The present invention is shown in the figures, wherein like numerals refer to like elements throughout. Earlier designs for circularly polarized, high-gain, omnidirectional antennas for high L-band generally have high wind loading, weight, and complexity, and are generally not designed for ordinary broadcast applications. The present invention overcomes these disadvantages at least in part, having instead the characteristics described below.
Regarding bandwidth issues, S-band development provides an instructive archetype for antennas according to the present invention. S-band begins at 1.5 GHz, immediately above L-band; the present invention addresses primarily the latter band, previously unavailable for this type of use. Typical S-band antennas have very narrow bandwidth. The present invention provides antennas with an impedance and pattern bandwidth capable of covering the entire lower 700 MHz band (698 to 746 MHz, former television channels 52 through 59, near the upper end of L-band). This capability is realized by arranging broadband circularly polarized radiating elements in a multiple-bay, single-axis vertical array.
Regarding issues of high power,
Regarding wind loading, a simple, cylindrical radome envelope 22, shown in phantom in
Despite low material cost and simplicity, the present invention may be configured with increased mechanical strength compared to that required merely to allow the antenna to be self-supporting. This strength extends even to the extent of supporting a high dynamic load, such as that applied by a flagpole, above the radiating portion of the antenna 10.
The power divider 12 shown in
A flanged, pressurized feed line 28 (the portion connecting to the antenna input is shown in phantom in
The distribution lines 14 are coaxial lines that carry power from the power divider 12 to the radiators 16. The distribution lines 14 in the embodiment shown are equal in length, with excess coaxial line length coiled in the reserve area 18 below a bottommost radiator 16 so that radiators 16 successively farther from the power divider 12 are nonetheless fed by lines 14 of equal length. In other embodiments, the distribution lines 14 may vary in length, such as with each higher radiator 16 fed by a longer feed line 14. Such arrangements tend to degrade antenna bandwidth to a greater or lesser extent, but may be preferred in some embodiments, for purposes such as cost and/or weight reduction.
Small adjustments in the relative lengths of the individual distribution lines 14 allow beam tilt and/or null fill to be provided. The individual radiators 16 generate circularly polarized signals independently of one another, and are fed with delay that depends in large part on the lengths of the respective distribution lines 14 and the properties of the power divider 12. As a consequence, it is possible to drive the respective radiators 16 simultaneously, generating a main beam that has no deliberate tilt. This means that the far-field signal in a plane 32 passing through the middle of the antenna 10 aperture (the extent from the top radiator to the bottom radiator), and perpendicular to a central vertical axis 34 of the antenna, is most strongly reinforced. According to this description, the signal strength at angles above or below the perpendicular plane 32 is reduced in proportion to the deviation of the angle from zero degrees, so that a primary beam in the shape of a flattened toroid is formed. The gain of the beam (flatness of the toroid) is a function of, among other factors, the aperture size, the number of radiators, and the vertical spacing between radiators.
It is further possible to alter the lengths of the respective distribution lines 14 in such a way as to cause far-field signals to be most reinforced at an angle other than zero degrees—that is, to introduce beam tilt. Similarly, a pronounced null immediately below the main beam may degrade close-in reception. To offset this, it may be helpful to deviate the lengths of the distribution lines 14, such as by altering one or more lines to an extent different from that required by beam tilt. This can broaden the main beam to improve close-in reception, while decreasing peak beam strength (and range) only slightly, a process termed null fill.
Vertical placement of the radiators 16 can be used to establish beam shape, but is not used in the embodiment shown to effect beam tilt or null fill. The term “antenna aperture” as used herein relates to the effective extent from the highest to the lowest point of the radiative parts of the antenna. Aperture in general determines gain, referenced to a point source radiator (0 dB) or a dipole (+2 dB) in free space. The number of radiators within the aperture establishes a limit on emitted power capacity, and, in conjunction with gain, height above average terrain, and details of radiator design, determines effective broadcasting range of a signal with a given power level.
