A circular surgical stapler may be used to form an anastomosis between two organ portions of a patient's digestive tract. Examples of circular surgical staplers are described in U.S. Pat. No. 5,292,053, entitled “Surgical Anastomosis Stapling Instrument,” issued Mar. 8, 1994; U.S. Pat. No. 5,333,773, entitled “Surgical Anastomosis Stapling Instrument,” issued Aug. 2, 1994; U.S. Pat. No. 5,350,104, entitled “Surgical Anastomosis Stapling Instrument,” issued Sep. 27, 1994; and U.S. Pat. No. 5,533,661, entitled “Surgical Anastomosis Stapling Instrument,” issued Jul. 9, 1996; and U.S. Pat. No. 8,910,847, entitled “Low Cost Anvil Assembly for a Circular Stapler,” issued Dec. 16, 2014. The disclosure of each of the above-cited U.S. Patents is incorporated by reference herein.
Some circular staplers may include a motorized actuation mechanism. Examples of circular staplers with motorized actuation mechanisms are described in U.S. Pub. No. 2015/0083772, entitled “Surgical Stapler with Rotary Cam Drive and Return,” published Mar. 26, 2015, now abandoned; U.S. Pat. No. 9,936,949, entitled “Surgical Stapling Instrument with Drive Assembly Having Toggle Features,” issued Apr. 10, 2018; U.S. Pat. No. 9,907,552, entitled “Control Features for Motorized Surgical Stapling Instrument,” issued Mar. 6, 2018; U.S. Pat. No. 9,713,469, entitled “Surgical Stapler with Rotary Cam Drive,” issued Jul. 25, 2017; U.S. Pub. No. 2018/0132849, entitled “Staple Forming Pocket Configurations for Circular Surgical Stapler Anvil,” published May 17, 2018, now abandoned; and U.S. Pat. No. 10,709,452, entitled “Methods and Systems for Performing Circular Stapling,” issued Jul. 14, 2020. The disclosure of each of the above-cited U.S. Patent Publications and U.S. Patents is incorporated by reference herein.
While various kinds of surgical stapling instruments and associated components have been made and used, it is believed that no one prior to the inventor(s) has made or used the invention described in the appended claims.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and, together with the general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the present invention.
The drawings are not intended to be limiting in any way, and it is contemplated that various embodiments of the technology may be carried out in a variety of other ways, including those not necessarily depicted in the drawings. The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present technology, and together with the description serve to explain the principles of the technology; it being understood, however, that this technology is not limited to the precise arrangements shown.
The following description of certain examples of the technology should not be used to limit its scope. Other examples, features, aspects, embodiments, and advantages of the technology will become apparent to those skilled in the art from the following description, which is by way of illustration, one of the best modes contemplated for carrying out the technology. As will be realized, the technology described herein is capable of other different and obvious aspects, all without departing from the technology. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.
For clarity of disclosure, the terms “proximal” and “distal” are defined herein relative to a surgeon, or other operator, grasping a surgical instrument having a distal surgical end effector. The term “proximal” refers to the position of an element arranged closer to the surgeon, and the term “distal” refers to the position of an element arranged closer to the surgical end effector of the surgical instrument and further away from the surgeon. Moreover, to the extent that spatial terms such as “top,” “bottom,” “upper,” “lower,” “vertical,” “horizontal,” or the like are used herein with reference to the drawings, it will be appreciated that such terms are used for exemplary description purposes only and are not intended to be limiting or absolute. In that regard, it will be understood that surgical instruments such as those disclosed herein may be used in a variety of orientations and positions not limited to those shown and described herein.
Furthermore, the terms “about,” “approximately,” and the like as used herein in connection with any numerical values or ranges of values are intended to encompass the exact value(s) referenced as well as a suitable tolerance that enables the referenced feature or combination of features to function for the intended purpose described herein.
As shown in
A. Exemplary Anvil
As best seen in
Shank (420) defines a bore (422) and includes a pair of pivoting latch members (430). Latch members (430) are positioned within bore (422) such that distal ends (434) are positioned at the proximal ends of lateral openings (424), which are formed through the sidewall of shank (420). Latch members (430) thus act as retaining clips. This allows anvil (400) to be removably secured to an actuatable closure member in the form of a trocar (330) of stapling head assembly (300), as will be described in greater detail below. Shank (420) of anvil (400) and trocar (330) of stapling head assembly (300) thus cooperate with one another as coupling members.
B. Exemplary Stapling Head Assembly
As best seen in
Trocar (330) is positioned coaxially within inner core member (312) of body member (310). As will be described in greater detail below, trocar (330) is operable to translate distally and proximally relative to body member (310) in response to rotation of knob (130) relative to casing (110) of handle assembly (100). Trocar (330) comprises a shaft (332) and a head (334). Head (334) includes a pointed tip (336) and a radially inwardly extending proximal surface (338). Head (334) and the distal portion of shaft (332) are configured for insertion into bore (422) of anvil (400). Proximal surface (338) and latch shelves (436) have complementary positions and configurations such that latch shelves (436) engage proximal surface (338) when shank (420) of anvil (400) is fully seated on trocar (330). Anvil (400) is thus secured to trocar (330) through a snap fit provided by latch members (430).
