Circulatory valve, system and method

Information

  • Patent Grant
  • 8828079
  • Patent Number
    8,828,079
  • Date Filed
    Thursday, July 26, 2007
    17 years ago
  • Date Issued
    Tuesday, September 9, 2014
    10 years ago
Abstract
Apparatuses, systems, and methods for use in a vascular system. The apparatus include a circulatory valve having a valve frame in which frame members define frame cells. Frame cells include joints in opposing relationship, where the joints transition from a first stable equilibrium state through an unstable equilibrium state to a second stable equilibrium state as the joints are drawn towards each other.
Description
TECHNICAL FIELD

The present disclosure relates generally to apparatuses, systems, and methods for use in the vascular system; and more particularly to apparatuses, systems, and methods for native valve replacement and/or augmentation.


BACKGROUND

Valves of the vascular system can become damaged and/or diseased for a variety of reasons. For example, damaged and/or diseased cardiac valves are grouped according to which valve or valves are involved, and the amount of blood flow that is disrupted by the damaged and/or diseased valve. The most common cardiac valve diseases occur in the mitral and aortic valves. Diseases of the tricuspid and pulmonary valves are fairly rare.


The aortic valve regulates the blood flow from the heart's left ventricle into the aorta. The aorta is the main artery that supplies oxygenated blood to the body. As a result, diseases of the aortic valve can have a significant impact on an individual's health. Examples of such diseases include aortic regurgitation and aortic stenosis.


Aortic regurgitation is also called aortic insufficiency or aortic incompetence. It is a condition in which blood flows backward from a widened or weakened aortic valve into the left ventricle of the heart. In its most serious form, aortic regurgitation is caused by an infection that leaves holes in the valve leaflets. Symptoms of aortic regurgitation may not appear for years. When symptoms do appear, it is because the left ventricle must work harder relative to an uncompromised aortic valve to make up for the backflow of blood. The ventricle eventually gets larger and fluid backs up.


Aortic stenosis is a narrowing or blockage of the aortic valve. Aortic stenosis occurs when the valve leaflets of the aorta become coated with deposits. The deposits change the shape of the leaflets and reduce blood flow through the valve. Again, the left ventricle has to work harder relative to an uncompromised aortic valve to make up for the reduced blood flow. Over time, the extra work can weaken the heart muscle.





BRIEF DESCRIPTION OF THE DRAWINGS

The features of the drawing are not to scale.



FIG. 1 illustrates an example of a cardiac valve according to the present disclosure.



FIG. 2 illustrates an example of a frame cell according to the present disclosure.



FIG. 3 illustrates an example of a joint and compliant section of a frame cell according to the present disclosure.



FIG. 4A illustrates an example of a cardiac valve in an undeployed state according to the present disclosure.



FIG. 4B illustrates an example of the cardiac valve of FIG. 4A in a deployed state according to the present disclosure.



FIG. 5 illustrates an example of a cardiac valve according to the present disclosure.



FIG. 6 illustrates an example of a frame cell and a locking mechanism according to the present disclosure.



FIG. 7 illustrates an example of a frame cell and a deployment mechanism according to the present disclosure.



FIGS. 8A and 8B illustrate a cross-sectional view of an embodiment of a system that includes a cardiac valve according to the present disclosure.



FIG. 8C illustrates a balloon catheter used with an embodiment of the system that includes a cardiac valve according to the present disclosure.





DETAILED DESCRIPTION

Embodiments of the present invention are directed to apparatuses, systems, and methods for native valve replacement and/or augmentation. For example, the apparatus can include a circulatory valve that can be used to replace an incompetent native valve (e.g., an aortic valve, a mitral valve, a tricuspid valve, a pulmonary valve, and/or a venous valve) in a body lumen. Embodiments of the valve include a valve frame having frame members defining frame cells with joints that transition from a first stable equilibrium state through an unstable equilibrium state to a second stable equilibrium state as the joints are drawn towards each other. In one example, embodiments of the present disclosure may help to augment or replace the function of a native valve of individuals having heart and/or venous valve disease.


The figures herein follow a numbering convention in which the first digit or digits correspond to the drawing figure number and the remaining digits identify an element or component in the drawing. Similar elements or components between different figures may be identified by the use of similar digits. For example, 110 may reference element “10” in FIG. 1, and a similar element may be referenced as 210 in FIG. 2. As will be appreciated, elements shown in the various embodiments herein can be added, exchanged, and/or eliminated so as to provide any number of additional embodiments of a valve and/or a system. In addition, as will be appreciated the proportion and the relative scale of the elements provided in the figures are intended to illustrate the embodiments of the present invention, and should not be taken in a limiting sense.


Various embodiments of the present disclosure are illustrated in the figures. Generally, the circulatory valve can be implanted within the fluid passageway of a body lumen, such as for replacement or augmentation of a native cardiac valve structure within the body lumen (e.g., an aortic valve), to regulate the flow of a bodily fluid through the body lumen in a single direction.


The embodiments of the circulatory valve of the present disclosure include a valve frame that self-expands to a first stable equilibrium state. The first stable equilibrium state of the valve frame is a partially deployed state relative the deployed state of the circulatory valve. In this partially deployed state, the position of the circulatory valve relative the desired implant location can be adjusted to correct any foreshortening and/or stent jump that can occur in self-expanding stents as they expand from the small compressed undeployed state. In addition, having the circulatory valve in the partially deployed state prior to completing the deployment allows for adjustments due to movement caused by the flow output from the ventricle pushing on the deployment system, which can be the case when implanting an aortic valve.


As used herein, a partially deployed state of the valve frame lies between an undeployed state (i.e., the state of the valve frame at the time the valve is outside the body) and a deployed state (i.e., the state of the valve frame at the time the valve is to be left in the body). Structures on the circulatory valve can then be transitioned from the first stable equilibrium state through an unstable equilibrium state to a second stable equilibrium state to deploy the circulatory valve.


In the various embodiments, holding the valve frame in the partially deployed state allows the circulatory valve to be better positioned in a desired location prior to its final deployment. This staged deployment of the circulatory valve of the present disclosure is in contrast to circulatory valves that are deployed without the advantage of temporarily pausing at an intermediate deployment stage (i.e., the partial deployment state) to allow for adjustments in the placement of circulatory valve prior to full deployment.



FIG. 1 provides an embodiment of a circulatory valve 100 of the present disclosure. The circulatory valve 100 includes a valve frame 102 and a valve leaflet 104 coupled to the valve frame 102. The valve frame 102 also includes frame members 106 that define a frame cell 108. The frame cell 108 can include joints 110 that transition from a first stable equilibrium state through an unstable equilibrium state to a second stable equilibrium state. In one embodiment, this transition can occur as one or more of the joints 110 are drawn towards each other, as will be discussed herein.


The valve frame 102 has an elongate tubular structure with a proximal end 112 and a distal end 114. In one embodiment, the frame cell 108 of the present disclosure can be positioned so as to provide both the proximal and distal ends 112, 114 of the valve frame 102. In other words, portions of the frame cell 108 define the proximal and distal ends 112, 114 of the valve frame 102. In an additional embodiment, the frame cell 108 of the present disclosure can be located between proximal and distal ends 112, 114 of the valve frame 102 (i.e., portions of the frame cell 108 does not define the proximal end 112 and/or the distal end 114 of the frame 102). In an alternative embodiment, the frame cell 108 of the present disclosure can be located at one of either the proximal end 112 or the distal end 114 of the valve frame 102. Different combinations are also possible.


For the various embodiments, the joints 110 can be located at a number of different positions on the frame member 106. For example, the joints 110 can be located at the same relative position along the frame member 106. So, when a frame cell 108 includes two joints 110, they can be set opposite each other in a mirror image relationship. This aspect of the disclosure is illustrated in FIG. 1, which shows the circulatory valve 100 in the first stable equilibrium state. Alternatively, the joints 110 can be at different relative locations along the frame member 106, as will be discussed herein.


In an additional embodiment, the joints 110 can be located on the frame member 106 such that as the joint 110 transitions from the first stable equilibrium state to the second stable equilibrium state the size (e.g., length) of the perimeter of the valve frame 102 increases. In other words, the joints 110 are located on the frame member 106 in such a way as to cause the valve frame 102 to radially increase in size as the joints 110 move toward the second stable equilibrium state. In one embodiment, the valve frame 102 increases its perimeter size as the frame cell 108 change shape during the joint 110 transition. As will be appreciated, some change to the longitudinal dimension of the valve frame 102 may occur as the perimeter dimension changes.


