BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic drawing of the circularly polarized antenna according to the first preferred embodiment of the present invention.
FIG. 2A is a schematic drawing of the substrate of the circularly polarized antenna according to the first preferred embodiment of the present invention.
FIG. 2B is a schematic drawing of the substrate of the circularly polarized antenna according to the first preferred embodiment of the present invention.
FIG. 3 is a schematic drawing showing the relation between the diameter of the coupling-ring and resonant frequency of the circularly polarized antenna according to the first preferred embodiment of the present invention.
FIG. 4A shows the simulated result and the measured result of the axial ratio of the circularly polarized signal transmitted by the circularly polarized antenna according to the first preferred embodiment of the present invention.
FIG. 4B shows the simulated result and the measured result of the gain of the circularly polarized antenna according to the first preferred embodiment of the present invention.
FIG. 5A is a schematic diagram of the upper surface of substrate of the circularly polarized antenna according to the second preferred embodiment of the present invention, wherein the quantity of the slots is 16.
FIG. 5B is a schematic diagram of the upper surface of substrate of the circularly polarized antenna according to the third preferred embodiment of the present invention, wherein the quantity of the slots is 36.
FIG. 6A shows the variation of the return loss of the circularly polarized antenna of the present invention regarding the changing of the operating frequency.
FIG. 6B shows the variation of the axial ratio of the circularly polarized antenna of the present invention regarding the changing of the operating frequency.
FIG. 7 is a schematic drawing of the circularly polarized antenna according to the fourth preferred embodiment of the present invention.
FIG. 8A is a schematic diagram of the upper surface of substrate of the circularly polarized antenna according to the fourth preferred embodiment of the present invention.
FIG. 8B is a schematic diagram of the upper surface of substrate of the circularly polarized antenna according to the fourth preferred embodiment of the present invention.
FIG. 9 shows the variation of the axial ratio of the circularly polarized signal and the gain of the circularly polarized antenna regarding the changing of the operating frequency.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
FIG. 1 is a schematic diagram of the circularly polarized antenna according to the first preferred embodiment of the present invention. The substrate 21 is an FR-4 microwave substrate with the thickness of 0.8 mm, and the antenna 22 is composed of a copper alloy containing more than ninety-eight percent copper. Referring to FIG. 1, the antenna 21 connects with the supporting structure 24 supported by a first supporting rod 231, a second supporting rod 232, a third supporting 233, and a fourth supporting rod 234. Therefore, the antenna 22 maintains a predetermined distance between it and the upper surface 211 of the substrate 21. By adjusting the predetermined distance, the gain of the circularly polarized antenna of the present invention can be raised and the circularly polarized characteristics of the circularly polarized antenna can also be improved.
Since the predetermined distance between the antenna 22 and the upper surface 211 of the substrate 21 is essential for designing the operating frequency of the circularly polarized antenna 1, when the operating frequency of the circularly polarized antenna 1 needs to be changed, the first supporting rod 231, the second supporting rod 232, the third supporting 233, and the fourth supporting rod 234 must be adjusted to change the predetermined distance between the antenna 22 and the upper surface 211 of the substrate 21.
FIG. 2A is a schematic diagram of the upper surface 211 of substrate 21 of the circularly polarized antenna according to the first preferred embodiment of the present invention. FIG. 2B is a schematic diagram of the lower surface 212 of substrate 21 of the circularly polarized antenna according to the first preferred embodiment of the present invention. Referring to FIG. 2A, the upper surface 211 of the substrate 21 comprises eight slots 213, and one end of each slot 213 overlaps with the respective ends of the other slots at a central region 214. In addition, referring to FIG. 2B, the lower surface 212 of the substrate 21 comprises a coupling-ring line 215 and a straight coupling line 216, wherein the coupling-ring line 215 has an opening 217 on the edge. That is, the coupling-ring line 215 is not completely closed. In addition, the center of the coupling-ring line 215 corresponds to the center region 214 of the upper surface 211 of the substrate 21, and the coupling-ring line 215 is electrically connected with a coaxial cable connector 25 through the straight coupling line 216.
Moreover, the frequency range of the circularly polarized signal being transmitted and received (i.e. the resonant frequency) by the circularly polarized antenna 1 can be controller by adjusting the diameter of the coupling-ring line 215, while the shape of the antenna 21 still remains simple.
Referring to FIG. 3, when the size of the antenna size of the present invention is equal to that of the prior art circularly polarized antenna. That is, the diameter of the coupling-ring line is about 138 mm, the resonant frequency of the circularly polarized antenna according to the first preferred embodiment of the present invention is about 500 MHz, which is suitable for the application of digital television. Besides, this resonance frequency is obviously lower than that of the circularly polarized antenna of the prior art (about 915 MHZ). Therefore, when the diameter of the coupling-ring line of the antenna of the present invention becomes shorter, the resonant frequency of the circularly polarized antenna will become larger, toward the high-frequency range. For this reason, the circularly polarized antenna of the present invention can use a substrate with smaller size to have the same resonant frequency range as the circularly polarized antenna of the prior art.