Staple driver member (350) is operable to actuate longitudinally within body member (310) in response to activation of motor (160) as will be described in greater detail below. As shown best in
A cylindraceous knife member (340) is coaxially positioned within a distally-opening central recess of staple driver member (350) that communicates with bore (354). Knife member (340) includes a distally presented, sharp circular cutting edge (342). Knife member (340) is sized such that knife member (340) defines an outer diameter that is just smaller than the diameter defined by the radially inner-most surfaces of the inner annular array of staple drivers (352). Knife member (340) also defines a central opening that is configured to coaxially receive core member (312) of body member (310). An annular array of openings (346) formed in knife member (340) is configured to mate with the annular array of studs (356) of staple driver member (350), such that knife member (340) is fixedly secured to staple driver member (350) via studs (356) and openings (346).
An annular deck member (320) is fixedly secured to a distal end of body member (310). Deck member (320) includes a distally presented stapling surface in the form of a deck surface (322) having two concentric annular arrays of staple openings (324). Staple openings (324) are arranged to align with the arrangement of staple drivers (352) of staple driver member (350) and staple forming pockets (414) of anvil (400) described above. Each staple opening (324) is configured to slidably receive and provide a pathway for a corresponding staple driver (352) to drive a corresponding staple distally through deck member (320) and into a corresponding staple forming pocket (414) when stapling head assembly (300) is actuated. As best seen in
C. Exemplary Shaft Assembly
Shaft assembly (200) further includes a trocar actuation rod (220) having a proximal end operatively coupled with rotatable knob (130) and a distal end coupled with a flexible trocar actuation band assembly (230), the assembly of which is slidably housed within outer sheath (210). The distal end of trocar actuation band assembly (230) is fixedly secured to the proximal end of trocar shaft (332), such that trocar (330) will translate longitudinally relative to outer sheath (210) in response to translation of trocar actuation band assembly (230) and trocar actuation rod (220) relative to outer sheath (210), which occurs in response to rotation of rotatable knob (130). A clip (222) is fixedly secured to trocar actuation rod (220) and is configured to cooperate with complementary features within handle assembly (100) to prevent trocar actuation rod (220) from rotating within handle assembly (100) while still permitting trocar actuation rod (220) to translate longitudinally within handle assembly (100). Trocar actuation rod (220) further includes a section of coarse helical threading (224) and a section of fine helical threading (226) proximal to coarse helical threading (224), which are configured to control a rate of longitudinal advancement of trocar actuation rod (220), as described in greater detail below.
Shaft assembly (200) further includes a stapling head assembly driver (240) that is slidably housed within outer sheath (210) and about the combination of trocar actuation rod (220) and trocar actuation band assembly (230). Stapling head assembly driver (240) includes a distal end that is fixedly secured to the proximal end of staple driver member (350), a proximal end secured to a drive bracket (250) via a pin (242), and a flexible section disposed therebetween. It should therefore be understood that staple driver member (350) will translate longitudinally relative to outer sheath (210) in response to translation of stapling head assembly driver (240) and drive bracket (250) relative to outer sheath (210).
D. Exemplary Handle Assembly and User Input Features
As shown in
It should be understood that when anvil (400) is coupled with trocar (330), rotation of knob (130) will provide corresponding translation of anvil (400) relative to stapling head assembly (300). It should also be understood that knob (130) may be rotated in a first angular direction (e.g., clockwise) to retract anvil (400) proximally toward stapling head assembly (300); and in a second angular direction (e.g., counterclockwise) to extend anvil (400) distally away from stapling head assembly (300). Knob (130) may thus be used to adjust a gap distance (d) between opposing stapling surfaces (412, 322) of anvil (400) and stapling head assembly (300) until a suitable gap distance (d) has been achieved, for example as shown in
Firing trigger (150) is operable to activate motor (160) to thereby actuate stapling head assembly (300) to staple and cut tissue clamped between anvil (400) and stapling head assembly (300). Safety trigger (140) is operable to selectively block actuation of firing trigger (150) based on the longitudinal position of anvil (400) in relation to stapling head assembly (300). Handle assembly (100) also includes components that are operable to selectively lock out both triggers (140, 150) based on the position of anvil (400) relative to stapling head assembly (300). For instance, safety trigger (140) may be blocked from rotating from an engaged position to a disengaged position until the position of anvil (400) relative to stapling head assembly (300) is within a predefined range. Accordingly, until the anvil position is within the predefined range, actuation of firing trigger (150) is blocked by safety trigger (140), thereby inhibiting firing of stapling head assembly (300).