As discussed, FIG. 1 provides an illustration where the joints 110 of the valve frame 102 are in the first stable equilibrium state. In the various embodiments, this first stable equilibrium state places the valve frame 102 in a partially deployed state. As used herein, a partially deployed state of the valve frame lies between an undeployed state (i.e., the state of the valve frame at the time the valve is outside the body) and a deployed state (i.e., the state of the valve frame at the time the valve is to be left in the body). The valve frame 102 remains in partially deployed state until the joints 110 are moved to the second stable equilibrium state, as discussed herein. In one embodiment, the valve frame 102 in the first stable equilibrium state is eighty (80) to ninety-five (95) percent of the deployed state. Other percentages of the deployed state are possible (e.g., ninety (90) percent of the deployed state).


In the various embodiments, the frame cell 108 can include one or more of the joints 110. As illustrated in FIG. 1, the frame cells 108 include two of the joints 110. In an additional embodiment, each frame cell 108 of the valve frame 102 need not have a joint 110. In other words, a frame cell 108 without a joint 110. So, in one embodiment a valve frame 102 could be configured in such a way that not every frame cell 108 includes a joint 110.


Frame cells 108 not having a joint 110 could be integrated into the valve frame 102 to provide structural characteristics to the frame 102 that are advantageous to the operation of the valve 100. For example, the frame cell 108 without the joint 110 may be more flexible in the radial direction to better accommodate physiological changes at the implant site. Examples of such design properties include, but are not limited to, providing an elastic radial force where the frame members 106 can have serpentine bends that provide for, at least in part, the elastic radial force. Other shapes and configurations for the frame cell 108 (with or without the joint 110) are also possible.


For the various embodiments, the valve frame 102 can be self-expanding. Examples of self-expanding frames include those formed from temperature-sensitive memory alloy which changes shape at a designated temperature or temperature range. Alternatively, the self-expanding frames can include those having a spring-bias. Examples of suitable materials include, but are not limited to, medical grade stainless steel (e.g., 316L), titanium, tantalum, platinum alloys, niobium alloys, cobalt alloys, alginate, or combinations thereof. Examples of shape-memory materials include shape memory plastics, polymers, and thermoplastic materials which are inert in the body. Shaped memory alloys having superelastic properties generally made from ratios of nickel and titanium, commonly known as Nitinol, are also possible materials. Other materials are also possible.


For the various embodiments, the frame member 106 can have similar and/or different cross-sectional geometries along its length. The similarity and/or the differences in the cross-sectional geometries can be based on one or more desired functions to be elicited from each portion of the valve frame 102 and/or the frame cell 108. Examples of cross-sectional geometries include rectangular, non-planar configuration, round (e.g., circular, oval, and/or elliptical), polygonal, arced, and tubular. Other cross-sectional geometries are possible.


The circulatory valve 100 can further include one or more radiopaque markers (e.g., tabs, sleeves, welds). For example, one or more portions of the valve frame 102 can be formed from a radiopaque material. Radiopaque markers can be attached to and/or coated onto one or more locations along the valve frame 102. Examples of radiopaque material include, but are not limited to, gold, tantalum, and platinum. The position of the one or more radiopaque markers can be selected so as to provide information on the position, location and orientation of the valve 100 during its implantation.


The circulatory valve 100 further includes the leaflets 104 having surfaces defining a reversibly sealable opening for unidirectional flow of a liquid through the valve 100. For example, the leaflets 104 can be coupled to the valve frame 102 so as to span and control fluid flow through the lumen of the valve 100. For the present embodiment, the valve 100 includes two of the valve leaflet 104 for a bi-leaflet configuration. As appreciated, mono-leaflet, tri-leaflet and/or multi-leaflet configurations are also possible. The each of the valve leaflet 104 are coupled to the valve frame 102, where the leaflets 104 can repeatedly move between an open state and a closed state for unidirectional flow of a liquid through a lumen of the circulatory valve 100.


In one embodiment, the leaflets 104 can be derived from autologous, allogeneic or xenograft material. As will be appreciated, sources for xenograft material (e.g., cardiac valves) include, but are not limited to, mammalian sources such as porcine, equine, and sheep. Additional biologic materials from which to form the valve leaflets 104 include, but are not limited to, explanted veins, pericardium, facia lata, harvested cardiac valves, bladder, vein wall, various collagen types, elastin, intestinal submucosa, and decellularized basement membrane materials, such as small intestine submucosa (SIS), amniotic tissue, or umbilical vein.


Alternatively, the leaflets 104 could be formed from a synthetic material. Possible synthetic materials include, but are not limited to, expanded polytetrafluoroethylene (ePTFE), polytetrafluoroethylene (PTFE), polystyrene-polyisobutylene-polystyrene (SIBS), polyurethane, segmented poly(carbonate-urethane), polyester, polyethlylene (PE), polyethylene terephthalate (PET), silk, urethane, Rayon, Silicone, or the like. In an additional embodiment, the synthetic material can also include metals, such as stainless steel (e.g., 316L) and nitinol. These synthetic materials can be in a woven, a knit, a cast or other known physical fluid-impermeable or permeable configurations. In addition, plated metals (e.g., gold, platinum, rhodium) can be embedded in the leaflet 104 material (e.g., a sandwich configuration) to allow for visualization of the leaflets 104 post placement.


As will be appreciated, the valve 100 can be treated and/or coated with any number of surface or material treatments. Examples of such treatments include, but are not limited to, bioactive agents, including those that modulate thrombosis, those that encourage cellular in growth, through growth, and endothelialization, those that resist infection, and those that reduce calcification.


For the various embodiments, the frame cell 108 also includes a compliant segment 116 that extend between a corner portion 118 and the joint 110 of the frame cell 108. The compliant segment 116 can elastically flex, or deflect, from the corner portion 118 as the joint 110 transitions from the first stable state through the unstable state to the second stable state. The compliant segment 116 in its deflected state can then assist in holding the joint 110 in the second stable equilibrium state.


In one embodiment, the combination of the joint 110 and the compliant segment 116 provide for a bistable compliant mechanism. The bistable compliant mechanism used in frame cell 108 includes two stable equilibrium states within its range of motion. In the present embodiments, these are the first stable equilibrium state and the second stable equilibrium state, with an unstable equilibrium state positioned there between. The bistable mechanism used in the present disclosure does not require power input for the joint 110 of the cell 108 to remain stable at each equilibrium state. The states of stable equilibrium are essentially positions of relative potential energy minimums to which the joints 110 and the compliant segment 116 of the frame cells 108 return when the unstable equilibrium state is not achieved.



FIG. 2 provides an illustration of joint 210 and compliant segment 216 transitioning from the first stable equilibrium state 222 through the unstable equilibrium state 224 to the second stable equilibrium state 226. In one embodiment, this transition occurs as the joint 210 are drawn towards each other. Embodiments illustrating how this force can be applied to the joint 210 and the compliant segment 216 will be described herein.


In addition to illustrating the transition ofjoint 210 and the compliant segment 216, FIG. 2 also provides a graph 230 that illustrates the relative position of the equilibrium states 222 and 226 of the joint 210 and compliant segment 216 as a function of potential energy 232. As illustrated in graph 230, the first and second stable equilibrium states 222 and 226 of the joint 210 and the compliant segment 216 are located at local potential energy minimums (either equal or unequal) with the unstable equilibrium state 224 positioned between the two states 222 and 226. The graph 230 also illustrates that due to the elastic nature of the joint 210 and compliant segment 216 changes to their shape away from the first stable equilibrium state 222 will not result in transition to the second stable equilibrium state 226 unless enough force is supplied to overcome the unstable equilibrium state 224.



FIG. 2 also illustrates how the longitudinal length 228 of the frame cell 208 is greater in the second stable equilibrium state 226 as compared to the first stable equilibrium state 222. This change in longitudinal length 228 of the frame cell 208 helps to increase the peripheral length of the valve in which the frame cell 208 is used, as discussed herein.