It is desirable in many applications (including for safety in low-mounted systems) to have an emission pattern that includes a null directly below the antenna. As is readily derived, a highly effective vertical spacing for providing both a vertical null and high gain in proportion to the number of radiators uses a spacing between radiators that is slightly less than one wavelength, namely (n−1)/n wavelengths, where n is the number of radiators. For example, for a single radiator, there is no spacing; for two, they are approximately one-half wavelength apart, for eight, they are approximately ⅞ of a wavelength apart, and so forth. If i is an integer less than n, all values of (n−i)/n produce such a null except i=0. For negative values of i (spacings greater than one wavelength), there is a tendency to produce banding, and for positive values of i greater than 1, the aperture decreases, so that gain as a function of signal power is sacrificed. Unless an embodiment is vertically constrained, therefore, the preferred spacing between radiators remains (n−1)/n wavelengths for many antennas according to the invention herein disclosed.
Since the outer conductors of the respective distribution lines 14 are at roughly the same (ground) potential as the main input 24 outer conductor, the distribution lines 14 act as vertically oriented parasitics—known in the art as directors—that are long compared to a wavelength. Like the vertical struts 36, these may have negligible effect on the horizontally polarized component of antenna output versus azimuth, while causing the vertically-polarized component to exhibit gain variation. A graphical representation 120 of this phenomenon as shown in
Note that the distribution lines 14 for the elements 16 in
Regarding tradeoffs between use of conductive and nonconductive support structure, the embodiment shown in
Perimeter cross members—that is, structural elements that join the vertical struts 36 to one another without significantly intruding into a prismatic volume whereof the faces are defined by the extents of the vertical struts 36—are generally preferred to be nonconducting for embodiments wherein the diagonal cross members 38 and any horizontal cross members proximal to the faces of the vertical strut 36-defined volume (none are shown in
High mechanical strength in the vertical struts 36 can allow the antenna to serve an additional purpose, such as bearing another antenna, or a flagpole, weather vane, traffic monitoring camera, or the like. Such use, or the appearance of the antenna to be an anonymous gray cylindrical pylon, may allow the high-value device—the antenna and its associated transmitter—to be less conspicuous than, for example, an open framework bearing one or more cavity-backed directional radiators with their feed coaxes and specialized radomes.
In the embodiment shown, diagonal 38 elements of the support structure are nonconductive and low-loss, so that their interaction with the radiated signals—reflection, absorption, reradiation—is low. In embodiments having a high-strength support structure, the radome 22 may be thin or low in strength, required only to provide sun and/or ice protection, wind load management, and the like in a radio-transparent structure; in embodiments having a radome 22 with high strength and bearing negligible external load, the support structure may be made less robust to the extent that it is required to do little more than stabilize spatial placement of radiators 16.
Use of fewer than four vertical support struts 36 has also been evaluated. For many embodiments other than the simple four-strut 36 configuration of
The radome 22 shown in phantom in
The base 20 provides attachment for the vertical struts 36, and further provides mounting ears 48 whereby the antenna 10 can be fixed to an external structure (not shown), such as a tower top, a building, or a lateral strut or base plate projecting from a structure. Many alternative mounting provisions are possible, such as a flare at the base 20 similar in appearance to the mounting ears 48 shown, but continuous around the base 20. Such a configuration may provide more attachment options.
In embodiments with a mechanically robust base 20, strut 36, cross member 38 and top plate 42 configuration, the radome 22 may have no more strength than is needed to perform one or more functions such as retaining shape under wind load, shielding against sun and ice over the anticipated product life, and facilitating sealing against water intrusion over anticipated climate conditions. In other embodiments, the radome 22 may be further required to be self-supporting, to perform a sealing function without aid from the support structure, or to provide at least some load bearing capability.
The antenna input shown in
Each bay includes a single circularly-polarized radiator 16. Each radiator 16 emits an elliptically polarized signal that is substantially omnidirectional with respect to azimuth and toroidal with respect to elevation, with an axial ratio near unity at all azimuths—i.e., effectively circularly polarized. A limitation on azimuthal uniformity of axial ratio, namely the presence of conductive vertical struts 36, has been discussed. Strut 36 materials that are substantially nonconducting and low-loss may provide somewhat higher uniformity, particularly in the distribution of vertical signal strength with azimuth.