Firing trigger (150) is operable to actuate a switch of motor activation module (180) (
E. Exemplary Anastomosis Procedure with Circular Stapling Instrument
As shown in
Next, anvil (400) is secured to trocar (330) by inserting trocar (330) into bore (422) as shown in
Once the operator has appropriately set the gap distance (d) via knob (130), the operator pivots safety trigger (140) toward pistol grip (112) to enable actuation of firing trigger (150). The operator then pivots firing trigger (150) toward pistol grip (112), thus causing firing trigger (150) to actuate the switch of motor activation module (180) and thereby activate motor (160) to rotate. This rotation of motor (160) causes actuation (or “firing”) of stapling head assembly (300) by actuating drive bracket (250) distally to thereby drive knife member (340) and staple driver member (350) distally together, as shown in
As knife member (340) translates distally, cutting edge (342) of knife member (340) cuts excess tissue that is positioned within annular recess (418) of anvil (400) and the interior of knife member (340). Additionally, washer (417) positioned within annular recess (418) of anvil (400) is broken by knife member (340) when the knife member (340) completes a full distal range of motion from the position shown in
As staple driver member (350) translates distally from the position shown in
After the operator has actuated (or “fired”) stapling head assembly (300) as shown in
In some procedures where an anastomosis is created, one or more structures with a lumen may be transected where a linear sealing and transection staple line is formed in the tissue structure. By way of example only, and not limitation, in procedures such as sigmoid colectomy or lower anterior resection, two linear sealing and transection staple lines are formed as a step. One transection staple line is in the descending upper colon and one in the lower colon.
When creating the anastomosis in these exemplary procedures, at least one of these transection staple lines will interact with the circular staple pattern because it is necessary to cut through and staple over portions of at least one of the transection staple lines. For instance, in some versions of these procedures the transection staple line in the descending upper colon can be avoided when creating the anastomosis by creating a “J” pouch and putting the anvil of the stapler into the side of the colon above this upper transection staple line. However, in this example the lower transection staple line will be stapled into the anastomosis since it is practical to place the staple cartridge directly at the end of the sealed lower colon during an anastomosis procedure.
To create the anastomosis with acceptable sealing and integrity, it can be desirable to try to minimize the interaction between the linear transection staples and the staples deployed in the annular pattern. In exemplary versions that will be described further below, alignment features can be incorporated into the end effector to help minimize these staple-to-staple interactions. In doing so, a better balance between stapled and unstapled compressed tissue may be achieved. Also, these alignment features may aid in preventing the transection linear staple line from interfering with the stretch of the anastomotic staple line. Furthermore, these alignment features may allow operators using the stapler to better plan and control the twist and local tissue tension around the so-called “dog ears” that represent tissue mass adjacent to the stapled intersection of the transection staple and anastomotic staples. Still other benefits to using the alignment features described herein will be apparent to those of ordinary skill in the art in view of the teachings herein.
A. Exemplary Stapling Head Assembly and Anvils
Referring to
In the present example, anvil (600) is shown positioned within a tubular anatomical structure or lumen (800), shown in phantom. Tubular anatomical structure (800) is sealed with a transecting staple line (802). In the present example, transecting staple line (802) initially represented a distal end of tubular anatomical structure (800). However, to avoid a proximal stapling surface (612) of anvil (600) interacting with transecting staple line (802) when forming an anastomosis, tubular anatomical structure (800) is oriented in a “J” shape with staple line (802) moved proximally and laterally so that proximal stapling surface (612) of anvil (600) contacts a sidewall (804) within tubular anatomical structure (800) when forming an anastomosis.
In the present example, stapling head assembly (700) is shown positioned with a tubular anatomical structure or lumen (900), shown in phantom. Tubular anatomical structure (900) is sealed with a transecting staple line (902). As shown, stapling head assembly (700) includes coupling member (730) that extends through transecting staple line (902). Coupling member (730) is configured to couple with a coupling member (620) of anvil (600) in a similar fashion to that described above with respect to stapling head assembly (300) and anvil (400). Once anvil (600) and stapling head assembly (700) are coupled together, the anastomosis procedure continues as will be described further below.
With anvil (600), a step feature (640) is included, whereas such a step feature is omitted from anvil (1000). Step feature (640) in the present example is configured as a raised portion that is sized and shaped to complement the groove configuration of alignment feature (726) of deck member (720). In some other versions, step feature (640) may be omitted as illustrated with anvil (1000), or step feature (640) could be configured as a recess rather than a raised portion. Furthermore, step feature (640) could have different heights (h) representing the degree to which step feature (640) is raised or protrudes away from proximal stapling surface (612) toward deck member (720), or the degree to which step feature is recessed in the case of a negative height (h). For example, in one version step feature (640) may be raised as shown, but sized such that, when aligned with deck member (720), step feature (640) assists in alignment by minimally engaging the groove of alignment feature (726) such that alignment feature (720) maintains its ability to receive and accommodate tissue with transecting staple line (902). In such a version, step feature (640) is meant to merely aid in aligning anvil (600) to the overall oval shape of deck member (720) of stapling head assembly (700). In such an example, the height (h) of stepped featured (640) is less than the depth of the groove defining alignment feature (726).
With deck member (720) and anvil (600), each have an oval shape, and accordingly each define a respective longitudinal axis (LA) that extends along the long dimension of the respective oval shapes. In the illustrated examples shown in
In some procedures, stapling head assemblies described herein, including e.g., stapling head assembly (700) and anvils described herein, including e.g., anvils (400, 600) can be arranged relative to other components of instrument (10) for ease of use of instrument (10). For example, in lower anterior resection, the transection linear staple line is often generally parallel to the plan of the patient's back. In this case, the orientation of alignment feature (726) and/or stepped feature (640) should line up to this such that their orientation is generally perpendicular to body assembly or handle assembly (100) of instrument (10). This orientation improves the ease of use of instrument (10) between the patient's legs. In view of the teachings herein, other procedure-specific orientations and configurations for instrument (10) having an end effector with one or more alignment features as described herein will be apparent to those of ordinary skill in the art.