As will be appreciated, the configuration and design of the joint 210 and the compliant segment 216 for the cell 208 can change the relative values for the first and second stable equilibrium states 222, 226. For example, such design aspects as a radius of curvature and arc length, among others, for the corner portions 218 and/or the compliant segment 216 can affect relative values for the first and second stable equilibrium states 222, 226. In addition, the number, the position and the configuration of the joint 210 on each frame cell 208 can also affect relative values for the first and second stable equilibrium states 222, 226. Changes to the cross-sectional shape and/or relative dimensions of the member 206 of the different components (e.g., the joint 210 and the compliant segment 216) can also affect relative values for the first and second stable equilibrium states 222, 226.


For the various embodiments, the joint of the present disclosure can have a number of different configurations. For example, the joint 210 illustrated in FIG. 2 has a looped configuration, where the frame member 206 curves over on itself to form a closed curve. In one embodiment, the frame member 206 can be curved over on itself more than once.


In an alternative embodiment, the frame member forming the joint can have a partially open configuration. FIG. 3 provides an illustration of such a partially open configuration for the joint 310. As illustrated, the frame member 306 includes a curve 334 that extends for less than a complete loop.



FIGS. 4A and 4B provide an additional embodiment of the valve 400 according to the present disclosure. The valve 400 includes the valve frame 402 and valve leaflet 404 coupled to the valve frame 402. The valve frame 402 also includes frame members 406 that define a frame cell 408 having joints 410, as discussed herein. FIG. 4A provides an illustration of the valve 400 in an undeployed state, where as FIG. 4B provides an illustration of the valve 400 in a deployed state (e.g., where the joints 410 are in their second stable equilibrium state 426). As illustrated, the joints 410 have a partially open configuration with a curve 434.


The joints 410 illustrated in FIGS. 4A and 4B also include an opening 435 defined by the valve frame 402. In one embodiment, the openings 435 defined by the valve frame 402 can be used to advance the joints 410 of the valve frame 402 from the first stable equilibrium state through the unstable equilibrium state to the second stable equilibrium state. In one embodiment, this transition can occur as one or more of the joints 410 are drawn towards each other, as will be discussed herein.


The valve frame 402 has an elongate tubular structure with a proximal end 412 and a distal end 414. In one embodiment, the frame cell 408 of the present disclosure can be positioned so as to provide both the proximal and distal ends 412, 414 of the valve frame 402. Other configurations are possible, as discussed herein.


As illustrated, the joints 410 are located on the frame member 406 such that as the joints 410 transition to the second stable equilibrium state the size (e.g., length) of the perimeter of the valve frame 402 increases. In other words, the joints 410 are located on the frame member 406 in such a way as to cause the valve frame 402 to radially increase in size as the joints 410 move toward the second stable equilibrium state. In one embodiment, the valve frame 402 increases its perimeter size as the frame cell 408 change shape during the joint 410 transition. As will be appreciated, some change to the longitudinal dimension of the valve frame 402 may occur as the perimeter dimension changes.


For the various embodiments, the valve frame 402 can be self-expanding, as discussed herein. For the various embodiments, the frame member 406 can also have similar and/or different cross-sectional geometries along its length, as discussed herein. The circulatory valve 400 can further include one or more radiopaque markers (e.g., tabs, sleeves, welds), as discussed herein.



FIG. 5 provides an additional embodiment of the valve 500 according to the present disclosure. The valve 500 includes the valve frame 502 and valve leaflet 504 coupled to the valve frame 502. The valve frame 502 also includes frame members 506 that define a frame cell 508 having joints 510, as discussed herein. As illustrated, while the frame cells 508 are located at the proximal end 512 and distal end 514 of the valve frame 502 not every frame cell 508 includes a joint 510. In addition, joints 510 in the frame cells 508 have different relative locations along the frame member 506.



FIG. 5 also illustrates that the valve frame 502 has frame members 506 that define a predefined frame design 540 that extends between the frame cells 508. As illustrated, the predefined frame design 540 and the frame cells 508 have a different configuration. Selection of the predefined frame design 540 can be based on a number of factors. Such factors include, but are not limited to, the location where the valve 500 is to be implanted, the size of the valve 500, the material(s) used to form the valve frame 502 of the valve 500, among others. Examples of other useful frame designs include those illustrated in co-pending U.S. patent application Ser. No. 60/899,444 entitled “Percutaneous Valve, System and Method”.



FIG. 6 provides an additional embodiment of the present disclosure in which the frame cell 608 includes a lock mechanism 644. In the various embodiments, the lock mechanism 644 can engage to prevent the frame cell 608 from transitioning from the second stable equilibrium state. As illustrated, the lock mechanism 644 of the present embodiment can include a first engagement member 646 and a second engagement member 648 that can engage so as to lock together.


In one embodiment, the first and second engagement members 646, 648 on the frame cell 608 engage to lock together as the frame cell 608 moves from the unstable equilibrium state 624 to the second stable equilibrium state 626. As illustrated, the first engagement member 646 extends from one of the joints 610 (e.g., a first joint), while the second engagement member 648 extends from another of the joint 610 (e.g., a second joint) of the frame cell 608. Alternatively, the engagement members can extend from portions of the compliant segments 616 of the frame cell 608. For the various embodiments, the locking mechanism 644 can allow the second state 626 to be something other than a local potential energy minimum, as it better ensures the frame cell 608 does not return to its first stable equilibrium state 622.


The lock mechanism 644 used with the frame cell 608 can take a number of different forms and configurations. For example, first engagement member 646 of the lock mechanism 644 can include a shaft having a ball tip. The second engagement member 648 can have a socket to receive and lock the ball tip of the shaft. Alternatively, the first engagement member 646 of the lock mechanism 644 can include a shaft having a hook. The second engagement member 648 can have a loop or member segment to receive and engage the hook to lock the frame cell 608. In one embodiment, the loop of the second engagement member 648 could be either the loop of the joint 610 or a portion of the frame member 606, which are opposite to and functionally aligned with the hook.



FIG. 7 provides an illustration of a deployment mechanism 750 used to transition the joint 710 the first stable equilibrium state 722 through the unstable equilibrium state 724 to the second stable equilibrium state 726. As illustrated, the deployment mechanism 750 can be used to apply a force to draw the joints 710 towards each other. Upon reaching the second stable equilibrium state 726, the deployment mechanism 750 can be removed from the joints 710 of the frame cell 708.


For the present embodiment, the deployment mechanism 750 includes a push tube 752 having a lumen 754, and a deployment thread 756 that extends through the lumen 754. The push tube 752 includes a distal end 758 that can abut a first of the joints 710. The deployment thread 756 extends from the lumen 754 and loops through a second of the joints 710 positioned across from the first of the joints 710. A pulling force 760 can be applied through the deployment thread 756 and/or a pushing force 762 can be applied through the push tube 752 to apply force to draw the joints 710 towards each other.


Upon reaching the second stable equilibrium state 726, the deployment thread 756 can be removed from the joint 710 by pulling on a first end of thread 756 to allow the second end of the thread 756 to pass through the joint 710. The thread 756 and the push tube 752 can then be removed from the frame cell 708. Other ways of removing the thread 756 from the frame joint 710 are also possible.


For the various embodiments, the deployment thread 756 can have a number of different configurations. For example, the deployment thread 756 can be a monofilament (i.e., a single strand of material). Alternatively, the deployment thread 756 can have a multistrand configuration. For example, the deployment thread 756 having multiple strands can have a woven, a braided, and/or a twisted configuration. Combinations of these configurations are also possible.


The deployment thread 756 can also have a multilayer construction, where the deployment thread 756 includes a core that is surrounded by one or more layers. The core and layers of the deployment thread 756 can be formed of different materials and/or the same materials having different desired properties. In addition, the deployment thread 756 can further include a coating that does not necessarily constitute a “layer” (i.e., a material that imbeds or integrates into the layer on which it is applied). Such layers and/or coatings can impart properties to the deployment thread 756 such as hardness and/or lubricity, among others.


The deployment thread 756 can be formed of a number of materials. Such materials can have a sufficient tensile strength and yield point to resist stretching so as to allow the frame cells of the present disclosure to be deployed as discussed herein. Examples of such materials include, but are not limited to, polymers such as nylon(s), acetal, Pebax, PEEK, PTFE, polyamide, polypyrol, and Kevlar. Alternatively, the deployment thread 756 can be formed of metal and/or metal alloys, such as stainless steel, elgioly, nitinol, and titanium. Other polymers, metals and/or metal alloys are also possible. The thread 756 could also be coated with a lubricious material, such as a hydrophilic coating. The materials of the deployment thread 756 also include combinations of these materials in one or more of the configurations as discussed herein.


