In the drawings:
Referring now to the drawings, in which like reference numerals are used to refer to the same or similar elements,
A boiler feed pump 2 pressurizes the system 1 and provides the entire driving head to force water through an economizer 3 for supplying heated water to the waterwall tubes of an evaporator 4 (e.g., a furnace). Preferably, the evaporator 4 has a vertical tube design. A first conduit, or system of conduits, leads from the outlet of the economizer 3 to the vertical waterwall tubes. A plurality of inlet headers (not shown) connect the end of the first conduit to the lower end of the waterwall tubes for conveying the heated water from the conduit to the waterwall tubes.
The system 1 further includes a steam utilization unit such as a superheater 5 which can be used in conjunction with a steam separator 6. The steam separator 6 receives effluent from the tubes via a plurality of outlet headers (not shown) connecting the upper end of the vertical waterwall tubes to a second conduit, or system of conduits, such as a riser for example, which leads to the steam separator 6. A third conduit, or system of conduits, such as for example a discharge pipe and/or a downcomer, connects the separator 6 to the vertical waterwall tubes of the evaporator 4. A valve 7 is provided along the third conduit leaving the separator 6. If the valve is open, water is partially recirculated from the separator 6 to the furnace waterwall tubes via the third conduit and first conduit. The valve 7 is operable by means which respond to various load conditions and other parameters, in a conventional manner. Once the steam separator 6 receives the effluent from the vertical waterwall tubes via the second conduit, it sends steam to the superheater 5, via a fourth conduit, or system of conduits.
In operation at pressures at or just below the critical pressure point where the load is low, or below the critical point, the circulation system 1 operates a steam generator as a natural circulation drum unit. To this end, the valve 7 is open and water flows from the economizer 3 and mixes with the water from the downcomer system then the mixture flows to the vertical waterwall tubes of the evaporator 4 where it is heated from a temperature below saturated water conditions to form a two-phase mixture. The mixture is collected in the waterwall tubes and is routed to the separator 6. The separator 6 is designed for the full design pressure of the high pressure circuitry, and functions to separate the two-phase mixture into saturated water and steam at these low loads. The steam leaving the separator 6 is routed for passage onto one or more downstream heat utilization units, such as superheater 5. The separated saturated water discharging from the separator 6 passes through the third conduit (e.g., a downcomer for example). The valve is preferably higher up in the third conduit and near the separator 6 so that the feed system provides more pumping head for operation during natural circulation drum mode. Because the valve 7 is open, the separated saturated water mixes with the water from the economizer 3 before being passed to the inlet headers for recirculation through the vertical waterwall tubes. During this operation, the water flow from the economizer 3 is regulated in a manner to maintain a water level in the separator 6 sufficient to ensure this recirculation of water from the separator. The flow rate of the recirculated water flow from the separator 6 is governed by the heat absorption of the furnace waterwalls and the sizing of the conduits.
In operation at pressures above the critical pressure point where the load is high, or above the critical point, the circulation system 1 operates a steam generator as a once-through steam generator. To this end, the valve 7 is closed, terminating recirculation of the saturated water from the separator 6 to the inlet headers for the vertical waterwall tubes of the evaporator 4. Thus, the water level in the separator 6 is not controlled at high loads and there is no recirculated flow of the water from the separator back to the waterwalls of the furnace 4. The water flow rate controls the temperature of the steam output. Thus, this phase of the operation is essentially the same as that for a once-through system.
Another embodiment of the invention is shown in
A plurality of inlet headers 26 connect the end of the supply tubes 16 to the lower end of the tubes 18. A plurality of outlet headers 30 connect the upper end of the tubes 18 to the risers 20 and separator 112. A boiler feed pump 13 is provided for pressurizing the system and providing the entire driving head to force water from the downcomer 14 to the furnace wall tubes 18 of furnace 28 in once-through mode, which will be described in more detail below. An economizer 12 is provided for heating the water entering the downcomer 14. As soon as the heated water in the tubes 18 reaches saturated conditions, steam begins to form and the water within the wall tubes 18 becomes a two-phase mixture. The steam/water mixture eventually reaches outlet headers 30, from where the steam/water mixture is conveyed to the separator 112.