B. Exemplary Anastomosis Procedure
As shown in
Stapling head assembly (700) is positioned in tubular anatomical structure (900) such that coupling member (730) punctures and protrudes from the stapled end of tubular anatomical structure (900) shown by transection staple line (902). Stapling head assembly (700) is then urged distally to ensure that stapling head assembly (700) is fully seated near the distal end of tubular anatomical structure (900) with coupling member (730) visible on the exterior of tubular anatomical structure (900).
Next, anvil (600) is secured to coupling member (730) by inserting coupling member (730) into a bore (622) of coupling member (620) as shown in
As shown in
Once the operator has appropriately set the gap distance (d) via knob (130), the operator pivots safety trigger (140) toward pistol grip (112) to enable actuation of firing trigger (150). The operator then pivots firing trigger (150) toward pistol grip (112), thus causing firing trigger (150) to actuate the switch of motor activation module (180) and thereby activate motor (160) to rotate. This rotation of motor (160) causes actuation (or “firing”) of stapling head assembly (700) by actuating drive bracket (250) distally to thereby drive knife member (not shown) and staple driver member (not shown) distally together. As knife member translates distally, excess tissue that is positioned within annular recess (618) of anvil (600) and the interior of knife member is cut. Additionally, washer (617) positioned within annular recess (618) of anvil (600) is broken by knife member when the knife member completes a full distal range of motion. It should be understood that washer (617) may also serve as a cutting board for knife member to assist in cutting of tissue.
As staple driver member (not shown) translates distally, staple driver member drives staples (90) through the tissue of tubular anatomical structures (800, 900) and into staple forming pockets (614) of anvil (600). Staple forming pockets (614) deform the driven staples (90) into a “B” shape or a three-dimensional shape, for example, such that the formed staples (90) secure the ends of tissue together, thereby coupling tubular anatomical structure (800) with tubular anatomical structure (900).
After the operator has actuated (or “fired”) stapling head assembly (700) as shown, the operator rotates knob (130) to drive anvil (600) distally away from stapling head assembly (700), thereby increasing the gap distance (d) to facilitate release of the tissue between surfaces (612, 722). The operator then removes instrument (10) from the patient, with anvil (600) still secured to coupling member (730). With instrument (10) removed, the tubular anatomical structures (800, 900) are left secured together by two annular arrays of staples (90) at an anastomosis (70). The inner diameter of the anastomosis (70) is defined by the severed edge (60) left by the knife member.
C. Exemplary Alternate Shaped Stapling Head Assemblies and Anvils
Similar to alignment feature (726), alignment feature (1126) defines a groove within deck surface (1122). Deck surface (1122) includes a first planar portion (1122A), a second planar portion (1122B), and a third portion (1122C) between first and second planar portions (1122A, 1122B). In the present example, third portion (1122C) is configured as alignment feature (1126) for aligning deck member (1120) with transecting staple lines (902). For example, the groove defined by alignment feature (1126) is configured to align with and receive tissue having transecting staple line (902). In this manner, when compressing the tissue of tubular anatomical structures (800, 900) when forming an anastomosis (as described above), tissue with transecting staple line (902) rests below deck surface portions (1122A, 1122B) such that staple-to-staple interactions between transected staple line (902) and the anastomotic staples are minimized.
As shown with respective to stapling head assembly (1200) of
Similar to alignment feature (726), alignment feature (1226) defines a groove within deck surface (1222). Deck surface (1222) includes a first planar portion (1222A), a second planar portion (1222B), and a third portion (1222C) between first and second planar portions (1222A, 1222B). In the present example, third portion (1222C) is configured as alignment feature (1226) for aligning deck member (1220) with transecting staple lines (902). For example, the groove defined by alignment feature (1226) is configured to align with and receive tissue having transecting staple line (902). In this manner, when compressing the tissue of tubular anatomical structures (800, 900) when forming an anastomosis (as described above), tissue with transecting staple line (902) rests below deck surface portions (1222A, 1222B) such that staple-to-staple interactions between transected staple line (902) and the anastomotic staples are minimized. While dog-bone, oval, and circular shaped stapling head assemblies and anvils having alignment features are described herein, other shaped structures for these may be used and will be apparent to those of ordinary skill in the art. Additionally, further exemplary oval and dog-bone shaped stapler end effectors are shown and described in U.S. patent application Ser. No. 17/401,428, entitled “Staple Forming Features for Circular Surgical Stapler,” filed on Aug. 13, 2021, issued as U.S. Pat. No. 11,998,209 on Jun. 4, 2024; and U.S. patent application Ser. No. 17/401,430, entitled “Non-Circular End Effector Features for Circular Surgical Stapler,” filed on Aug. 13, 2021, issued as U.S. Pat. No. 11,944,310 on Apr. 2, 2024. The disclosures of each are incorporated by reference herein.
