The present application claims priority to Korean Patent Application No. 10-2016-0054207, filed May 2, 2016, the entire contents of which is incorporated herein for all purposes by this reference.
The present invention relates generally to a circulation type space-based solar power system. More particularly, the present invention relates to a circulation type space-based solar power system able to be used in the severe environment of space by extending the life of solar modules as much as possible.
Generally, a solar power system having solar modules is used to obtain electricity in space, and is used, for example, for an artificial satellite.
However, unlike the Earth's surface that is protected by the atmosphere of the Earth, space is a severe environment due to temperature variation, cosmic rays, etc. Therefore, performance of solar modules rapidly is degraded in space, and consequently, the life of an entire solar power generation system is shortened.
In order to solve the problem, a conventional technology whereby solar power is generated by exposing a part of solar modules in stages, each time the performance of the exposed part is degraded, thereby supplementing a reduced amount of the solar power caused by the degraded performance, has been developed (Korean Patent Application Publication No. 10-2001-0077700). In addition, another conventional technology whereby spent movable solar modules are replaced with new movable solar modules by being moved, has been developed (Japanese Patent Application Publication No. Hei. 11-157499).
However, the conventional technologies are based on that the fact that the lives of the solar modules will be terminated in the end, and thus the life of the entire solar power generation system remains short.
(Patent Document 1) Korean Patent Application Publication No. 10-2001-0077700, and
(Patent Document 2) Japanese Patent Application Publication No. Hei. 11-157499.
Accordingly, the present invention has been made keeping in mind the above problems occurring in the related art, and the present invention is intended to propose a circulation type space-based solar power system, the system having extended life in the severe environment of space by recovering the solar modules for recycling thereof.
In order to achieve the above object, according to one aspect of the present invention, there is provided a circulation type space-based solar power system, the system including: one or more solar modules; a conveyor belt on which the solar modules are attached, whereby the solar modules move between a solar power generating position and a recovery position, the solar modules receiving sunlight to generate solar power in the solar power generating position, and not receiving the sunlight in the recovery position; a driver moving the conveyor belt; and a protective plate blocking cosmic rays incident to the solar modules located in the recovery position.
In the system, the solar modules generate solar power in the solar power generating position, and the solar modules having damage are recovered in the recovery position. The solar modules move between the solar power generating position and the recovery position by the conveyor belt and the driver. The moving of the solar modules may be performed at preset time intervals, or when an amount of the solar power generated by the solar modules located in the solar power generating position is equal to or less than a preset reference amount. In addition, in space, even the solar modules that do not face the Sun are continuously damaged by the cosmic rays. Therefore, the solar modules are protected by the protective plate blocking the cosmic rays in the recovery position. With the configuration, while some of the solar modules generate solar power in the solar power generation position, the remaining solar modules having damage are recovered in the recovery position protected by the protective plate blocking the cosmic rays. The solar modules move between the solar power generating position and the recovery position, thereby generating solar power for a long time in the severe environment of space.
Here, the system may include a reflective plate increasing an amount of the sunlight incident to the solar modules located in the solar power generating position. In addition, the system may include a temperature control device controlling a temperature of the solar modules located in the recovery position, thereby enhancing the recovery effect of the solar modules.
The system may be applied to an artificial satellite. In this case, the conveyor belt is provided on a paddle of the artificial satellite.
According to another aspect, there is provided a circulation type space-based solar power system, the system including: one or more solar modules; a body having at least two module attaching surfaces on which the solar modules are attached; a turning device whereby the module attaching surfaces loaded with the solar modules move between a solar power generating position and a recovery position by turning of the body, the solar modules of the module attaching surfaces receiving sunlight to generate solar power in the solar power generating position, and not receiving sunlight in the recovery position; and an openable protective plate provided on each of the module attaching surfaces, wherein when the openable protective plate is closed, cosmic rays incident to the solar modules located in the recovery position are blocked by the openable protective plate, and when the openable protective plate is opened, the sunlight is incident to the solar modules located in the solar power generating position.
In the system, the solar modules of the module attaching surfaces of the body generate solar power in the solar power generating position, and the damaged solar modules of the module attaching surfaces of the body are recovered in the recovery position. The module attaching surfaces loaded with the solar modules move between the solar power generating position and the recovery position by the turning device turning the body. The moving of the module attaching surfaces loaded with the solar modules may be performed at preset time intervals, or when an amount of the solar power generated by the solar modules located in the solar power generating position is equal to or less than a preset reference amount. In addition, with the configuration, while some of the solar modules generate solar power in the solar power generation position, the remaining solar modules having damage are recovered in the recovery position protected by the openable protective plate blocking the cosmic rays. Since the protective plate provided with the body moves with the module attaching surfaces, the protective plate is of a type that can be opened and closed.
Here, a reflective surface may be provided on an inner surface of the openable protective plate such that it is possible to increase an amount of the sunlight incident to the solar modules located in the solar power generation position. The system may include a temperature control device controlling a temperature of the solar modules located in the recovery position.
In addition, the openable protective plate may be opened and closed by using a shape-memory alloy.
