Disclosed embodiments relate generally to water reservoir tanks, and more specifically to water reservoir tanks that can hygienically serve as a back-up water supply if the municipal water supply is unreliable.
In rural or other areas without a reliable municipal water supply, there may be instances when the water provided to buildings by the municipal water system may be temporarily disconnected. This is often a problem in Latin American countries, for example, in which the municipal water supply may be periodically shut off due to water supply shortages, maintenance and repair issues, rationing, or some other reason. Such an intermittent water supply is often quite inconvenient, as residents (users) may not reliably depend on having water whenever they might need it. To counter this reliability problem, buildings facing such unreliable municipal water service often are constructed with their own water reservoir. The water reservoir may serve as a back-up water supply for the building, temporarily providing water if the municipal water supply is disrupted.
Typically, the water reservoir would be a storage tank connected to the municipal water supply. That way, the reservoir would be filled whenever the municipal supply was operable, and it would provide a source of emergency water whenever the municipal water supply was disconnected.
When the water reservoir tank is first connected, the municipal water system would fill the tank (since whenever water is not being drawn for use in the building, it would be available to flow into the tank). Once the tank is full, its fill valve (typically using a float mechanism to indicate a full tank and to close the valve connecting the tank to the water-in branch from the municipal system) would close. Then, so long as the municipal water supply remained active, no water would flow into or out of the water reservoir tank; the building would draw water from the municipal system as needed, and no water would flow into or out of the tank. The water reservoir tank would only become active if the municipal water supply were somehow disrupted.
Whenever the municipal water supply fails to provide water, the water reservoir tank would be available to provide a limited supply of water to the building. As the water pressure from the municipal system drops, the check valve in the output line would open, allowing the building to draw water from the tank. Water would flow from the tank, through the output line, down through the branching pipe, into the building. A second check valve, located between the T-branch (from the tank to the building) and the flow meter (leading to the municipal water line), would prevent the water from the tank from flowing into the municipal system, ensuring that the stored water would be exclusively available for the building serviced by the tank. Typically, as shown in
Once the municipal water supply has been restored, the building would again draw exclusively on the municipal water supply (rather than the tank), since the check valve in the output line would experience pressure from the municipal water system, closing in order to prevent water stored in the tank from exiting toward the building. Thus, the tank would be refilled by the municipal supply. Again, the tank would fill until the fill valve closed, and it would remain closed (with no water flowing into or out of the tank) so long as the municipal water supply remained on.
While this type of conventional water reservoir does provide a limited, back-up supply of water for times when the municipal water supply is disrupted, it poses another potential problem. Because of its configuration, the water in the tank would sit motionless during any period of time when the municipal water system is operable. The water in the tank would only circulate if the water supply were disrupted and then reconnected. While this may not be a problem if the municipal water supply is regularly disrupted (providing for periodic circulation of water in the tank), hygiene concerns may arise if the municipal water supply is fairly reliable (only being disrupted infrequently). In such instances, the water in the tank may sit stagnant for months or even years. The water in such conventional water reservoir tanks may thus become unhealthy and unhygienic. Any chlorine in the water may become diluted over time, and the stagnant water may become a breeding ground for algae, bacteria, or other potentially harmful organisms. Then if the municipal water supply is ever disrupted, the building would be drawing on unsafe, non-potable water.
Such stagnant water in a water reservoir tank may be a health concern. Certainly, it limits the utility of the water reservoir tank. In fact, this problem may negate the entire point of having a water reservoir, since the reservoir might not serve as a ready source of potable water for emergency situations when the municipal water supply is temporarily disrupted. Thus, an improved water reservoir tank, which prevents stagnant water buildup over time, would offer a substantial improvement in the health and hygiene of the short-term, emergency water supply.
Disclosed embodiments provide for regular circulation of the water within the water reservoir tank. The flow of water into the building (from the municipal water supply) is reconfigured to prevent water in the tank from becoming stagnant and unhealthy. Generally, the disclosed embodiments connect the water reservoir tank and the building it serves in series with the water main line from the municipal water supply, so that water from the municipal water supply flows into and through the water reservoir tank, before flowing from the tank into the building. Such a configuration ensures that the water within the reservoir tank is constantly circulating, since the building draws its water from the tank, and the tank is then refilled by the municipal water supply. So the actual usage of water in the building provides for regular circulation and exchange of water within the tank, preventing stagnation and unhealthy buildup of algae, bacteria, and/or other potentially harmful organisms, toxins, or impurities.