D. Exemplary Tissue Gaps and Staple Configurations
As described above, deck surface (722) of deck member (720) has first and second planar portions (722A, 722B) and third portion (722C). In one version, third portion (722C) is not coplanar with first and second portions (722A, 722B). As also mentioned above, the tissue gap or gap distance (d) represents the distance between deck surface (722) and proximal stapling surface (412, 612) of anvil (400, 600). In versions of instrument (10) using stapling head assembly (700) with anvil (400), gap distance (d) is non-uniform across the end effector as there is a greater distance between the surfaces of anvil (400) and deck member (720) at third portion (722C) defining alignment feature (726) compared to the distance at first and second planar portions (722A, 722B). This is the case, because alignment feature (726) defines a groove that is recessed relative to first and second planar portions (722A, 722B).
Other versions of instrument (10) can incorporate alignment feature (726) or a similar alignment feature and also be paired with an anvil having a complementary stepped feature (640) or a similar complementary stepped feature. This could be the case, for instance, when instrument (10) includes stapling head assembly (700) and anvil (600). In these versions, the height (h) of stepped feature (640) relative to the depth of the recess or groove of alignment feature (726) will define gap distance (d) at third portion (722C). In some instances, gap distance (d) at third portion (722C) is the same as gap distance (d) at first and second planar portions (722A, 722B). In other versions, gap distance (d) at third portion (722C) is smaller or larger than gap distance (d) at first and second planar portions (722A, 722B). In view of the teachings herein, various other configurations of instrument (10) to achieve various gap distances (d) across the anvil and deck member surfaces will be apparent to those of ordinary skill in the art.
In some versions with a non-uniform tissue gap or gap distance (d), staple geometry differs across deck surface (722) of deck member (720). For example,
The following examples relate to various non-exhaustive ways in which the teachings herein may be combined or applied. The following examples are not intended to restrict the coverage of any claims that may be presented at any time in this application or in subsequent filings of this application. No disclaimer is intended. The following examples are being provided for nothing more than merely illustrative purposes. It is contemplated that the various teachings herein may be arranged and applied in numerous other ways. It is also contemplated that some variations may omit certain features referred to in the below examples. Therefore, none of the aspects or features referred to below should be deemed critical unless otherwise explicitly indicated as such at a later date by the inventors or by a successor in interest to the inventors. If any claims are presented in this application or in subsequent filings related to this application that include additional features beyond those referred to below, those additional features shall not be presumed to have been added for any reason relating to patentability.
An apparatus for creating an anastomosis between two lumens, comprising: (a) a body; (b) a shaft extending distally from the body; (c) a stapling head assembly positioned at a distal end of the shaft, wherein the stapling head assembly includes: (i) an annular deck member, wherein the annular deck member includes: (A) a deck surface configured to contact a tissue defining a select one of the two lumens, (B) an annular array of staple openings formed through the deck surface, and (C) an alignment feature configured to align the deck surface of the deck member with a linear feature of the tissue defining the select one of the two lumens; (ii) a staple driver operable to drive staples through the annular array of staple openings; and (d) an anvil configured to deform the staples driven by the staple driver to form a ring-shaped staple pattern configured to connect the two lumens.
The apparatus of Example 1, wherein the annular deck member comprises a circular shape.
The apparatus of Example 1, wherein the annular deck member comprises an oval shape.
The apparatus of Example 1, wherein the annular deck member comprises a dog-bone shape.
The apparatus of any one or more of Example 1 through Example 4, wherein deck member comprises a shape defining a longitudinal axis and the alignment feature is oriented along the longitudinal axis.
The apparatus of any one or more of Example 1 through Example 5, wherein the linear feature of the tissue comprises a staple line transecting the select one of the two lumens closing an open end of the select one of the two lumens.
The apparatus of any one or more of Example 1 through Example 6, wherein the alignment feature is defined by a portion of the deck surface.
The apparatus of any one or more of Example 1 through Example 7, wherein the alignment feature comprises a groove in the deck surface.
The apparatus of any one or more of Example 1 through Example 8, wherein the alignment feature is oriented orthogonal to a longitudinal axis defined by the body.
The apparatus of any one or more of Example 1 through Example 9, wherein the anvil comprises a stapling surface, wherein a distance between the stapling surface of the anvil and the deck surface of the deck member of the stapling head assembly defines a gap, wherein the gap is non-uniform due to the presence of the alignment feature.
The apparatus of Example 10, wherein the gap at the alignment feature is larger than the gap elsewhere.
The apparatus of any one or more of Example 1 through Example 11, wherein the anvil comprises a complementary feature to the alignment feature.
The apparatus of Example 12, wherein the complementary feature of the anvil comprises a stepped feature and the alignment feature of the deck member comprises a groove in the deck surface.
The apparatus of any one or more of Example 1 through Example 13, wherein the deck surface of the deck member comprises a first portion and a second portion, wherein the alignment feature separates the first portion and the second portion.
The apparatus of Example 14, wherein the first portion and the second portion are each planar.