The push tube 752 can formed from a number of different materials. Materials include metal(s), metal alloys, and polymers, such as PVC, PE, POC, PET, polyamide, mixtures, and block co-polymers thereof. In addition, the push tube 752 can have a wall thickness and a lumen diameter sufficient to allow the deployment thread 756 to slide longitudinally through the lumen 754 and to have sufficient column strength to apply the pushing force 762, as discussed herein.



FIGS. 8A and 8B illustrate a cross-sectional view of an embodiment of a system 866 according to the present disclosure. System 866 includes circulatory valve 800, as described herein, releasably joined to an elongate delivery catheter 868. The system 866 also includes a retractable sheath 870, where the circulatory valve 800 is releasably positioned between the sheath 870 and the delivery catheter 868. For example, FIG. 8A illustrates an embodiment in which the retractable sheath 870 is positioned around at least a portion of the delivery catheter 868 to releasably hold the valve 800 in an undeployed state. FIG. 8B illustrates an embodiment in which the sheath 870 has been retracted relative the delivery catheter 868 to allow the valve 800 to expand to its partially deployed state.


In the example, the delivery catheter 868 includes an elongate body 872 having a proximal end 874 and a distal end 876. A lumen 878 extends through the proximal and distal ends 874, 876. In one embodiment, the lumen 878 receives a guidewire for guiding the placement of the circulatory valve 800 in the vasculature.


For the various embodiments, the elongate delivery catheter 868 also includes a distal tip 880. For the various embodiments, the distal tip 880 has a conical configuration, where the tip 880 has a smaller diameter portion near the distal end 876 of the of the delivery catheter 868 as compared to the proximal portion of the tip 880. The distal tip 880 can also include a recessed lip 882 in which a distal portion of the retractable sheath 870 can releasably seat. In one embodiment, seating the distal portion of the retractable sheath 870 in the recessed lip 882 helps to hold the valve 800 in its undeployed state.


The retractable sheath 870 can move longitudinally (e.g., slide) relative the delivery catheter 868 to allow the circulatory valve 800 to expand from its undeployed state towards the first stable equilibrium state. In one embodiment, moving the retractable sheath 870 relative the delivery catheter 868 can be accomplished by pulling, a proximal portion 884 of the sheath 870 relative a proximal portion 886 of the delivery catheter 868.


The system 866 also includes push tubes 852 and deployment thread 856 for a deployment mechanism, as discussed herein. As illustrated, the push tubes 852 are positioned between the sheath 870 and the delivery catheter 868. The push tubes 852 also include a proximal portion 888 from which the tubes 852 can be moved longitudinally relative the sheath 870 and the delivery catheter 868. In one embodiment, the proximal portion 888 allows a user to apply a pushing force through the tubes 852 to the joints 810, as discussed herein. For the various embodiments, the deployment thread 856 extends from the lumen 854 of the push tubes 852, where both the deployment thread 856 and at least the distal end 859 of the push tubes 852 releasably engage the joints 810 of the frame cell 808.


As illustrated in FIG. 8B, the circulatory valve 800 expands to its first stable equilibrium state, as discussed herein, after the retractable sheath 870 has been retracted relative the valve 800. The push tubes 852 are illustrated as bending with the valve 800 in its first stable equilibrium state. The push tubes 852 are also illustrated as abutting the first of the joint 810 while the deployment thread 856 loops through the second of the joint 810 for the frame cell 808. Force applied through the deployment threads 856 and/or the push tubes 852 can then be used to transition the valve 800 from the first stable equilibrium state to the second stable equilibrium state, as discussed herein.


Embodiments of the system 866 can further include an expandable filter that forms a portion of the retractable sheath. Examples of such an embodiment can be found in co-pending U.S. patent application Ser. No. 12/012,911 entitled “Percutaneous Valve, System and Method”, which is hereby incorporated by reference in its entirety.


Each of the delivery catheter 868, the retractable sheath 870 can be formed of a number of materials. Materials include polymers, such as PVC, PE, POC, PET, polyamide, mixtures, and block co-polymers thereof. In addition, each of the delivery catheter 868 and the retractable sheath 870 can have a wall thickness and an inner diameter sufficient to allow the structures to slide longitudinally relative each other, as described herein, and to maintain the circulatory valve 800 in a compressed state, as discussed herein.


As discussed herein, applying force between the push tubes 852 and the deployment thread 856 allows the frame cells 808 to transition to the second stable equilibrium state (e.g., the deployed state). Additional approaches to transitioning frame cells 808 to the second stable equilibrium state (e.g., the deployed state) are also possible. For example, two or more deployment threads could be used for each frame cell to draw the joints into the second stable equilibrium state. Alternatively, the frame cells could abut the retractable sheath at a proximal end of the stent, while deployment threads are used to draw the joints into the second stable equilibrium state. Other configurations are also possible.


In an additional embodiment, seating of the valve 800 in its deployed state within the vasculature can be assisted by radially expanding the valve 800 with a balloon catheter. For example, FIG. 8C provides an illustration of the valve 800 after the push tubes and the deployment thread have been removed from the valve frame 802. A balloon catheter 892 having an inflatable balloon 894 can be positioned in the lumen of the valve 800. The balloon 894 can be inflated with fluid supplied by an inflation device 896 through catheter lumen 898 in fluid communication with the balloon 892. In one embodiment, the balloon 894 can have a “dog bone” shape, where the bulbous ends of the balloon are aligned with the frame cells 808 of the valve 800. The balloon 892 can then contact and radially expand the valve frame 802 to better ensure that the valve 800 is deployed.


In an additional embodiment, the circulatory valve 800 can further include a sealing material 801 positioned on the periphery of the valve frame 802. In one embodiment, once implanted the tissue the sealing material 801 can swell due the presence of liquid to occupy volume between the valve frame 802 and the tissue on which the valve 800 has been implanted so as to prevent leakage of the liquid around the outside of the circulatory valve 800.


A variety of suitable materials for the sealing material 801 are possible. For example, the sealing material 801 can be selected from the general class of materials that include polysaccharides, proteins, and biocompatible gels. Specific examples of these polymeric materials can include, but are not limited to, those derived from poly(ethylene oxide) (PEO), polyethylene terephthalate (PET), poly(ethylene glycol) (PEG), poly(vinyl alcohol) (PVA), poly(vinylpyrrolidone) (PVP), poly(ethyloxazoline) (PEOX) polyaminoacids, pseudopolyamino acids, and polyethyloxazoline, as well as copolymers of these with each other or other water soluble polymers or water insoluble polymers. Examples of the polysaccharide include those derived from alginate, hyaluronic acid, chondroitin sulfate, dextran, dextran sulfate, heparin, heparin sulfate, heparan sulfate, chitosan, gellan gum, xanthan gum, guar gum, water soluble cellulose derivatives, and carrageenan. Examples of proteins include those derived from gelatin, collagen, elastin, zein, and albumin, whether produced from natural or recombinant sources.


The embodiments of the valve described herein may be used to replace, supplement, or augment valve structures within one or more lumens of the body. For example, embodiments of the present invention may be used to replace an incompetent cardiac valve of the heart, such as the aortic, pulmonary and/or mitral valves of the heart. In one embodiment, the native cardiac valve can either remain in place (e.g., via a valvuloplasty procedure) or be removed prior to implanting the circulatory valve of the present disclosure.


In addition, positioning the system having the valve as discussed herein includes introducing the system into the cardiovascular system of the patient using minimally invasive percutaneous, transluminal techniques. For example, a guidewire can be positioned within the cardiovascular system of a patient that includes the predetermined location. The system of the present disclosure, including the valve as described herein, can be positioned over the guidewire and the system advanced so as to position the valve at or adjacent the predetermined location. In one embodiment, radiopaque markers on the catheter and/or the valve, as described herein, can be used to help locate and position the valve.