Embodiments are illustrated in exemplary figures, described generally below:
Disclosed embodiments seek to provide a hygienic and healthy back-up water supply for use whenever the municipal water supply is disrupted. Generally, this is accomplished by connecting the water reservoir tank in series with the municipal water supply (line-in) and the building to be supplied. Such a configuration allows for regular circulation of the water in the tank simply due to the water usage of the building. Any use of water in the building draws from the tank. The water tank is kept full (so long as the municipal water supply is active), since any draw of water from the tank to the building would have an accompanying introduction of water into the tank from the municipal water supply input line (so long as the municipal water supply is active). Thus, water from the municipal supply flows into the building through the reservoir tank. Accordingly, the water in the reservoir tank is kept clean, with a reduction in the required maintenance and cleaning of the tank, merely by utilizing a configuration that ensures circulation and exchange of water within the tank on a periodic basis.
An illustrative example of such an embodiment of the present invention is shown in
The input water line 40 from the flow meter 20 connects to the tank 50 at nozzle 45. In the embodiment of
In the embodiment of
The tank 50 connects to the building 70 via one or more output water lines 60. In the embodiment of
The municipal water supply acts to fill the tank 50, providing a water reservoir (within the tank) in case the municipal supply becomes disrupted. Whenever water is needed by the building 70, the water would be drawn from the tank 50. In those instances when the municipal water supply is active (such that it has available water pressure), the reservoir tank 50 would simultaneously be filled by the municipal water supply (via the input line 40 connecting the tank to the municipal water supply) as the building 70 draws water from the reservoir tank 50. In this way, the emergency supply of water stored in the reservoir tank 50 would constantly be maximized, and the water within the tank would be kept potable and hygienic due to constant circulation (movement) and exchange (as water drawn out of the tank 50 is replaced by new water flowing into the tank 50 from the municipal water supply).
In those instances when the municipal water supply has been disrupted, however, the reservoir tank 50 would not be simultaneously refilled as water is drawn for use in the building 70. In those instances, the building 70 would draw water from the reservoir tank 50 until the emergency supply stored in the tank 50 has been exhausted. This would provide a temporary supply of potable water for use during any temporary disruptions to the municipal water supply. Once the municipal water supply has been reactivated, the tank 50 would be refilled automatically by the municipal water supply.
In the exemplary embodiment shown in
The disclosed embodiments provide for a series configuration, with the municipal water input line 40, the reservoir tank 50, and the building 70 all connected in series so that water flows along a single path from the municipal water supply system, through the tank 50, and into the building 70. The building 70 draws water from the tank 50 regardless of whether there is a disruption in the municipal water system, and the municipal water supply system simultaneously refills the tank 50 so long as the water supply is active, thus ensuring circulation and exchange of water in the tank 50 on a regular basis. In this way, the reservoir water storage tank 50 may be kept full of potable water for use whenever there is a disruption to the regular water supply from the municipal system. Regardless of the amount of time between disruptions to the municipal water supply, the water in the reservoir tank will be regularly circulated so that it remains hygienic. Thus, the disclosed embodiments may provide a ready source of potable water for temporary use during any disruption to the municipal water supply.
While various embodiments in accordance with the principles disclosed herein have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the invention(s) should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with any claims and their equivalents issuing from this disclosure. Furthermore, the above advantages and features are provided in described embodiments, but shall not limit the application of such issued claims to processes and structures accomplishing any or all of the above advantages.
Additionally, the section headings herein are provided for consistency with the suggestions under 37 CFR 1.77 or otherwise to provide organizational cues. These headings shall not limit or characterize the invention(s) set out in any claims that may issue from this disclosure. Specifically and by way of example, although the headings refer to a “Field of the Invention,” the claims should not be limited by the language chosen under this heading to describe the so-called field. Further, a description of a technology in the “Background of the Invention” is not to be construed as an admission that certain technology is prior art to any invention(s) in this disclosure. Neither is the “Brief Summary of the Invention” to be considered as a characterization of the invention(s) set forth in issued claims. Furthermore, any reference in this disclosure to “invention” in the singular should not be used to argue that there is only a single point of novelty in this disclosure. Multiple inventions may be set forth according to the limitations of the multiple claims issuing from this disclosure, and such claims accordingly define the invention(s), and their equivalents, that are protected thereby. In all instances, the scope of such claims shall be considered on their own merits in light of this disclosure, but should not be constrained by the headings set forth herein.