oct 2013 A1
20130277412 Gresham et al. Oct 2013 A1
20130284792 Ma Oct 2013 A1
20130292449 Bettuchi et al. Nov 2013 A1
20130299553 Mozdzierz Nov 2013 A1
20130299554 Mozdzierz Nov 2013 A1
20130306701 Olson Nov 2013 A1
20130306707 Viola et al. Nov 2013 A1
20140008413 Williams Jan 2014 A1
20140012317 Orban et al. Jan 2014 A1
20140131417 Williams May 2014 A1
20140151430 Scheib et al. Jun 2014 A1
20140367444 Williams Dec 2014 A1
20150129636 Mulreed May 2015 A1
20150297237 Hafner Oct 2015 A1
20150305472 Umar Oct 2015 A1
20150305742 Williams Oct 2015 A1
20160143641 Sapienza et al. May 2016 A1
20160157856 Williams et al. Jun 2016 A1
20160174988 D'Agostino et al. Jun 2016 A1
20160302792 Motai Oct 2016 A1
20170128068 Zhang et al. May 2017 A1
20170360443 Williams Dec 2017 A1
20180206846 Guerrera Jul 2018 A1
20180242974 Guerrera Aug 2018 A1
Foreign Referenced Citations (33)
Number Date Country
908529 Aug 1972 CA
2805365 Aug 2013 CA
1057729 May 1959 DE
3301713 Jul 1984 DE
0152382 Aug 1985 EP
0173451 Mar 1986 EP
0190022 Aug 1986 EP
0282157 Sep 1988 EP
0503689 Sep 1992 EP
1354560 Oct 2003 EP
2138118 Dec 2009 EP
2168510 Mar 2010 EP
2238926 Oct 2010 EP
2524656 Nov 2012 EP
2656800 Oct 2013 EP
3238638 Nov 2017 EP
1136020 May 1957 FR
1461464 Feb 1966 FR
1588250 Apr 1970 FR
2443239 Jul 1980 FR
1185292 Mar 1970 GB
2016991 Sep 1979 GB
2070499 Sep 1981 GB
2004147969 May 2004 JP
2013138860 Jul 2013 JP
7711347 Apr 1979 NL
1509052 Sep 1989 SU
8706448 Nov 1987 WO
8900406 Jan 1989 WO
9006085 Jun 1990 WO
9835614 Aug 1998 WO
0154594 Aug 2001 WO
2008107918 Sep 2008 WO
Non-Patent Literature Citations (1)
Entry
European Search Report dated Dec. 16, 2019, issued in EP Appln. No. 19201233, 9 pages.
Related Publications (1)
Number Date Country
20220039800 A1 Feb 2022 US
Provisional Applications (1)
Number Date Country
62741319 Oct 2018 US
Continuations (1)
Number Date Country
Parent 16550935 Aug 2019 US
Child 17498973 US