The valve can be deployed from the system at the predetermined location in any number of ways, as described herein. In one embodiment, valve of the present disclosure can be deployed and placed in any number of cardiovascular locations. For example, valve can be deployed and placed within a major artery of a patient. In one embodiment, major arteries include, but are not limited to, the aorta. In addition, valves of the present invention can be deployed and placed within other major arteries of the heart and/or within the heart itself, such as in the pulmonary artery for replacement and/or augmentation of the pulmonary valve and between the left atrium and the left ventricle for replacement and/or augmentation of the mitral valve. The circulatory valve can also be implanted in the leg veins (e.g., iliac, femoral, great saphenous, popliteal, and superficial saphenous). Other locations are also possible.


As discussed herein, the circulatory valve can be deployed in a staged fashion. In the first stage, the valve is held in its undeployed state (e.g., compressed state) by the retractable sheath. The retractable sheath can then be moved (e.g., retracting the sheath) to allow the valve to radially expand from the undeployed state to the first stable equilibrium state. The joints of the valve frame can then be transitioned from the first stable equilibrium state through the unstable equilibrium state to the second stable equilibrium state to deploy the circulatory valve, as discussed herein. In an additional embodiment, the circulatory valve can also be radially expanded with an inflatable balloon to set the circulatory valve in the deployed state.


Once implanted, the valve can provide sufficient contact with the body lumen wall to prevent retrograde flow between the valve and the body lumen wall, and to securely locate the valve and prevent migration of the valve. The valve described herein also display sufficient flexibility and resilience so as to accommodate changes in the body lumen diameter, while maintaining the proper placement of valve. As described herein, the valve can engage the lumen so as to reduce the volume of retrograde flow through and around valve. It is, however, understood that some leaking or fluid flow may occur between the valve and the body lumen and/or through valve leaflets.


While the present invention has been shown and described in detail above, it will be clear to the person skilled in the art that changes and modifications may be made without departing from the spirit and scope of the invention. For example, the pulling mechanism illustrated herein could be used to mechanically expand a valve frame of other types of self-expanding stents and/or valve frames to enlarge the cross-sectional size (e.g., the diameter) to its fullest dimension. As such, that which is set forth in the foregoing description and accompanying drawings is offered by way of illustration only and not as a limitation. The actual scope of the invention is intended to be defined by the following claims, along with the full range of equivalents to which such claims are entitled. In addition, one of ordinary skill in the art will appreciate upon reading and understanding this disclosure that other variations for the invention described herein can be included within the scope of the present invention.


In the foregoing Detailed Description, various features are grouped together in several embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the embodiments of the invention require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.

