This application is a National Stage Application, filed under 35 U.S.C. 371, of International Application No. PCT/FI2018/050907, filed Dec. 12, 2018, which claims priority to Finland Application No. 20176134, filed Dec. 19, 2017; the contents of both of which are hereby incorporated by reference in their entirety.
The invention relates to circulating fluidized bed boilers. The invention relates to loopseal heat exchangers. The invention relates to particle coolers.
A fluidized bed heat exchanger is known from U.S. Pat. No. 5,184,671. Such a fluidized bed heat exchanger is designed to recover heat from hot particulate material of a fluidized bed. In the past, it has been realized that a fluidized bed heat exchanger can be used in a loopseal of a circulating fluidized bed boiler. When the fluidized bed heat exchanger is arranged in connection with a steam generator to recover heat from the bed material of the fluidized bed, typically steam becomes superheated, whereby such a fluidized bed heat exchanger may be referred to as a fluidized bed superheater. Such a heat exchanger may be referred to as a loopseal heat exchanger or a loopseal superheater.
One problem in loopseal heat exchangers is that the fluidizing air of the furnace is designed to flow in a certain direction: from a furnace 50 to a cyclone 40 via the flue gas channel 20, and therefrom to superheaters 26, as indicated in
Moreover, the bed material of a fluidized bed boiler comprises inert particulate material and ash. In known solutions, all the bed material (i.e. also the ash) is conveyed from the loopseal heat exchanger to the furnace of the fluidized bed boiler, from which the ash can be collected as bottom ash. However, some of the ash may form agglomerates that hinder the operation of the fluidized bed reactor. The ash or the agglomerates may, for example, limit the air flow from a grate of a furnace, which results in uneven air flow in the furnace. In addition to affecting the operation of furnace, because of the ash, the channels need to be designed sufficiently large to convey also the ash. This may limit the capacity of the boiler.
It has been noticed that by dividing a particle outlet to a first part and a second part with a barrier element, the problem of the air flowing in wrong direction can be avoided. Correspondingly, the parts of the particle outlet have a reasonably high aspect ratio, as detailed in the claims and the description. Moreover, it has been found that when the loopseal heat exchanger is free from a separate gas lock chamber, the loopseal heat exchanger may be equipped with first ash removal channel for letting out ash from the loopseal heat exchanger. Such a construction increases capacity and is easy to manufacture. Easily manufacturable loopseal heat exchanger also reduces costs of the boiler.
To illustrate different views of the embodiments, three orthogonal directions Sx, Sy, and Sz are indicated in the figures. In use, the direction Sz is substantially vertical and upwards. In this way, the direction Sz is substantially reverse to gravity.
Within the furnace 50, some burnable material is configured to be burned. The burnable material may be fed to the furnace 50 through a primary fuel inlet 58. A conveyor, e.g. a screw conveyor, may be arranged to feed the burnable material. Some inert particulate material, e.g. sand, is also arranged in the furnace 50. The mixture of the particulate material and the burnable material and/or ash is referred to as bed material. At the bottom of the furnace 50, a grate 52 is arranged. The grate 52 is configured to supply air into the furnace in order to fluidize the bed material and to burn at least some of the burnable material to form heat, flue gas, and ash. In a circulating fluidized bed, the air supply is so strong, that the bed material is configured to flow upwards in the furnace 50. The grate 52 comprises grate nozzles 54 for supplying the air. The grate 52 limits bottom ash channels 56 for removing ash from the furnace 50.
From the upper part of the furnace 50, the fluidizing gas and the bed material are conveyed to a cyclone 40 in order to separate the bed material from gases. From the cyclone 40, the bed material falls through a channel 60 to a loopseal 5. Preferably, the loopseal 5 does not have a common wall with the furnace 50. This gives more flexibility to the structural design of the boiler 1, in particular, when an inlet 650 for secondary fuel is arranged in the loopseal 5, as will be detailed below. At least when the loopseal 5 does not have a common wall with the furnace 50, the bed material is returned from the loopseal 5 to the furnace 50 via a return channel 15. The return channel 15 is configured to convey bed material from the loopseal 5 to the furnace 50.