The apparatus of any one or more of Example 14 through Example 15, wherein the first portion and the second portion are coplanar, and the alignment feature is non-coplanar with the first portion and the second portion.
An apparatus for creating an anastomosis between two lumens, comprising: (a) a body; (b) a shaft extending distally from the body; (c) a stapling head assembly positioned at a distal end of the shaft, wherein the stapling head assembly includes: (i) an annular deck member, wherein the annular deck member includes: (A) a deck surface configured to contact a tissue defining a select one of the two lumens, wherein the deck surface comprises a first portion, a second portion, and a third portion, wherein the third portion defines an alignment feature separating the first and the second portions, wherein the alignment feature is configured to align the deck surface of the deck member with a linear feature of the tissue defining the select one of the two lumens, (B) an annular array of staple openings formed through the deck surface, wherein the annular array of staple openings includes a first region of staple openings located along the first and the second portions of the deck surface, and a second region of staple openings located along the third portion of the deck surface, (C) a first plurality of staples configured to travel through the first region of staple openings of the annular array of staple openings, and (D) a second plurality of staples configured to travel through the second region of staple openings of the annular array of staple openings, wherein the second plurality of staples differ in configuration from the first plurality of staples; (ii) a staple driver operable to drive the first and the second pluralities of staples through the annular array of staple openings; and (d) an anvil configured to deform the staples driven by the staple driver to form a ring-shaped staple pattern configured to connect the two lumens.
The apparatus of Example 17, wherein the second plurality of staples comprises a different staple leg length or staple wire diameter compared to the first plurality of staples.
The apparatus of any one or more of Example 17 through Example 18, wherein the second plurality of staples comprise a different full height form than the first plurality of staples.
A method of creating an anastomosis, the method comprises the steps of: (a) positioning an anvil of a surgical stapling instrument within a first lumen; (b) positioning a stapling head assembly of the surgical stapling instrument within a second lumen, the stapling head assembly including an annular deck member with a deck surface having an annular array of staple openings formed through the deck surface, an alignment feature configured to align the deck surface with a staple line transecting the second lumen, and a staple driver operable to drive staples through the annular array of staple openings; (c) aligning the alignment feature of the deck surface with the staple line transecting the second lumen; (d) connecting a first coupling member of the anvil with a second coupling member of the stapling head assembly; (e) compressing a tissue between the anvil and the deck surface; and (f) actuating the surgical stapling instrument to cut and staple the tissue while the staple line transecting the second lumen is located within the alignment feature.
It should also be understood that any one or more of the teachings, expressions, embodiments, examples, etc. described herein may be combined with any one or more of the other teachings, expressions, embodiments, examples, etc. that are described herein. The above-described teachings, expressions, embodiments, examples, etc. should therefore not be viewed in isolation relative to each other. Various suitable ways in which the teachings herein may be combined will be readily apparent to those of ordinary skill in the art in view of the teachings herein. Such modifications and variations are intended to be included within the scope of the claims.
Additionally, any one or more of the teachings herein may be combined with any one or more of the teachings of U.S. patent application Ser. No. 17/401,391, entitled “Methods of Forming an Anastomosis Between Organs with an Expandable Staple Pattern,” filed on Aug. 13, 2021, published as U.S. Pub. No. 2023/0051305 on Feb. 16, 2023; U.S. patent application Ser. No. 17/401,428, entitled “Staple Forming Features for Circular Surgical Stapler,” filed on Aug. 13, 2021, issued as U.S. Pat. No. 11,998,209 on Jun. 4, 2024; U.S. patent application Ser. No. 17/401,430, entitled “Non-Circular End Effector Features for Circular Surgical Stapler,” filed on Aug. 13, 2021, issued as U.S. Pat. No. 11,944,310 on Apr. 2, 2024; U.S. patent application Ser. No. 17/401,444, entitled “Circular Surgical Stapler for Forming Pattern of Non-Tangential Staples,” filed on Aug. 13, 2021, issued as U.S. Pat. No. 11,653,926 on May 23, 2023; U.S. patent application Ser. No. 17/401,451, entitled “Circular Surgical Stapler Having Staples with Expandable Crowns,” filed on Aug. 13, 2021, issued as U.S. Pat. No. 11,911,039 on Feb. 27, 2024; and U.S. patent application Ser. No. 17/401,460, entitled “Circular Surgical Stapler for Forming Cross-Pattern of Staples,” filed on Aug. 13, 2021, issued as U. S. Pat. No. 11,666,339 on Jun. 6, 2023. The disclosure of each of these US patent documents is incorporated by reference herein.
It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Versions of the devices described above may have application in conventional medical treatments and procedures conducted by a medical professional, as well as application in robotic-assisted medical treatments and procedures. By way of example only, various teachings herein may be readily incorporated into a robotic surgical system such as the DAVINCI™ system by Intuitive Surgical, Inc., of Sunnyvale, California
Versions described above may be designed to be disposed of after a single use, or they can be designed to be used multiple times. Versions may, in either or both cases, be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, some versions of the device may be disassembled, and any number of the particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, some versions of the device may be reassembled for subsequent use either at a reconditioning facility, or by a user immediately prior to a procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
By way of example only, versions described herein may be sterilized before and/or after a procedure. In one sterilization technique, the device is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and device may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on the device and in the container. The sterilized device may then be stored in the sterile container for later use. A device may also be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, or steam.