The system 100 further includes a steam utilization unit such as a superheater 34 which can be used in conjunction with a steam separator 112. For this embodiment, separator 112 is responsible for phase separation of the steam/water mixture instead of a conventional steam drum. Once the steam separator 112 receives the two-phase steam/water mixture or effluent from the vertical tubes 18, it separates the two phases of the mixture and sends steam to the superheater 34. A valve 21 is provided along the downcomer 14, and preferably near the top of the downcomer 14 near the steam separator 112 for providing more pumping head for operation during natural circulation mode, which is described in more detail below. If the valve 21 is open, the saturated water from the mixture is mixed with feedwater 24 and partially recirculated from the separator 112 to the furnace tubes 18 via downcomer 14. The valve 21 is operable by means which respond to various load conditions and other parameters, in a conventional manner.
As shown in
The separator design is conceptually shown in
As illustrated in
Returning now to
The steam, which is at saturation condition, i.e., dry, but not superheated, is driven upward by the stripper ring 135 and through a torturous path (e.g., corrugated plate array) scrubber 133 which removes practically all residual moisture and droplets. Essentially dry, saturated steam 134 flows out from the separator 112 through one or more nozzles 132 (saturated steam connections) at the top of the separator 112. These saturated steam connections 132, in turn, convey the saturated steam 134 to the various steam-cooled circuits, like the boiler roof tubes 140, convection pass side wall enclosures 33, before being superheated to the final steam temperature in the various superheater stages 34, from where it flows to the high pressure turbine.
The saturated water 136, on the other hand, flows along the inner surface 114 of the separator 112, forming a vortex that flows primarily in a downward direction. With the formation of the vortex, a small portion of the water will move up the inner surface 114 of the separator 112 to the stripper ring 135. The stripper ring 135 is used to contain the upward movement of the water 136 from reaching scrubber 133. There is still rotation due to the tangential motion of the saturated water imparted by the nozzles 122. A vortex inhibitor 138 at the bottom of the vessel 112 prevents this rotation to continue as the water flows into and down through the downcomer 14. A rotating fluid column could cause maldistribution of flow to the various furnace circuits connected to the downcomer 14 and limit the fluid transfer capability of the downcomer 14.
In operation at pressures at or just below the critical pressure point where the load is low, or below the critical point, the circulation system 100 operates a steam generator as a natural circulation drum unit. To this end, the valve 21 is open and the water flows from the economizer 12, mixes with water from the downcomer system, and the mixture flows to the vertical tubes 18 of the furnace 28 where it is heated from a temperature below saturated water conditions to form a two-phase mixture. The mixture is collected in the tubes 18 and is routed to the separator 112. The separator 112 functions to separate the two-phase mixture into a saturated water stream and a steam stream at these low loads. The stream of steam leaving the separator 112 passes onto the superheater 34. The separated saturated water discharging from the separator 112 passes through the downcomer 14. The valve is preferably near the separator 112 and higher up in the downcomer 14 so that the feed system provides more pumping head for operation during natural circulation mode. Because the valve 21 is open, the separated saturated water mixes with the water from the economizer 12 before being passed to the inlet headers 26 for recirculation through the vertical wall tubes 18. During this operation, the water flow is regulated in a manner to maintain a water level in the separator 112 sufficient to ensure this recirculation of water from the separator. The flow rate of the recirculated water flow from the separator 112 is governed by the heat absorption of the furnace walls 18, the sizing of the downcomer 14 leaving the separator 112, and the sizing and quantity of the supplies 16 and risers 20.
In operation at pressures above the critical pressure point where the load is high, or above the critical point, the circulation system 100 operates a steam generator as a once-through steam generator. To this end, the valve 21 is closed, terminating recirculation of the saturated water from the separator 112 to the inlet headers 26 for the vertical wall tubes 18 of the furnace 28. Thus, the water level in the separator 112 is not controlled at high loads and there is no recirculated flow of the water from the separator 112 back to the furnace walls 18. The water flow rate controls the temperature of the steam output. Thus, this phase of the operation is essentially the same as that for a once-through system.
Thus, this embodiment of the invention allows use of the capabilities of a drumless natural circulation boiler, at operating pressures at or just below the critical pressure point, and through use of a valve below the vertical separator, to allow the boiler to operate above the critical pressure point as a once-through boiler. This provides design flexibility to overcome the start-up and low load operational problems associated with a regular once-through boiler. By locating the vertical separator(s) in the front of the boiler, the appropriate number of separators can be sized to accommodate the circulation requirements for the natural circulation operation below the critical point without the penalty of the unit's overall boiler pressure drop when the boiler is in once-through operation at full load supercritical pressure. By properly sizing the furnace tube size, the boiler operates at higher than typical once-through flow velocities at loads below the critical point and would have optimum design velocities when operating at the pressures above the critical pressure point. The design allows for sliding pressure operation. In
While a specific embodiment of the invention has been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.