Referring to
Referring to
In addition to bed material, some light ash may be conveyed to the channel 15 through the primary particle outlet 610. Also some heavy ash may be conveyed along the bed material. In an embodiment, the loopseal heat exchanger 10 comprises an ash removal channel 690. In such an embodiment, most of heavy ash becomes separated and expelled through the ash removal channel 690 because of a sieving effect of the loopseal heat exchanger 10. Moreover, because of the sieving effect, the material removed via the ash removal channel 690 comprises mainly ash. For example, the material removed via the ash removal channel 690 comprises ash to a greater extent than the material removed via the primary particle outlet 610.
When the ash is removed from the loopseal heat exchanger 10, as indicated above, the ash is preferably not conveyed into the furnace 50 of the fluidized bed boiler 1. Since the ash is hot, it contains recoverable heat. Thus, in a preferred embodiment, the circulating fluidized bed boiler 1 comprises an ash cooler 700 (see
Moreover, preferably the ash cooler 700 is configured to receive bed material only from the loopseal 5 of the fluidized bed boiler 1. Preferably the ash cooler 700 is configured to receive bed material only from loopseal heat exchanger(s) 10 of the fluidized bed boiler 1. Preferably the ash cooler 700 is configured to receive bed material only from that loopseal heat exchanger 10 that comprises the ash removal channel 690. Moreover, the ash cooler 700 is configured to receive bed material from the loopseal heat exchanger 10 such that the ash is not conveyed via the furnace 50 from the loopseal heat exchanger 10 to the ash cooler 700. The ash cooler 700 may include a heat transfer medium circulation for recovering heat from the ash. The ash cooler 700 may comprise a screw conveyor. The ash cooler 700 may comprise a screw conveyor, wherein the screw conveyor is equipped with a circulation of cooling medium, such a water.
In an embodiment, the system comprises another ash cooler 750 configured receive bottom ash from the furnace 50 and to cool the bottom ash received from the furnace 50. The other ash cooler 750 may include a heat transfer medium circulation for recovering heat from the ash. The other ash cooler 750 may comprise a water-cooled screw conveyor, as indicated above.
When the bed material is fluidized in the first heat exchange chamber 310, the fluidizing gas may exit the first heat exchange chamber 310 through the primary particle outlet 610. The fluidizing gas may flow with the bed material through the return chute 15 to the furnace 50.
Referring to
As indicated in background, a problem in loopseal heat exchangers of prior art is the possibility of air flowing in a reverse direction, provided that an additional gas lock chamber is not used.
It has now been observed that the air flow can be controlled by proper measures of the primary particle outlet 610. In particular, it has been observed, that if the aspect ratio of the primary particle outlet 610 is close to one, air can flow in both directions through the primary particle outlet 610. Thus, the primary particle outlet 610 is designed in such a way that it comprises a part that has an aspect ratio that is not close to one.
With reference to
As for the terms first height and first width, these refer to the dimensions of a cross section of the first part 611, wherein the cross section is defined in a plane [A] that is parallel to the wall part 540 limiting both the first heat exchange chamber 310 and the primary particle outlet 610; or if such a wall part cannot be defined (e.g. if the primary particle outlet 610 is somewhat lengthy), [B] that has a normal that is parallel to a direction, which, in use, is an average direction of flow of gas in the primary particle outlet 610. As indicated in
The loopseal heat exchanger may comprise only one barrier element. Referring to
In an embodiment, each one of the parts 611, 612 (and optionally 613, 614, if present), have an aspect ratio of more than 2. The aspect ratio for each part is defined as the ratio of the maximum of width and height to the minimum of width and height, i.e. in a manner similar to what has been detailed above for the first part. In particular, in an embodiment, a ratio (h2/w2) of a second height h2 to a second width w2 is less than 0.5 or more than 2, wherein the second height h2 is the height of the second part 612 and the second width w2 is the width of the second part 612.
Preferably the aspect ratio is even greater. In an embodiment, the aspect ratio of the first part 611 is more than three (i.e. the ratio h1/w1 is less than ⅓ or more than 3) or more than five (i.e. the ratio h1/w1 is less than ⅕ or more than 5). In an embodiment, each one of the parts 611, 612 (and optionally 613, 614, if present), have an aspect ratio of more than 3. In an embodiment, each one of the parts 611, 612 (and optionally 613, 614, if present), have an aspect ratio of more than 5.