Claims
  • 1. A circulatory valve, comprising: a valve frame having frame members defining a number of frame cells with joints in opposing relationship and a number of frame cells without joints, where the valve frame self-expands to a first stable equilibrium state at a first relative potential energy minimum, and where the joints are capable of reversibly transitioning from the first stable equilibrium state through an unstable equilibrium state at a relative potential energy maximum to a second stable equilibrium state at a second relative potential energy minimum as the joints are drawn towards each other via an application of force external to the valve frame, wherein the frame cells with joints have a different configuration in the first stable equilibrium state than a configuration in the second stable equilibrium state;where the frame cells with joints are positioned only at a distal end and a proximal end of the valve frame;where the frame members of the number of frame cells without joints have serpentine bends providing an elastic radial force; anda valve leaflet coupled to the valve frame.
  • 2. The circulatory valve of claim 1, where the first stable equilibrium state and the second stable equilibrium state are positions that the joints of the frame cells occupy when the unstable equilibrium state is not achieved.
  • 3. The circulatory valve of claim 1, where the frame cells with joints includes a compliant segment that assists in holding the joints in the second stable equilibrium state.
  • 4. The circulatory valve of claim 1, where the frame members of the frame cells without joints define a predefined frame design that extends between the frame cells with joints, where the predefined frame design and the frame cells with joints having a different configuration.
  • 5. The circulatory valve of claim 1, where each frame cell with joints includes a lock mechanism that engages to prevent each frame cell with joints from transitioning from the second stable equilibrium state.
  • 6. The circulatory valve of claim 5, where each lock mechanism includes a first engagement member that extends from a first joint to engage a second engagement member that extends from a second joint of each frame cell as the joints transition from the unstable equilibrium state to the second stable equilibrium state.
  • 7. The circulatory valve of claim 1, where the valve frame in the first stable equilibrium state has a diameter that is eighty (80) to ninety-five (95) percent of a deployed state diameter of the second stable equilibrium state.
US Referenced Citations (622)
Number Name Date Kind
3671979 Moulopoulos Jun 1972 A
4291420 Reul Sep 1981 A
4787901 Baykut Nov 1988 A
4872874 Taheri Oct 1989 A
4935030 Alonso Jun 1990 A
4994077 Dobben Feb 1991 A
5002567 Bona et al. Mar 1991 A
5141491 Bowald Aug 1992 A
5163953 Vince Nov 1992 A
5219355 Parodi et al. Jun 1993 A
5254127 Wholey et al. Oct 1993 A
5327774 Nguyen et al. Jul 1994 A
5332402 Teitelbaum Jul 1994 A
5370685 Stevens Dec 1994 A
5411552 Anderson et al. May 1995 A
5469868 Reger Nov 1995 A
5480423 Ravenscroft et al. Jan 1996 A
5500014 Quijano et al. Mar 1996 A
5545214 Stevens Aug 1996 A
5554185 Block et al. Sep 1996 A
5643208 Parodi Jul 1997 A
5693087 Parodi Dec 1997 A
5713953 Vallana et al. Feb 1998 A
5716370 Williamson, IV et al. Feb 1998 A
5735859 Fischell et al. Apr 1998 A
5741326 Solovay Apr 1998 A
5741333 Frid Apr 1998 A
5800506 Perouse Sep 1998 A
5824061 Quijano et al. Oct 1998 A
5855600 Alt Jan 1999 A
5879320 Cazenave Mar 1999 A
5895419 Tweden et al. Apr 1999 A
5910170 Reimink et al. Jun 1999 A
6010531 Donlon et al. Jan 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6139575 Shu et al. Oct 2000 A
6287334 Moll et al. Sep 2001 B1
6312447 Grimes Nov 2001 B1
6336937 Vonesh et al. Jan 2002 B1
6355030 Aldrich et al. Mar 2002 B1
6402780 Williamson, IV et al. Jun 2002 B2
6419696 Ortiz et al. Jul 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6451054 Stevens Sep 2002 B1
6454799 Schreck Sep 2002 B1
6461366 Seguin Oct 2002 B1
6503272 Duerig et al. Jan 2003 B2
6508833 Pavcnik et al. Jan 2003 B2
6564805 Garrison et al. May 2003 B2
6569196 Vesely May 2003 B1
6602286 Strecker Aug 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6635085 Caffey et al. Oct 2003 B1
6666885 Moe Dec 2003 B2
6666886 Tranquillo et al. Dec 2003 B1
6669725 Scott Dec 2003 B2
6673109 Cox Jan 2004 B2
6676698 McGuckin, Jr. et al. Jan 2004 B2
6676702 Mathis Jan 2004 B2
6682558 Tu et al. Jan 2004 B2
6682559 Myers et al. Jan 2004 B2
6685739 DiMatteo et al. Feb 2004 B2
6692512 Jang Feb 2004 B2
6695866 Kuehn et al. Feb 2004 B1
6695878 McGuckin, Jr. et al. Feb 2004 B2
6709456 Langberg et al. Mar 2004 B2
6709457 Otte et al. Mar 2004 B1
6716241 Wilder et al. Apr 2004 B2
6716244 Klaco Apr 2004 B2
6719767 Kimblad Apr 2004 B1
6719784 Henderson Apr 2004 B2
6719786 Ryan et al. Apr 2004 B2
6719787 Cox Apr 2004 B2
6719788 Cox Apr 2004 B2
6719789 Cox Apr 2004 B2
6719790 Brendzel et al. Apr 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6723122 Yang et al. Apr 2004 B2
6723123 Kazatchkov et al. Apr 2004 B1
6726715 Sutherland Apr 2004 B2
6726716 Marquez Apr 2004 B2
6726717 Alfieri et al. Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6730121 Ortiz et al. May 2004 B2
6730122 Pan et al. May 2004 B1
6736845 Marquez et al. May 2004 B2
6736846 Cox May 2004 B2
6749630 McCarthy et al. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6752828 Thornton Jun 2004 B2
6755857 Peterson et al. Jun 2004 B2
6761734 Suhr Jul 2004 B2
6761735 Eberhardt et al. Jul 2004 B2
6764494 Menz et al. Jul 2004 B2
6764508 Roehe et al. Jul 2004 B1
6764509 Chinn et al. Jul 2004 B2
6764510 Vidlund et al. Jul 2004 B2
6767362 Schreck Jul 2004 B2
6769434 Liddicoat et al. Aug 2004 B2
6770083 Seguin Aug 2004 B2
6780200 Jansen Aug 2004 B2
6786924 Ryan et al. Sep 2004 B2
6786925 Schoon et al. Sep 2004 B1
6790229 Berreklouw Sep 2004 B1
6790230 Beyersdorf et al. Sep 2004 B2
6790231 Liddicoat et al. Sep 2004 B2
6793673 Kowalsky et al. Sep 2004 B2
6797000 Simpson et al. Sep 2004 B2
6797001 Mathis et al. Sep 2004 B2
6797002 Spence et al. Sep 2004 B2
6802860 Cosgrove et al. Oct 2004 B2
6805710 Bolling et al. Oct 2004 B2
6805711 Quijano et al. Oct 2004 B2
6810882 Langberg et al. Nov 2004 B2
6821297 Snyders Nov 2004 B2
6824562 Mathis et al. Nov 2004 B2
6830584 Seguin Dec 2004 B1
6830585 Artof et al. Dec 2004 B1
6837902 Nguyen et al. Jan 2005 B2
6840246 Downing Jan 2005 B2
6840957 DiMatteo et al. Jan 2005 B2
6846324 Stobie Jan 2005 B2
6846325 Liddicoat Jan 2005 B2
6858039 McCarthy Feb 2005 B2
6869444 Gabbay Mar 2005 B2
6872226 Cali et al. Mar 2005 B2
6875224 Grimes Apr 2005 B2
6875230 Morita et al. Apr 2005 B1
6875231 Anduiza et al. Apr 2005 B2
6881199 Wilk et al. Apr 2005 B2
6881224 Kruse et al. Apr 2005 B2
6883522 Spence et al. Apr 2005 B2
6890352 Lentell May 2005 B1
6890353 Cohn et al. May 2005 B2
6893459 Macoviak May 2005 B1
6893460 Spenser et al. May 2005 B2
6896700 Lu et al. May 2005 B2
6902576 Drasler et al. Jun 2005 B2
6908478 Alferness et al. Jun 2005 B2
6908481 Cribier Jun 2005 B2
6911043 Myers et al. Jun 2005 B2
6913608 Liddicoat et al. Jul 2005 B2
6916338 Speziali Jul 2005 B2
6918917 Nguyen et al. Jul 2005 B1
6921407 Nguyen et al. Jul 2005 B2
6921811 Zamora et al. Jul 2005 B2
6926715 Hauck et al. Aug 2005 B1
6926730 Nguyen et al. Aug 2005 B1
6929653 Strecter Aug 2005 B2
6932838 Schwartz et al. Aug 2005 B2
6936067 Buchanan Aug 2005 B2
6939359 Tu et al. Sep 2005 B2
6942694 Liddicoat et al. Sep 2005 B2
6945957 Freyman Sep 2005 B2
6945978 Hyde Sep 2005 B1
6945996 Sedransk Sep 2005 B2
6945997 Huynh et al. Sep 2005 B2
6949122 Adams et al. Sep 2005 B2
6951571 Srivastava Oct 2005 B1
6951573 Dilling Oct 2005 B1
6955689 Ryan et al. Oct 2005 B2