Having shown and described various embodiments of the present invention, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the examples, embodiments, geometrics, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present invention should be considered in terms of the following claims and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings.
Number | Name | Date | Kind |
---|---|---|---|
2277931 | Moe | Mar 1942 | A |
4047654 | Alvarado | Sep 1977 | A |
4407286 | Noiles et al. | Oct 1983 | A |
4505273 | Braun et al. | Mar 1985 | A |
4669647 | Storace | Jun 1987 | A |
4848328 | Laboureau et al. | Jul 1989 | A |
4874122 | Froelich et al. | Oct 1989 | A |
4899745 | Laboureau et al. | Feb 1990 | A |
5292053 | Bilotti et al. | Mar 1994 | A |
5309927 | Welch | May 1994 | A |
5333773 | Main et al. | Aug 1994 | A |
5342396 | Cook | Aug 1994 | A |
5350104 | Main et al. | Sep 1994 | A |
5425489 | Shichman et al. | Jun 1995 | A |
5533661 | Main et al. | Jul 1996 | A |
5713505 | Huitema | Feb 1998 | A |
5725554 | Simon et al. | Mar 1998 | A |
5732872 | Bolduc et al. | Mar 1998 | A |
5993468 | Rygaard | Nov 1999 | A |
6352541 | Kienzle et al. | Mar 2002 | B1 |
6425903 | Voegele | Jul 2002 | B1 |
6616686 | Coleman et al. | Sep 2003 | B2 |
6629630 | Adams | Oct 2003 | B2 |
6767356 | Kanner et al. | Jul 2004 | B2 |
6769590 | Vresh et al. | Aug 2004 | B2 |
6915937 | Lat et al. | Jul 2005 | B2 |
7056330 | Gayton | Jun 2006 | B2 |
7422138 | Bilotti | Sep 2008 | B2 |
7722643 | Schaller et al. | May 2010 | B2 |
7824426 | Racenet et al. | Nov 2010 | B2 |
7934630 | Shelton, IV et al. | May 2011 | B2 |
8143870 | Ng et al. | Mar 2012 | B2 |
8267301 | Milliman | Sep 2012 | B2 |
8328063 | Milliman et al. | Dec 2012 | B2 |
8413870 | Pastorelli et al. | Apr 2013 | B2 |
8613384 | Pastorelli | Dec 2013 | B2 |
8789738 | Knodel et al. | Jul 2014 | B2 |
8801732 | Harris et al. | Aug 2014 | B2 |
8910847 | Nalagatla | Dec 2014 | B2 |
8978954 | Shelton, IV et al. | Mar 2015 | B2 |
9016541 | Viola et al. | Apr 2015 | B2 |
9113885 | Hodgkinson | Aug 2015 | B2 |
9192387 | Holsten | Nov 2015 | B1 |
9265500 | Sorrentino et al. | Feb 2016 | B2 |
9402628 | Beardsley | Aug 2016 | B2 |
9713469 | Leimbach et al. | Jul 2017 | B2 |
9782171 | Viola | Oct 2017 | B2 |
9848874 | Kostrzewski | Dec 2017 | B2 |
9907552 | Measamer et al. | Mar 2018 | B2 |
9936949 | Measamer et al. | Apr 2018 | B2 |
10080565 | Pastorelli | Sep 2018 | B2 |
10105134 | Biedermann et al. | Oct 2018 | B2 |
10130359 | Hess et al. | Nov 2018 | B2 |
10166026 | Shelton, IV et al. | Jan 2019 | B2 |
10285705 | Shelton, IV et al. | May 2019 | B2 |
10327776 | Harris et al. | Jun 2019 | B2 |
10639040 | Penna et al. | May 2020 | B2 |
10709452 | DiNardo et al. | Jul 2020 | B2 |
10856867 | Shelton, IV et al. | Dec 2020 | B2 |
10925607 | Penna et al. | Feb 2021 | B2 |
11147559 | Wise et al. | Oct 2021 | B2 |
11241232 | Guerrera | Feb 2022 | B2 |
11284890 | Nalagatla et al. | Mar 2022 | B2 |
11291450 | Nalagatla et al. | Apr 2022 | B2 |
11523821 | Harris et al. | Dec 2022 | B2 |
20030009193 | Corsaro | Jan 2003 | A1 |
20030178465 | Bilotti | Sep 2003 | A1 |
20040073237 | Leinsing | Apr 2004 | A1 |
20060291981 | Viola et al. | Dec 2006 | A1 |
20080082126 | Murray et al. | Apr 2008 | A1 |
20080294179 | Balbierz | Nov 2008 | A1 |
20090001122 | Prommersberger | Jan 2009 | A1 |
20090188964 | Orlov | Jul 2009 | A1 |
20100108740 | Pastorelli | May 2010 | A1 |
20100108741 | Hessler | May 2010 | A1 |
20100191262 | Harris et al. | Jul 2010 | A1 |
20100213240 | Kostrzewski | Aug 2010 | A1 |
20110011916 | Levine | Jan 2011 | A1 |
20110017800 | Viola | Jan 2011 | A1 |
20120080498 | Shelton, IV et al. | Apr 2012 | A1 |
20120116379 | Yates | May 2012 | A1 |