In an embodiment, each one of the parts 611, 612 (and optionally 613, 614, if present), are configured to let out bed material from the first heat exchange chamber 310. The fluidized bed boiler 1 may be used in such a way that fluidizing gas and bed material are let out from the first heat exchange chamber 310 via the primary particle outlet 610. Correspondingly, fluidizing air from the furnace 50 is not let in into the first heat exchange chamber 310 via the primary particle outlet 610.
Preferably, the fluidized bed boiler 1 is used in such a way that fluidizing gas and bed material are let out from the first heat exchange chamber 310 via the primary particle outlet 610 such that a flow velocity of the fluidizing gas at the primary particle outlet 610 is at most 20 m/s and directed out of the first heat exchange chamber 310. The direction of the velocity has the effect that the boiler 1 functions as desired. The magnitude of the velocity has the effect that the flow is well controlled and does not excessively grind the surfaces of the loopseal heat exchanger 10. Preferably, a flow velocity of the fluidizing gas at the primary particle outlet 610 is from 5 m/s to 10 m/s and directed out of the first heat exchange chamber 310.
The barrier element 401 (and the other barrier elements 402, 403) may be made of any suitable material, such as metal or ceramic. In a preferable embodiment, the first barrier element 401 comprises a heat transfer tube or heat transfer tubes. For example, the first barrier element 401 may be a heat transfer tube covered by mortar, or the first barrier element 401 may consist of heat transfer tubes covered by mortar. As in case of the walls, the term heat transfer tube refers to a tube that is configured to recover heat to a liquid heat transfer medium. Thus, the first barrier element 401 in this embodiment is configured to recover heat to a circulation of a liquid heat transfer medium, such as water. Such pipes are shown in
Moreover, preferably the area of the barrier elements 401, 402, 403, is small compared to the area of the parts 611, 612, 613, 614 of the outlet 610. This ensures a suitably small flow resistance, simultaneously preventing air from flowing in two directions. Referring to
In addition to the relative dimensions, as discussed in terms of the aspect ratio and/or proportional area (i.e. product of width and height), also an absolute dimension of the part 611 or parts 611, 612, 613, 614 helps to prevent air from flowing in wrong direction. Thus, in an embodiment, the smaller of the first height h1 and the first width w1 is from 5 cm to 50 cm, such as from 5 cm to 40 cm. The smaller of the first height h1 and the first width w1 is generally denoted by min(h1,w1). Preferably this applies to each one of the parts 611, 612, 613, etc. of the primary particle outlet 610. Thus, in an embodiment, for each part of the primary particle outlet 610, the smaller of the height and the width of that part is from 5 cm to 50 cm, such as from 5 cm to 40 cm.
Preferably, the primary particle outlet 610 is sufficiently large to ensure reasonably small flow resistance. In an embodiment, a cross sectional area of the primary particle outlet 610 is at least 0.5 m2, preferably at least 0.7 m2. It is also noted that the cross sectional area of the primary particle outlet 610 is the sum of the cross sectional areas of its parts 611, and 612, optionally also 613, and 614 (and other parts, if present).
In order to remove ash, for reasons indicated in the background, the loopseal in an embodiment, heat exchanger 10 further comprises an ash removal channel 690 configured to convey ash out of the loopseal heat exchanger 10. This has the effect that ash will not be conveyed to the furnace 50. Preferably, the ash removal channel 690 is configured to convey ash from the bottom of the first heat exchange chamber 310 or from the bottom of the bypass chamber 200. This has the effect that ash will not accumulate within the loopseal heat exchanger 10, which improves the heat recovering capacity of the loopseal heat exchanger 10. In the alternative, the ash removal channel 690 may be arranged in a vertical wall of the loopseal heat exchanger. However, for purposes of emptying the loopseal heat exchanger for maintenance, a lower edge of the ash removal channel 690 is preferably located at most 50 cm above a floor of the loopseal heat exchanger 10. Floors 410, 420, 430 are indicated e.g. in
The ash removal channel 690 is arranged at a lower vertical level than the primary particle outlet 610. The ash removal channel 690 may be arranged relative to the primary particle outlet 610 such that a top edge of the ash removal channel 690 is arranged at a lower vertical level than a lower edge of the primary particle outlet 610. The lower edge of the primary particle outlet 610 is denoted by hl4 in
In an embodiment, a top edge of the ash removal channel 690 is arranged at a lower level than a lower edge of the primary particle outlet 610. In an embodiment, a top edge of the primary ash removal channel 690 is arranged at least 50 cm or at least 1 m lower than a lower edge of the primary particle outlet 610. In an embodiment, a lower edge of the primary particle outlet 610 is arranged at least 1.5 m or at least 2 m above the floor of the loopseal heat exchanger. Correspondingly, in an embodiment, a lower edge of the primary particle outlet 610 is arranged at least 1 m or at least 1.5 m above an upper edge of the ash removal channel 690.