6958076 Acosta et al. Oct 2005 B2
6962605 Cosgrove et al. Nov 2005 B2
6964682 Nguyen-Thien-Nhon et al. Nov 2005 B2
6964683 Kowalsky et al. Nov 2005 B2
6964684 Ortiz et al. Nov 2005 B2
6966925 Stobie Nov 2005 B2
6966926 Mathis Nov 2005 B2
6974464 Quijano et al. Dec 2005 B2
6974474 Pavcnik et al. Dec 2005 B2
6974476 McGuckin, Jr. et al. Dec 2005 B2
6976995 Mathis et al. Dec 2005 B2
6979350 Moll et al. Dec 2005 B2
6986775 Morales et al. Jan 2006 B2
6989027 Allen et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6997950 Chawla Feb 2006 B2
6997951 Solem et al. Feb 2006 B2
7004176 Lau Feb 2006 B2
7007396 Rudko et al. Mar 2006 B2
7011669 Kimblad Mar 2006 B2
7011681 Vesely Mar 2006 B2
7011682 Lashinski et al. Mar 2006 B2
7018406 Seguin et al. Mar 2006 B2
7018407 Wright et al. Mar 2006 B1
7018408 Bailey et al. Mar 2006 B2
7022134 Quijano et al. Apr 2006 B1
7025780 Gabbay Apr 2006 B2
7033390 Johnson et al. Apr 2006 B2
7037333 Myers et al. May 2006 B2
7037334 Hlavka et al. May 2006 B1
7041128 McGuckin, Jr. et al. May 2006 B2
7041132 Quijano et al. May 2006 B2
7044966 Svanidze et al. May 2006 B2
7044967 Solem et al. May 2006 B1
7048754 Martin et al. May 2006 B2
7048757 Shaknovich May 2006 B2
7052487 Cohn et al. May 2006 B2
7052507 Wakuda et al. May 2006 B2
7063722 Marquez Jun 2006 B2
7066954 Ryan et al. Jun 2006 B2
7070616 Majercak et al. Jul 2006 B2
7077862 Vidlund et al. Jul 2006 B2
7081131 Thornton Jul 2006 B2
7087064 Hyde Aug 2006 B1
7089051 Jäverud et al. Aug 2006 B2
7090695 Solem et al. Aug 2006 B2
20020013571 Goldfarb et al. Jan 2002 A1
20020026216 Grimes Feb 2002 A1
20020082630 Menz et al. Jun 2002 A1
20020123802 Snyders Sep 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020183835 Taylor et al. Dec 2002 A1
20020183838 Liddicoat et al. Dec 2002 A1
20020198594 Schreck Dec 2002 A1
20030040792 Gabbay Feb 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030130729 Paniagua et al. Jul 2003 A1
20030163194 Quijano et al. Aug 2003 A1
20030167071 Martin et al. Sep 2003 A1
20030171806 Mathis et al. Sep 2003 A1
20030199975 Gabbay Oct 2003 A1
20030229394 Ogle et al. Dec 2003 A1
20030229395 Cox Dec 2003 A1
20030233142 Morales et al. Dec 2003 A1
20030236568 Hojeibane et al. Dec 2003 A1
20030236569 Mathis et al. Dec 2003 A1
20040002719 Oz et al. Jan 2004 A1
20040003819 St. Goar et al. Jan 2004 A1
20040010305 Alferness et al. Jan 2004 A1
20040015230 Moll et al. Jan 2004 A1
20040015232 Shu et al. Jan 2004 A1
20040015233 Jansen Jan 2004 A1
20040019374 Hojeibane et al. Jan 2004 A1
20040019377 Taylor et al. Jan 2004 A1
20040019378 Hlavka et al. Jan 2004 A1
20040024447 Haverich Feb 2004 A1
20040024451 Johnson et al. Feb 2004 A1
20040024452 Kruse et al. Feb 2004 A1
20040030321 Fangrow, Jr. Feb 2004 A1
20040030381 Shu Feb 2004 A1
20040030382 St. Goar et al. Feb 2004 A1
20040030405 Carpentier et al. Feb 2004 A1
20040034380 Woolfson et al. Feb 2004 A1
20040034411 Quijano et al. Feb 2004 A1
20040039436 Spenser et al. Feb 2004 A1
20040039442 St. Goar et al. Feb 2004 A1
20040039443 Solem et al. Feb 2004 A1
20040044350 Martin et al. Mar 2004 A1
20040044365 Bachman Mar 2004 A1
20040044403 Bischoff et al. Mar 2004 A1
20040049207 Goldfarb et al. Mar 2004 A1
20040049211 Tremulis et al. Mar 2004 A1
20040049266 Anduiza et al. Mar 2004 A1
20040059351 Eigler et al. Mar 2004 A1
20040059411 Strecker Mar 2004 A1
20040059412 Lytle, IV et al. Mar 2004 A1
20040060161 Leal et al. Apr 2004 A1
20040073301 Donlon et al. Apr 2004 A1
20040073302 Rourke et al. Apr 2004 A1
20040078072 Tu et al. Apr 2004 A1
20040078074 Anderson et al. Apr 2004 A1
20040082910 Constantz et al. Apr 2004 A1
20040082923 Field Apr 2004 A1
20040082991 Nguyen et al. Apr 2004 A1
20040087975 Lucatero et al. May 2004 A1
20040088045 Cox May 2004 A1
20040088046 Speziali May 2004 A1
20040092858 Wilson et al. May 2004 A1
20040093060 Seguin et al. May 2004 A1
20040093070 Hojeibane et al. May 2004 A1
20040093080 Helmus et al. May 2004 A1
20040097979 Svanidze et al. May 2004 A1
20040098098 McGuckin, Jr. et al. May 2004 A1
20040098112 DiMatteo et al. May 2004 A1
20040102839 Cohn et al. May 2004 A1
20040102840 Solem et al. May 2004 A1
20040102842 Jansen May 2004 A1
20040106976 Bailey et al. Jun 2004 A1
20040106990 Spence et al. Jun 2004 A1
20040106991 Hopkins et al. Jun 2004 A1
20040111096 Tu et al. Jun 2004 A1
20040117009 Cali et al. Jun 2004 A1
20040122448 Levine Jun 2004 A1
20040122512 Navia et al. Jun 2004 A1
20040122513 Navia et al. Jun 2004 A1
20040122514 Fogarty et al. Jun 2004 A1
20040122515 Chu Jun 2004 A1
20040122516 Fogarty et al. Jun 2004 A1
20040127979 Wilson et al. Jul 2004 A1
20040127980 Kowalsky et al. Jul 2004 A1
20040127981 Rahdert et al. Jul 2004 A1
20040127982 Machold et al. Jul 2004 A1
20040133220 Lashinski et al. Jul 2004 A1
20040133267 Lane Jul 2004 A1
20040133273 Cox Jul 2004 A1
20040138742 Myers et al. Jul 2004 A1
20040138743 Myers et al. Jul 2004 A1
20040138744 Lashinski et al. Jul 2004 A1
20040138745 Macoviak et al. Jul 2004 A1
20040148018 Carpentier et al. Jul 2004 A1
20040148019 Vidlund et al. Jul 2004 A1
20040148020 Vidlund et al. Jul 2004 A1
20040153052 Mathis Aug 2004 A1
20040153146 Lashinski et al. Aug 2004 A1
20040153147 Mathis Aug 2004 A1
20040158321 Reuter et al. Aug 2004 A1
20040162610 Liska et al. Aug 2004 A1
20040167539 Keuhn et al. Aug 2004 A1
20040167620 Ortiz et al. Aug 2004 A1
20040172046 Hlavka et al. Sep 2004 A1
20040176839 Huynh et al. Sep 2004 A1
20040176840 Langberg et al. Sep 2004 A1
20040181238 Zarbatany et al. Sep 2004 A1
20040186444 Daly et al. Sep 2004 A1
20040186558 Pavcnik et al. Sep 2004 A1
20040186561 McGuckin, Jr. et al. Sep 2004 A1
20040186563 Lobbi Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040193191 Starksen et al. Sep 2004 A1
20040193253 Thorpe et al. Sep 2004 A1
20040193260 Alferness et al. Sep 2004 A1
20040199155 Mollenauer Oct 2004 A1
20040199183 Oz et al. Oct 2004 A1
20040199191 Schwartz Oct 2004 A1
20040204758 Eberhardt et al. Oct 2004 A1
20040206363 McCarthy et al. Oct 2004 A1
20040210240 Saint Oct 2004 A1
20040210301 Obermiller Oct 2004 A1
20040210303 Sedransk Oct 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040210305 Shu et al. Oct 2004 A1
20040210306 Quijano et al. Oct 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040215333 Duran et al. Oct 2004 A1
20040215339 Drasler et al. Oct 2004 A1
20040220654 Mathis et al. Nov 2004 A1
20040220657 Nieminen et al. Nov 2004 A1
20040225322 Garrison et al. Nov 2004 A1
20040225344 Hoffa et al. Nov 2004 A1
20040225348 Case et al. Nov 2004 A1
20040225352 Osborne et al. Nov 2004 A1
20040225353 McGuckin, Jr. et al. Nov 2004 A1
20040225354 Allen et al. Nov 2004 A1
20040225355 Stevens Nov 2004 A1
20040225356 Frater Nov 2004 A1
20040230117 Tosaya et al. Nov 2004 A1
20040230297 Thornton Nov 2004 A1
20040236411 Sarac et al. Nov 2004 A1
20040236418 Stevens Nov 2004 A1
20040236419 Milo Nov 2004 A1
20040243153 Liddicoat et al. Dec 2004 A1
20040243219 Fischer et al. Dec 2004 A1
20040243227 Starksen et al. Dec 2004 A1
20040243228 Kowalsky et al. Dec 2004 A1
20040243230 Navia et al. Dec 2004 A1
20040254600 Zarbatany et al. Dec 2004 A1
20040254636 Flagle et al. Dec 2004 A1
20040260276 Rudko et al. Dec 2004 A1
20040260317 Bloom et al. Dec 2004 A1
20040260322 Rudko et al. Dec 2004 A1
20040260389 Case et al. Dec 2004 A1
20040260390 Sarac et al. Dec 2004 A1
20040260393 Rahdert et al. Dec 2004 A1
20040260394 Douk et al. Dec 2004 A1
20040267357 Allen et al. Dec 2004 A1
20050004583 Oz et al. Jan 2005 A1
20050004667 Swinford et al. Jan 2005 A1
20050010285 Lambrecht et al. Jan 2005 A1
20050010287 Macoviak et al. Jan 2005 A1
20050015112 Cohn et al. Jan 2005 A1
20050021056 St. Goar et al. Jan 2005 A1
20050021136 Xie et al. Jan 2005 A1
20050027261 Weaver et al. Feb 2005 A1
20050027348 Case et al. Feb 2005 A1