20120193395 | Pastorelli | Aug 2012 | A1 |
20120325893 | Pastorelli | Dec 2012 | A1 |
20130168433 | Kostrzewski | Jul 2013 | A1 |
20130214027 | Hessler | Aug 2013 | A1 |
20140027493 | Jankowski | Jan 2014 | A1 |
20140158747 | Measamer et al. | Jun 2014 | A1 |
20150083772 | Miller et al. | Mar 2015 | A1 |
20150289872 | Chen | Oct 2015 | A1 |
20160000428 | Scirica | Jan 2016 | A1 |
20160278768 | Johnson et al. | Sep 2016 | A1 |
20170027610 | Cabrera | Feb 2017 | A1 |
20170086833 | Eckert | Mar 2017 | A1 |
20170119397 | Harris et al. | May 2017 | A1 |
20170231629 | Stopek | Aug 2017 | A1 |
20170281172 | Shelton, IV | Oct 2017 | A1 |
20170333064 | Ebner | Nov 2017 | A1 |
20180132849 | Miller et al. | May 2018 | A1 |
20180132854 | Miller | May 2018 | A1 |
20180235616 | Shelton, IV | Aug 2018 | A1 |
20180235635 | Rekstad et al. | Aug 2018 | A1 |
20180242974 | Guerrera et al. | Aug 2018 | A1 |
20180325508 | Aronhalt | Nov 2018 | A1 |
20190000481 | Harris | Jan 2019 | A1 |
20190328394 | Williams | Oct 2019 | A1 |
20200038017 | Hess et al. | Feb 2020 | A1 |
20200054339 | Scirica et al. | Feb 2020 | A1 |
20200229814 | Amariglio et al. | Jul 2020 | A1 |
20210290225 | Shi | Sep 2021 | A1 |
20230045940 | Shelton, IV | Feb 2023 | A1 |
20230047471 | Jones | Feb 2023 | A1 |
20230048389 | Bruce et al. | Feb 2023 | A1 |
20230049242 | Jones et al. | Feb 2023 | A1 |
20230049352 | Shelton, IV | Feb 2023 | A1 |
20230051305 | Jones et al. | Feb 2023 | A1 |
20230051659 | Boudreaux et al. | Feb 2023 | A1 |
20230053080 | Jones | Feb 2023 | A1 |
20230102965 | Wise | Mar 2023 | A1 |
Number | Date | Country |
---|---|---|
1875870 | Jan 2008 | EP |
2157918 | Mar 2010 | EP |
2649949 | Oct 2013 | EP |
3225176 | Oct 2017 | EP |
3225179 | Oct 2017 | EP |
3245958 | Nov 2017 | EP |
3130292 | Aug 2018 | EP |
3173030 | Oct 2019 | EP |
3643252 | Apr 2020 | EP |
WO 2001054594 | Aug 2001 | WO |
WO 2002009595 | Feb 2002 | WO |
WO-0209595 | Feb 2002 | WO |
WO 2005115254 | Dec 2005 | WO |
WO 2008141288 | Nov 2008 | WO |
WO-2012072138 | Jun 2012 | WO |
WO 2020249487 | Dec 2020 | WO |
Entry |
---|
U.S. Appl. No. 17/401,391, entitled, “Methods of Forming an Anastomosis Between Organs with an Expandable Pattern,” filed Aug. 13, 2021. |
U.S. Appl. No. 17/401,428, entitled, “Staple Forming Features for Circular Surgical Stapler,” filed Aug. 13, 2021. |
U.S. Appl. No. 17/401,430, entitled, “Non-Circular End Effector Features for Surgical Stapler,” filed Aug. 13, 2021. |
U.S. Appl. No. 17/401,444, entitled, “Circular Surgical Stapler for Forming Pattern of Non-Tangential Staples,” filed Aug. 13, 2021. |
U.S. Appl. No. 17/401,451, entitled, “Circular Surgical Stapler Having Staples with Expandable Crowns,” filed Aug. 13, 2021. |
U.S. Appl. No. 17/401,460, entitled, “Circular Surgical Stapler for Forming Cross-Pattern of Staples,” filed Aug. 13, 2021. |
International Search Report and Written Opinion dated Nov. 14, 2022, for International Application No. PCT/IB2022/057444, 12 pages. |
International Search Report and Written Opinion dated Jan. 27, 2023, for International Application No. PCT/IB2022/057446, 19 pages. |
International Search Report and Written Opinion dated Nov. 23, 2022, for International Application No. PCT/IB2022/057449, 15 pages. |
International Search Report and Written Opinion dated Jan. 25, 2023, for International Application No. PCT/IB2022/057442, 20 pages. |
International Search Report and Written Opinion dated Nov. 14, 2022, for International Application No. PCT/IB2022/057443, 12 pages. |
International Search Report and Written Opinion dated Nov. 24, 2022, for International Application No. PCT/IB2022/057451, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20230049352 A1 | Feb 2023 | US |