In addition, a cross-sectional shape of the body may be a triangular or a quadrilateral shape such that the module attaching surfaces of the body are three or four surfaces. In this case, one of the module attaching surfaces facing the Sun is located in the solar power generating position, and the remaining module attaching surfaces are located in the recovery position.
The system may be applied to an artificial satellite. In this case, the body is a paddle of the artificial satellite, and the turning device turns the paddle.
According to yet still another aspect, there is provided a circulation type space-based solar power system, the system including: one or more solar modules; a turning device whereby the solar modules move between a solar power generating position and a recovery position, the solar modules receiving sunlight to generate solar power in the solar power generating position, and not receiving the sunlight in the recovery position; and a protective plate blocking cosmic rays incident to the solar modules located in the recovery position.
A method of generating solar power in space by using the system includes: positioning some of the solar modules in the solar power generating position where the solar modules receive sunlight and generate solar power, and positioning the remaining solar modules in the recovery position where the solar modules having damage do not receive sunlight so as to be recovered; and moving the solar modules between the solar power generating position and the recovery position.
Here, the moving of the solar modules may be performed at preset time intervals, or when an amount of the solar power generated by the solar modules located in the solar power generating position is equal to or less than a preset reference amount.
According to the described above, the system and method can recover the solar modules having damage in the recovery position by using the protective plate blocking the cosmic rays in the recovery position in which the solar modules do not receive the sunlight, and can generate solar power by using the recovered solar modules in the solar power generating position.
In addition, the system and method can generate solar power for a long time in the severe environment of space by moving the solar modules between the solar power generating position and the recovery position. While some of the solar modules generate solar power in the solar power generating position, the remaining solar modules having damage are recovered in the recovery position protected by the protective plate blocking cosmic rays.
The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description when taken in conjunction with the accompanying drawings, in which:
Hereinbelow, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
According to a first exemplary embodiment as shown in the figure, the system is applied to an artificial satellite, and is provided on a solar power generating paddle 2000 connected to an artificial satellite body 1000.
The system includes a plurality of solar modules 100, and a conveyor belt 220 moved by a driver 210. The conveyor belt serves as a turning device 200 moving the solar modules 100.
The solar modules 100 are attached on the conveyor belt 220, and are moved by the driver 210 moving the conveyor belt 220. Here, the solar modules 100 move between the front and rear positions denoted as A and B in
Here, in the protective plate 300 protecting the solar modules in the recovery position B, it is desirable to include a temperature control device maintaining a suitable temperature for recovering the solar cells of the solar modules. In addition, it is desirable to provide a reflective plate 310 for supplying more sunlight to the solar modules located in the solar power generating position A.
A method of operating the space-based solar power system is by generating solar power in the solar power generating position A by using the solar modules that are degraded by being exposed to the severe environment of space, up to the time when the solar modules are capable of being recovered. The solar modules are moved to the recovery position B by the turning device, before sustain irreparable damage. Here, the solar modules recovered in the recovery position B move to the solar power generating position A, and generate solar power, thereby continuously generating solar power. The solar modules move between the solar power generating position A for generating solar power and the recovery position B for recovery. Therefore, it is possible to generate solar power for a long time in the severe environment of space.
Here, a degree of the damage to the solar modules, which is a criterion for moving the solar modules, varies depending on the type of the solar cells of the solar modules. The moving of the solar modules is performed at preset time intervals based on the type of the solar cells, or performed based on a degree of decrease in the amount of solar power, the decrease being caused by damage to the solar modules.
According to the second exemplary, the system is applied to the artificial satellite, and is provided on the solar power generating paddle 2000 connected to the artificial satellite body 1000.
The system uses the solar power generating paddle 2000 as a body. Module attaching surfaces on which the solar modules 100 are attached are respectively provided on upper and lower surfaces of the body. The module attaching surfaces loaded with the solar modules move between the solar power generating position, denoted as A, and the recovery position, denoted as B, by the turning device 200 turning the paddle.
In common with the system of the first exemplary embodiment, the system of the second exemplary embodiment also includes the protective plate 300 protecting the solar modules located in the recovery position B from the cosmic rays, etc. However, unlike the system of the first exemplary embodiment, the paddle 2000 itself is turned, such that the protective plate 300 also moves between the solar power generating position A and the recovery position B. Therefore the protective plate 300 is an openable protective plate. The openable protective plate 300 is closed and protects the solar modules in the recovery position B, and the openable protective plate 300 is opened and allows the sunlight to incident to the solar modules in the solar power generating position A. Here, the openable protective plate 300 may be opened and closed by using a shape-memory alloy. The openable protective plate 300 may be opened and closed by using a temperature difference between the solar power generating position A and the recovery position B. In addition, when a reflective surface 310 is provided on an inner surface of the openable protective plate 300, the openable protective plate 300 opened in the solar power generating position A serves as a reflective plate.
While the exemplary embodiments of the invention have been described above, the embodiments are only examples of the invention, and it will be understood by those skilled in the art that the invention can be modified in various forms without departing from the technical spirit of the invention. Therefore, the scope of the invention should be determined on the basis of the descriptions in the appended claims, not any specific embodiment, and all equivalents thereof should belong to the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
10-2016-0054207 | May 2016 | KR | national |