In an embodiment, an ash removal channel 690 is arranged at a lower part of the first heat exchange chamber 310. Alternatively or in addition, an ash removal channel 690 may be arranged at a lower part of the bypass chamber 200. Alternatively or in addition, an ash removal channel 690 may be arranged at a lower part of the inlet chamber 100. A more specific meaning of a lower part has been discussed above.
As indicated above, the walls of the loopseal heat exchanger 10 limit the first flow path P1. The first flow path P1 runs through a primary particle inlet 630 (cf. e.g.
As indicated above, the walls of the loopseal heat exchanger 10 limit the second flow path P2. The second flow path P2 runs through the bypass chamber 200. In use, the bed material enters in a substantially downward direction the inlet chamber 100. Moreover, in use, the bed material flows through the second flow path P2 and exits the loopseal heat exchanger from a secondary particle outlet 620 (see
In an embodiment, the walls of the loopseal heat exchanger 10 are arranged in such a way, that the first wall part 510 (see
As indicated above, a third wall part 530 limits the inlet chamber 100 and also limits the particle inlet 630 (see
Moreover, in order to ensure smooth flow of the particle material out from the first heat exchange chamber 310, in an embodiment, a part of the primary particle outlet 610 is arranged at a lower vertical level than the aforementioned second height level hl2 (i.e. the vertical level, at which the bed material leaving the bypass chamber 200 enters the return chute 15). Therefore, in an embodiment, a fourth wall part 540 limits the primary particle outlet 610 from below and limits also the return chute 15, and may further limit the first heat exchange chamber 310. Moreover, the fourth wall part 540 extends upwards to a fourth height level hl4. As indicated in
As indicated above, to control the flow of bed material within the first heat exchange chamber 310, in an embodiment, the fourth height level hl4 is at a higher vertical level than the third height level hl3. Typically the height levels h11 and hl3, i.e. the lower edges of the first wall part 510 arranged in between the inlet chamber 100 and the bypass chamber 200 and the wall part 530 limiting the particle inlet 630, are at a substantially same vertical level. The absolute value of the difference hl1−hl3, i.e. |hl1−hl3|, may be e.g. less than 100 mm, such as less than 75 mm, or less than 50 mm.
To control the flow of bed material through the first heat exchange chamber 310 the fourth height level hl4 is, in an embodiment, at a level that is more than 500 mm higher than the higher of the levels hl1 and hl3. Thus, in an embodiment, hl4−max(hl1, hl3)>500 mm. As is conventional, the function “max” gives the greater or greatest of its arguments. More preferably, the difference hl4−max(h11, hl3)>750 mm. What has been said above about the difference hl2−h14, also applies.
The structure of the loopseal heat exchanger, as shown in
Referring to
The air distribution within the first heat exchange chamber 310 needs not to be uniform. Preferably, the distribution of the fluidizing air within the first heat exchange chamber 310 is designed in such a way that at least 90% at least 95% of the outer surfaces of the heat exchanger pipes 810 are in contact with flowing bed material. This is in contrast to cases, where the bed material would not flow, i.e. become stuck, on some surfaces of the exchanger pipes 810.
Referring to
In an embodiment, the primary nozzles 910 comprise third primary nozzles 917 and fourth primary nozzles 918. The third primary nozzles 917 are arranged closer to the primary particle outlet 610 than the fourth primary nozzles 918. Moreover, a flow resistance of the third primary nozzles 917 is larger than a flow resistance of the fourth primary nozzles 918. In effect, more fluidizing gas is guided through the fourth primary nozzles 918 than through the third primary nozzles 917. Correspondingly, the flow of bed material is enhanced in such locations that are further away from the primary particle outlet 610. In this way, the flowing bed material is more evenly distributed onto the surfaces of the heat exchanger pipes 810.