Four blades 64 of the feed strap 62 extend outward, lying approximately in a strap plane 66 generally parallel to the plane 68 of the structural brace 50 portion of the radiator 16, with the blades 64 directed toward upper extents of the radiative components, or dipoles 70, of the radiator 16. The ends of the blades 64 are formed to wrap around and make electrical contact at near-tip attachment points 72. The blades 64 in the embodiment shown are creased to broadly match the angle of advance 74 of the dipoles 70. The blades 64 tilt upward out of the strap plane 66 as a consequence of being creased. In some embodiments, such as those wherein the dipoles 70 differ from one another in length or in angle of advance 74, the form of the respective blades 64 may vary, such as by being nonorthogonal within the feed strap 62, having differing crease 76 locations or extent of bending, attaching to the respective dipoles 70 at differing distances along the respective dipoles 70, and the like. Such variations fall within the scope of the invention, although other configurations may also be used.
The blades 64 in the embodiment shown include conductive tuning paddles 80. The paddles 80 can be positioned radially (by design change) or in tilt (by bending) to adjust radiator 16 impedance. The shapes, dimensions, and orientations of the respective paddles 80 tune the radiators 16 as viewed at the input connector 54, while the paddles 80 emit negligible additional or spurious radiation in at least some embodiments. In particular, final settings of bandwidth, impedance, axial ratio, and like properties of each radiator 16 may be established by altering configuration of the paddles 80.
The four dipoles 70 in the embodiment shown are cast as a single part with the arms of the structural cross-brace 50 and with the associated hub 56. The upper monopoles 82 of the respective dipoles 70 extend about a quarter-wavelength from the braces 50, so that the overall combination of dimensions, along with load splitting by the manifold feed strap 62 to the near-tip attachment points 72 provides termination in a preferred impedance at the antenna 10 frequencies. The lower monopoles 84 are not separately excited, but function with the driven monopoles 82 to form dipoles 70.
Because of the geometry of the components, even a single one of the dipoles 70, driven as shown by a single blade 64, in the absence of the other three dipoles 70, will emit a circularly polarized signal. An opposed pair of dipoles 70 will also emit, and will exhibit greater pattern uniformity than the single. As discussed in Antenna Engineering Handbook, Third Edition, R. C. Johnson, ed., McGraw-Hill, 1993, section 28-3, “Circularly Polarized Antennas,” herein incorporated by reference, a four-dipole shunt-fed helical radiator, similar to the quasi-helical radiator shown in
The diagram in
The jagged appearance of the signal strength plot 126 is an artifact of the relative rotation rates. The greater the magnitude of the excursions, the greater the difference between vertical and horizontal signal magnitudes in the elliptical emission pattern as detected in the test procedure. This plot shows instantaneous voltage measurements as a radial distance from the center of the chart, roughly normalized, so doubling displacement from the center represents a 6 dB increase in signal strength. Using the horizontal 122 and vertical 124 plots, the worst-case voltage axial ratio is around 2 (6 dB) at 224 degrees and 320 degrees, and is generally highest at the intercardinal nodes, here located around 45, 135, 225, and 315 degrees referenced to the chart. The axial ratio decreases to unity at several azimuths, and has a greater vertical component 124 over some azimuths.
The many features and advantages of the invention are apparent from the detailed specification, and, thus, it is intended by the appended claims to cover all such features and advantages of the invention which fall within the true spirit and scope of the invention. Further, since numerous modifications and variations will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation illustrated and described, and, accordingly, all suitable modifications and equivalents may be resorted to that fall within the scope of the invention.
This application claims priority to U.S. Provisional Patent Application titled, “Circularly Polarized Omnidirectional Low Wind Load Antenna Apparatus and Method”, filed Aug. 9, 2006, having Ser. No. 60/836,397, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60836397 | Aug 2006 | US |