In the present embodiment, the circularly polarized antenna of the present invention only uses the substrate (FR-4 microwave substrate) with a dimension of 130 mm×130 mm and the antenna (copper plate) with a dimension of 108 mm×108 mm to transmit and receive the circularly polarized signal, the frequency of which ranges from 902 MHz to 928 MHz. Obviously, the size of the antenna of the circularly polarized antenna of the present invention is smaller than that of the antenna of the circularly polarized antenna of the prior art (i.e., 164 mm×164 mm). Furthermore, the resonant distance between the substrate and the antenna of the circularly polarized antenna of the present invention is only 11.4 mm.
Referring to FIG. 2A, the upper surface of the substrate 21 of the circularly polarized antenna of the present invention comprises eight slots 213, and one end of each slot overlaps with the respective ends of the other slots at a central region 214. The width of each slot is 4 mm. In another aspect, referring to FIG. 2B, the coupling-ring line 215 is electrically connected with the coaxial cable connector 25 through the straight coupling line 216, wherein the width of the coupling-ring line 215 and the width of the straight coupling line 216 are both 4 mm, and the diameter of the coupling-ring line is 72 mm.
Therefore, when the circularly polarized antenna of the present invention is in its “transmitting state”, the coaxial cable connector 25 receives an electrical signal from a coaxial cable (not shown), so as to transmit the electrical signal to the coupling-ring line 215 with an opening via the straight coupling line 216. Then, the coupling-ring line 215 and the slots 213 on the upper surface 211 of the substrate 21 transform the electrical signal into a circularly polarized signal and then transmit it outside. In addition, while the circularly polarized antenna of the present invention is in its “receiving state”, the coupling-ring line 215 and the slots 213 on the upper surface 211 of the substrate 21 receive a circularly polarized signal and transform the circularly polarized signal into an electrical signal, Then, the electric signal is transmitted to a coaxial cable (not shown) via the straight coupling line 216 and the coaxial cable connector 25 for further signal processing processes.
FIG. 4A shows the simulated result and the measured result of the axial ratio of the circularly polarized signal transmitted by the circularly polarized antenna according to the first preferred embodiment of the present invention, wherein the simulated result and the measured result are represented by triangular dots and square dots, respectively. Referring to FIG. 4A, the measured result of the center frequency of the circularly polarized signal (about 0.91 GHz) is slightly smaller than the simulated result of the center frequency of the circularly polarized signal (about 0.95 GHz). Besides, the impedance bandwidth (the −10 dB bandwidth) of the circularly polarized antenna according to the first preferred embodiment of the present invention is about 126 MHz, while the 3 dB axial ratio thereof is about 2.5%.
FIG. 4B shows the simulated result and measured result of the gain of the circularly polarized antenna according to the first preferred embodiment of the present invention, wherein the simulated result and the measured result are represented by triangular dots and square dots, respectively. Referring to FIG. 4B, the simulated result of the gain of the circularly polarized antenna according to the first preferred embodiment of the present invention is bigger than the measured result of the gain of the circularly polarized antenna according to the first preferred embodiment of the present invention, since the simulated result is based on an assumption that the substrate is a substrate without any return loss.
In addition, the substrate of the circularly polarized antenna of the present invention can have any quantity of the slots on the upper surface thereof, i.e., the quantity can be 12, 16, 36, and even 64.
FIG. 5A is a schematic diagram of the upper surface of substrate of the circularly polarized antenna according to the second preferred embodiment of the present invention, wherein there are 16 slots 51 formed on the upper surface of the substrate thereof. One end of each slot overlaps with the respective ends of the other slots at a central region 52. FIG. 5B is a schematic diagram of the upper surface of substrate of the circularly polarized antenna according to the third preferred embodiment of the present invention, wherein there are 36 slots 53 formed on the upper surface of the substrate thereof. One end of each slot 53 overlaps with respective ends of the other slots at a central region 54. By comparing FIG. 5A with 5B, it is shown that as the quantity of the slots is raised (from 16 to 36), and the area of the center region has become larger. In addition, the characteristics of the circularly polarized antenna of the present invention, such as the return loss, and the characteristics of the circularly polarized signal being transmitted by the circularly polarized antenna of the present invention will be affected by the different quantities of the slots formed on the upper surface of the substrate, as described below.
FIG. 6A shows the variation of the return loss of the circularly polarized antenna of the present invention regarding the changing of the operating frequency, wherein the upper surface of the substrate comprises different quantities of slots (4, 8, 12, 16 and 36). FIG. 6B shows the variation of the axial ratio of the circularly polarized antenna of the present invention regarding the changing of the operating frequency, wherein the upper surface of the substrate comprises different quantities of slots (4, 8, and 36).