In an embodiment, the third primary nozzles 917 are arranged closer to the primary particle outlet 610 than the first primary nozzles 915. In an embodiment, a flow resistance of the first primary nozzles 915 different from a flow resistance of the third primary nozzles 917. In an embodiment, a flow resistance of the first primary nozzles 915 is larger than a flow resistance of the third primary nozzles 917. In effect, more fluidizing gas is guided through the third primary nozzles 917 than through the first primary nozzles 915.
Referring to
Depending e.g. on the load of the boiler and/or fuel supply into the boiler, there may be a greater or lesser need for heating heat transfer medium (e.g. superheating steam) by the fluidized bed heat exchanger 10. Thus, depending on the needs, a greater or lesser portion of the bed material may be conveyed through the first flow path P1, while the rest of the material is conveyed through the second flow path P2. Such a control can be achieved by the nozzles 910, 920. Moreover, the control is preferably automated.
Thus, an embodiment of a fluidized boiler 1 comprises a processor CPU (see
In an embodiment, the processor CPU is configured to control a ratio of the air flows through the primary nozzles 910 and the secondary nozzles 920. More specifically, when a primary air flow F1 is supplied through the primary nozzles 910 and a secondary air flow F2 is supplied through the secondary nozzles 920, the processor CPU is, in an embodiment, configured to control the ratio F1/F2.
The need for increasing or decreasing the amount of heating of the steam in the heating chamber 310 may depend on the temperature of the steam after the heat exchanger pipes 810 of the heating chamber 310. Therefore, with reference to
For example, when the first signal S1 indicates that the temperature of the steam is decreasing or has decreased below a limiting value, more bed material may be guided to the heating chamber 310 to heat the steam within the heat exchanger pipes 810. Thus, the flow F1 through the primary nozzles 910 in the heating chamber 310 can be increased and/or the flow F2 through the secondary nozzles 920 in the bypass chamber 200 can be decreased.
Such an increase and/or decrease affects the aforementioned ratio F1/F2 of the flows. In particular, if more heating power is needed, the ratio F1/F2 may be increased.
In an embodiment, the boiler 1 further comprises a second sensor 852 configured to sense a temperature of steam that will enter the heat exchanger pipes 810. Thus, a temperature difference, by which the steam has been heated within the heating chamber 310, can be measured. Such a temperature difference can also be used by the processor CPU to control the ratio F1/F2. Thus, an embodiment comprises a second sensor 852 configured to sense a temperature of steam that enters the heat exchanger pipes 810. Moreover, in an embodiment the second sensor 852 is configured to sense a temperature of the steam after a superheater 26 arranged in flue gas channel 20 of the boiler 1. In an embodiment, the second sensor 852 is configured to give a second signal S2 indicative of a temperature of the steam, and the processor CPU is configured to receive the first signal S1 and the second signal S2. Moreover, in an embodiment, the processor CPU is configured to control the ratio F1/F2 of the of the air flows through the primary nozzles 910 and the secondary nozzles 920 using the first signal S1 and the second signal S2. For example, the processor CPU may be configured to compare the temperature difference, as determined based on the signals S1 and S2, to a pre-set temperature difference. Provided that this temperature difference is too small, more bed material is guided to the first heat exchange chamber 310 by increasing the ratio F1/F2 as indicated above. Correspondingly, provided that this temperature difference is too large, less bed material is guided to the first heat exchange chamber 310 by decreasing the ratio F1/F2 as indicated above.
In an embodiment, the primary nozzles 910 are configured to drive ash towards the ash removal channel 690 by a flow of the fluidizing gas. For example, as indicated in
Referring to
Referring to
In an embodiment, the third wall part 530 limits the primary particle inlet 630, through which bed material is configured to enter the first heat exchange chamber 310 in use. Moreover, the primary particle inlet 630 extends in the downward vertical direction to the floor level FL. This, in connection with the floors 410 and 430 being at the same level, has the effect that ash is easily conveyed from the inlet chamber 100 to the first heat exchange chamber 310. Thus, an ash removal channel 690 may be arranged in the first heat exchange chamber 310.
