1. Field of the Invention
The present invention relates to circulators and, more specifically, to features in the housing which alters the magnetic bias in the ferrite media of the circulator and prevent the formation of higher order modes.
2. Description of the Related Art
RF/microwave circulators often exhibit higher order modes similar to what can occur in waveguides. Stripline circulators are often in circular housings exhibiting similar modes as a circular waveguide. Prior art solutions to prevent these modes include changing the dimensions of both the housing and the ferrite pucks within the housings. However, for size constrained designs this is not an option and, in particular, for wide bandwidth (>10%) it can be difficult to find dimensions that avoid all possible modes that can be excited in the frequency band of interest. Another prior art solution to prevent/eliminate mode is to use an absorptive material placed such as to absorb the field associated with mode(s) while having minimal impact on the fundamental. However, using absorber materials adds cost both for the material itself and for the added assembly steps required to install it. Additionally, using absorber materials does not always stop the undesired mode from forming, but rather dissipates it which add loss to the fundamental frequency. Accordingly, there is a need in the art for a solution that prevents the formation of the undesired higher order modes in resonance stripline circulators and isolators.
The present invention modifies bias in a circulator to prevent higher order modes by using scalloped features in the magnetically conductive housing of the circulator. The ferrite bias in the perimeter of the ferrite material is modified such that higher order modes cannot be sustained because the scallops create a non-uniform magnetic field towards the perimeter of the ferrite while leaving the field near-uniform in the center where the fundamental circulator mode primarily resides. Alternatively, slots may be placed in the magnetically conductive housing bottom in the region of the edge of the ferrite to prevent higher order modes.
In one embodiment of a stripline circulator according to the present invention, a ferrite element having a perimeter susceptible to the formation of higher order modes is positioned within a magnetically conductive housing that surrounds the perimeter of the ferrite element. The magnetically conductive housing has an internal surface with a series of features formed therein that create a non-uniform magnetic field near the perimeter of the ferrite element. The series of features do not alter any uniform magnetic field in a center of the ferrite element. The features are positioned within two thousands of an inch from the perimeter of the ferrite element. The series of features preferably comprise scallops and the ferrite elements is centered within said scallops. The scallops may be varied in size.
In another embodiment, the present invention is a a stripline circulator comprising a ferrite element having a perimeter susceptible to the formation of higher order modes and a magnetically conductive housing surrounding said perimeter of said ferrite element and including a housing bottom positioned under said ferrite element. A slot is positioned in the housing bottom that spans a portion of said perimeter of said ferrite element.
The present invention also includes a method of the reducing the formation of higher order modes in a stripline circulator. The method involves the steps of providing a magnetically conductive housing around a ferrite element susceptible to the formation of higher order modes and including a feature in the magnetically conductive housing to reduce the formation of higher order modes. When the magnetically conductive housing surrounds a perimeter of the ferrite element, the feature comprises a series of scallops formed in an internal surface of the magnetically conductive housing that create a non-uniform magnetic field near said perimeter of said ferrite element. Alternatively, the magnetically conductive housing may include a housing bottom positioned under the ferrite element and the feature may comprise a slot positioned in the housing bottom that spans a portion of the perimeter of the ferrite element.
The present invention will be more fully understood and appreciated by reading the following Detailed Description in conjunction with the accompanying drawings, in which:
Referring now to the drawings, wherein like reference numerals refer to like parts throughout, there is seen in
A stripline circuit 20 for circulator 10 that is modified to include scallops 16 according to the present invention is seen in
Along with scalloped housing 14 of the present invention, other bias modifying features may be effective on some stripline designs and housing implementations. One such modifying feature is the use of slots 24 in the bottom 26 of magnetically conductive housing 14 in the region of perimeter 18 of ferrite 12, as seen in
It should be noted that if either scallops 16 or slots 24 are brought close to the stripline port position on the ferrite, a circuit re-design may become necessary in order to compensate for property change of ferrite 12 as function of the modified bias. The amount of scallops 16 or slots 24 will depends on the Q factors of the housing, linewidth, bias strength of ferrite 12, the amount of bias modification the relevant circuit can tolerate (which depends largely on the proximity of the circuit to perimeter 18 of ferrite 12, i.e., the “active” region of ferrite 12, and the specification for circulator 10, including intermodulation specification.
The present application claims priority to U.S. Provisional Application No. 62/286,919, filed on Jan. 25, 2016.
Number | Date | Country | |
---|---|---|---|
62286919 | Jan 2016 | US |