As shown in FIG. 6A, when the quantity of the slots is raised, the return loss of the circularly polarized antenna of the present invention becomes smaller. That is, the circularly polarized antenna of the present invention can transform the electrical signal into the circularly polarized signal more efficiently. As shown in FIG. 6B, the signals transmitted by the circularly polarized antenna of the circularly polarized antenna are all circularly polarized, regardless of the quantity of the slots formed on the upper surface of the substrate thereof. Therefore, once the quantity of the slots is more than 8, the circularly polarized antenna of the present invention can have enough efficiency to transmit or receive the circularly polarized signals, without the need of forming too many slots on the upper surface of the substrate of the circularly polarized antenna of the present invention.
FIG. 7 is a schematic drawing of the circularly polarized antenna according to the fourth preferred embodiment of the present invention. In this preferred embodiment, the substrate 71 is an FR-4 microwave substrate with the thickness of 0.8 mm, and having a coaxial cable connector 75 mounting at the edge. The antenna 72 is composed of a copper alloy containing more than ninety-eight percent copper, and two of the corresponding corners are chamfered. As shown in FIG. 7, the antenna 71 connects with a supporting structure 74 which is supported by a first supporting rod 731, a second supporting rod 732, a third supporting 733, and a fourth supporting rod 734. Therefore, the antenna 72 maintains a predetermined between it and the upper surface 711 of the substrate 71. By adjusting the predetermined distance, the gain of the circularly polarized antenna of the present invention can be raised and the circularly polarized characteristics of the circularly polarized antenna can also be improved.
Since the predetermined distance between the antenna 72 and the upper surface 711 of the substrate 71 is essential for designing the operating frequency of the circularly polarized antenna 7, while the circularly polarized antenna 7 is required to change its operating frequency, the first supporting rod 731, the second supporting rod 732, the third supporting 733, and the fourth supporting rod 734 must be adjusted to change the predetermined distance between the antenna 72 and the upper surface 711 of the substrate 21. Besides, in the present embodiment, the slots formed on the upper surface of the substrate of the circularly polarized antenna can have any kind of shape. Moreover, after the “end treatment” is executed on the ends, the ends of the slots formed on the upper surface of the substrate of the circularly polarized antenna can have any kind of shape, as shown in FIG. 8A and FIG. 8B.
FIG. 8A is a schematic diagram of the upper surface of substrate of the circularly polarized antenna according to the fourth preferred embodiment of the present invention, wherein each slot 81 has a lateral slot 82 at one end, and the opposing end of each slot 81 overlaps with the respective ends of the other slots at a central region 83. FIG. 8B is a schematic diagram of the upper surface of substrate of the circularly polarized antenna according to the fourth preferred embodiment of the present invention, wherein each slot 81 has a dumbbell-shaped part 85 at one end, and the opposing end of each slot 84 overlaps with the respective ends of the other slots at a central region 86. In addition, the characteristics of the circularly polarized antenna of the present invention, such as the return loss, and the characteristics of the circularly polarized signal being transmitted by the circularly polarized antenna of the present invention will be affected by the different shape of the ends of the slots formed on the upper surface of the substrate, as described below.
FIG. 9 shows the variation of the axial ratio of the circularly polarized signal and the gain of the circularly polarized antenna regarding the changing of the operating frequency, wherein the curve connecting the square points is the axial ratio curve and the curve connecting the circle points is the gain curve.
Referring still to FIG. 9, in the present preferred embodiment, the center frequency of the circularly polarized signal is slightly higher than the operating frequency of an RFID system. Besides, the 3-dB bandwidth of the axial ratio of the circular polarized signal transmitted by the circularly polarized antenna according to the fourth preferred embodiment is wider than the 3-dB bandwidth of the axial ratio of the circular polarized signal transmitted by the circularly polarized antenna according to the first preferred embodiment. In addition, the gain of the circularly polarized antenna according to the fourth embodiment in the operating frequency range of an RFID system is always larger than 4 dB. Therefore, the circularly polarized antenna according to the fourth preferred embodiment of the present invention can be used in most of the applications of the circularly polarized antenna.
In summary, in the same range of the operating frequency (i.e. the operating frequency of the RFID ranges from 902 MHz to 928 MHz), the circularly polarized antenna of the present invention can reduce the size of the antenna and the substrate by forming some slots on the upper and lower surface of the substrate and by changing the size of the coupling portion, so as to maintain the same operating ability as the circularly polarized antenna of the prior art (i.e. having the same return loss and the operating frequency bandwidth). Therefore, the circularly polarized antenna of the present invention can have a compact size and keep antenna as simple, so as to facilitate the development of a small-sized, more convenient and portable electrical device having the circularly polarized antenna of the present invention, such as the reader device of an RFID system.
Although the present invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the scope of the invention as hereinafter claimed.