In an embodiment, the first wall part 510 limits a secondary particle inlet 640, through which bed material is configured to enter the bypass chamber 200 in use. The secondary particle inlet 640 extends in the downward vertical direction to the floor level FL. This, in connection with the floors 410 and 420 being at the same level, has the effect that ash is easily conveyed from the inlet chamber 100 to the bypass chamber 200. Thus, an ash removal channel 690 may be arranged in the bypass chamber 200.
Preferably both the primary particle inlet 630 and the secondary particle inlet 640 extend in the downward vertical direction to the floor level FL, and all the three floors 410, 420, 430 are on the same level. In this case, only one ash removal channel 690 may suffice, since ash can move e.g. from the bypass chamber 200 to the first heat exchange chamber 310 or vice versa.
However, such a structure is more complex than the structure of
The heat exchanger pipes 810 may constitute a heat exchanger module. Such a heat exchanger module may be insertable into and removable from the first heat exchange chamber 310. In an embodiment, a wall of the first heat exchange chamber 310 comprises an opening 680 (see
A loopseal 5 is a harsh environment. Within the loopseal 5, the bed material grinds the heat exchanger pipes 810, and also corrosive gases may condense onto the pipes 810. Referring to
Number | Date | Country | Kind |
---|---|---|---|
20176134 | Dec 2017 | FI | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FI2018/050907 | 12/12/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/122509 | 6/27/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4459133 | Moss | Jul 1984 | A |
4552203 | Chrysostome | Nov 1985 | A |
4699068 | Engstrom | Oct 1987 | A |
4813381 | Kullendorff | Mar 1989 | A |
4817563 | Beisswenger | Apr 1989 | A |
4827723 | Engstrom | May 1989 | A |
4896717 | Campbell, Jr. | Jan 1990 | A |
4947803 | Zenz | Aug 1990 | A |
4947804 | Abdulally | Aug 1990 | A |
5054435 | Wiehn | Oct 1991 | A |
5072696 | Abdulally | Dec 1991 | A |
5140950 | Abdulally | Aug 1992 | A |
5184671 | Alliston et al. | Feb 1993 | A |
5239946 | Garcia-Mallol | Aug 1993 | A |
5345896 | Hyppanen | Sep 1994 | A |
5463968 | Abdulally | Nov 1995 | A |
5476639 | Hyppanen | Dec 1995 | A |
5601039 | Hyppanen | Feb 1997 | A |
5682828 | Phalen | Nov 1997 | A |
6237541 | Alliston | May 2001 | B1 |
6962676 | Hyppanen | Nov 2005 | B1 |
7938071 | Jacobs | May 2011 | B2 |
8500959 | Lehto | Aug 2013 | B2 |
20010025702 | Hyppanen | Oct 2001 | A1 |
20030202913 | Maryamchik | Oct 2003 | A1 |
20040065273 | Baglione | Apr 2004 | A1 |
20060000425 | Kokko | Jan 2006 | A1 |
20060011148 | Baglione | Jan 2006 | A1 |
20100294180 | Chiu | Nov 2010 | A1 |
20110265697 | Sellakumar | Nov 2011 | A1 |
20130105008 | Jiang | May 2013 | A1 |
20160377351 | Park | Dec 2016 | A1 |
20170051217 | Chandran | Feb 2017 | A1 |
20170066983 | Jack | Mar 2017 | A1 |
20170120211 | Adham | May 2017 | A1 |
20170284660 | Chiu | Oct 2017 | A1 |
20190249866 | Lehtonen | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
0679837 | Nov 1995 | EP |
2107098 | Oct 2009 | EP |
WO-1994011284 | May 1994 | WO |
WO-1994011671 | May 1994 | WO |
WO-2004091768 | Oct 2004 | WO |
WO-2010052372 | May 2010 | WO |
WO-2019122509 | Jun 2019 | WO |
Entry |
---|
International Searching Authority, International Search Report and Written Opinion for International Application No. PCT/FI2018/050907, dated Mar. 20, 2019, (13 pages), European Patent Office, Rijswijk, Netherlands. |
Finnish Office Action for Finnish Patent Application No. 20176134, dated Jun. 14, 2018, (6 pages), Finnish Patent and Registration Office, Helsinki, Finland. |
Number | Date | Country | |
---|---|---|---|
20210372610 A1 | Dec 2021 | US |