20050027351 Reuter et al. Feb 2005 A1
20050027353 Alferness et al. Feb 2005 A1
20050033398 Seguin Feb 2005 A1
20050033419 Alferness et al. Feb 2005 A1
20050033446 Deem et al. Feb 2005 A1
20050038506 Webler et al. Feb 2005 A1
20050038507 Alferness et al. Feb 2005 A1
20050043790 Seguin Feb 2005 A1
20050043792 Solem et al. Feb 2005 A1
20050049679 Taylor et al. Mar 2005 A1
20050049692 Numamoto et al. Mar 2005 A1
20050049696 Siess et al. Mar 2005 A1
20050049697 Sievers Mar 2005 A1
20050054977 Laird et al. Mar 2005 A1
20050055079 Duran Mar 2005 A1
20050055087 Starksen Mar 2005 A1
20050055088 Liddicoat et al. Mar 2005 A1
20050055089 Macoviak et al. Mar 2005 A1
20050060029 Le et al. Mar 2005 A1
20050060030 Lashinski et al. Mar 2005 A1
20050065460 Laird Mar 2005 A1
20050065550 Starksen et al. Mar 2005 A1
20050065594 Dimatteo et al. Mar 2005 A1
20050065597 Lansac Mar 2005 A1
20050070998 Rourke et al. Mar 2005 A1
20050075584 Cali Apr 2005 A1
20050075659 Realyvasquez et al. Apr 2005 A1
20050075662 Pedersen et al. Apr 2005 A1
20050075712 Biancucci et al. Apr 2005 A1
20050075713 Biancucci et al. Apr 2005 A1
20050075717 Nguyen et al. Apr 2005 A1
20050075718 Nguyen et al. Apr 2005 A1
20050075719 Bergheim Apr 2005 A1
20050075720 Nguyen et al. Apr 2005 A1
20050075723 Schroeder et al. Apr 2005 A1
20050075724 Svanidze et al. Apr 2005 A1
20050075725 Rowe Apr 2005 A1
20050075726 Svanidze et al. Apr 2005 A1
20050075729 Nguyen et al. Apr 2005 A1
20050075730 Myers et al. Apr 2005 A1
20050075731 Artof et al. Apr 2005 A1
20050080483 Solem et al. Apr 2005 A1
20050085900 Case et al. Apr 2005 A1
20050085903 Lau Apr 2005 A1
20050085904 Lemmon Apr 2005 A1
20050090846 Pedersen et al. Apr 2005 A1
20050096735 Hojeibane et al. May 2005 A1
20050096738 Cali et al. May 2005 A1
20050096739 Cao May 2005 A1
20050096740 Langberg et al. May 2005 A1
20050101975 Nguyen et al. May 2005 A1
20050102026 Turner et al. May 2005 A1
20050107810 Morales et al. May 2005 A1
20050107811 Starksen et al. May 2005 A1
20050107812 Starksen et al. May 2005 A1
20050107872 Mensah et al. May 2005 A1
20050113910 Paniagua et al. May 2005 A1
20050119673 Gordon et al. Jun 2005 A1
20050119734 Spence et al. Jun 2005 A1
20050119735 Spence et al. Jun 2005 A1
20050125011 Spence et al. Jun 2005 A1
20050131438 Cohn Jun 2005 A1
20050137449 Nieminen et al. Jun 2005 A1
20050137450 Aronson et al. Jun 2005 A1
20050137451 Gordon et al. Jun 2005 A1
20050137676 Richardson et al. Jun 2005 A1
20050137681 Shoemaker et al. Jun 2005 A1
20050137682 Justino Jun 2005 A1
20050137685 Nieminen et al. Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137689 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137692 Haug et al. Jun 2005 A1
20050137693 Haug et al. Jun 2005 A1
20050137694 Haug et al. Jun 2005 A1
20050137696 Salahieh et al. Jun 2005 A1
20050137697 Salahieh et al. Jun 2005 A1
20050137698 Salahieh et al. Jun 2005 A1
20050137699 Salahieh et al. Jun 2005 A1
20050137700 Spence et al. Jun 2005 A1
20050137701 Salahieh et al. Jun 2005 A1
20050137702 Haug et al. Jun 2005 A1
20050143807 Pavcnik et al. Jun 2005 A1
20050143809 Salahieh et al. Jun 2005 A1
20050143810 Dauner et al. Jun 2005 A1
20050143811 Realyvasquez Jun 2005 A1
20050149014 Hauck et al. Jul 2005 A1
20050149179 Mathis et al. Jul 2005 A1
20050149180 Mathis et al. Jul 2005 A1
20050149181 Eberhardt Jul 2005 A1
20050159810 Filsoufi Jul 2005 A1
20050159811 Lane Jul 2005 A1
20050165477 Anduiza et al. Jul 2005 A1
20050165478 Song Jul 2005 A1
20050171472 Lutter Aug 2005 A1
20050171601 Cosgrove et al. Aug 2005 A1
20050177227 Heim et al. Aug 2005 A1
20050177228 Solem et al. Aug 2005 A1
20050182483 Osborne et al. Aug 2005 A1
20050184122 Hlavka et al. Aug 2005 A1
20050187614 Agnew Aug 2005 A1
20050187616 Realyvasquez Aug 2005 A1
20050187617 Navia Aug 2005 A1
20050192606 Paul, Jr. et al. Sep 2005 A1
20050192665 Spenser et al. Sep 2005 A1
20050197692 Pai et al. Sep 2005 A1
20050197693 Pai et al. Sep 2005 A1
20050197694 Pai et al. Sep 2005 A1
20050203549 Realyvasquez Sep 2005 A1
20050203605 Dolan Sep 2005 A1
20050203607 Scherrible Sep 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203615 Forster et al. Sep 2005 A1
20050203616 Cribier Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050203618 Sharkawy et al. Sep 2005 A1
20050216039 Lederman Sep 2005 A1
20050216077 Mathis et al. Sep 2005 A1
20050216078 Starksen et al. Sep 2005 A1
20050222675 Sauter Oct 2005 A1
20050222678 Lashinski et al. Oct 2005 A1
20050228422 Machold et al. Oct 2005 A1
20050228479 Pavcnik et al. Oct 2005 A1
20050228486 Case et al. Oct 2005 A1
20050228494 Marquez Oct 2005 A1
20050228495 Macoviak Oct 2005 A1
20050228496 Mensah et al. Oct 2005 A1
20050234541 Hunt et al. Oct 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050240200 Bergheim Oct 2005 A1
20050240202 Shennib et al. Oct 2005 A1
20050240255 Schaeffer Oct 2005 A1
20050240259 Sisken et al. Oct 2005 A1
20050240262 White Oct 2005 A1
20050244460 Alferiev et al. Nov 2005 A1
20050246013 Gabbay Nov 2005 A1
20050251251 Cribier Nov 2005 A1
20050256566 Gabbay Nov 2005 A1
20050261704 Mathis Nov 2005 A1
20050261759 Lambrecht et al. Nov 2005 A1
20050267493 Schreck et al. Dec 2005 A1
20050267560 Bates Dec 2005 A1
20050267565 Dave et al. Dec 2005 A1
20050267571 Spence et al. Dec 2005 A1
20050267573 Macoviak et al. Dec 2005 A9
20050267574 Cohn et al. Dec 2005 A1
20050272969 Alferness et al. Dec 2005 A1
20050273160 Lashinski et al. Dec 2005 A1
20050278015 Dave et al. Dec 2005 A1
20050283178 Flagle et al. Dec 2005 A1
20050288779 Shaoulian et al. Dec 2005 A1
20060000715 Whitcher et al. Jan 2006 A1
20060004439 Spenser et al. Jan 2006 A1
20060004442 Spenser et al. Jan 2006 A1
20060009841 McGuckin et al. Jan 2006 A1
20060009842 Huynh et al. Jan 2006 A1
20060013805 Hebbel et al. Jan 2006 A1
20060013855 Carpenter et al. Jan 2006 A1
20060015136 Besselink Jan 2006 A1
20060015178 Moaddeb et al. Jan 2006 A1
20060015179 Bulman-Fleming et al. Jan 2006 A1
20060020275 Goldfarb et al. Jan 2006 A1
20060020327 Lashinski et al. Jan 2006 A1
20060020332 Lashinski et al. Jan 2006 A1
20060020334 Lashinski et al. Jan 2006 A1
20060020335 Kowalsky et al. Jan 2006 A1
20060020336 Liddicoat Jan 2006 A1
20060025750 Starksen et al. Feb 2006 A1
20060025784 Starksen et al. Feb 2006 A1
20060025787 Morales et al. Feb 2006 A1
20060025854 Lashinski et al. Feb 2006 A1
20060025855 Lashinski et al. Feb 2006 A1
20060025856 Ryan et al. Feb 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060030747 Kantrowitz et al. Feb 2006 A1
20060030866 Schreck Feb 2006 A1
20060030882 Adams et al. Feb 2006 A1
20060030885 Hyde Feb 2006 A1
20060036317 Vidlund et al. Feb 2006 A1
20060041305 Lauterjung Feb 2006 A1
20060041306 Vidlund et al. Feb 2006 A1
20060047297 Case Mar 2006 A1
20060047338 Jenson Mar 2006 A1
20060047343 Oviatt et al. Mar 2006 A1
20060052804 Mialhe Mar 2006 A1
20060052867 Revuelta et al. Mar 2006 A1
20060058817 Starksen et al. Mar 2006 A1
20060058865 Case et al. Mar 2006 A1
20060058871 Zakay et al. Mar 2006 A1
20060058889 Case et al. Mar 2006 A1
20060064115 Allen et al. Mar 2006 A1
20060064116 Allen et al. Mar 2006 A1
20060064118 Kimblad Mar 2006 A1
20060064174 Zadno Mar 2006 A1
20060069400 Burnett et al. Mar 2006 A1
20060069424 Acosta et al. Mar 2006 A1
20060069430 Rahdert et al. Mar 2006 A9
20060074483 Schrayer Apr 2006 A1
20060074484 Huber Apr 2006 A1
20060074485 Realyvasquez Apr 2006 A1
20060085060 Campbell Apr 2006 A1
20060089708 Osse et al. Apr 2006 A1
20060095115 Bladillah et al. May 2006 A1
20060095125 Chinn et al. May 2006 A1
20060099326 Keogh et al. May 2006 A1
20060100697 Casanova May 2006 A1
20060100699 Vidlund et al. May 2006 A1
20060106278 Machold et al. May 2006 A1
20060106279 Machold et al. May 2006 A1
20060106456 Machold et al. May 2006 A9
20060111660 Wolf et al. May 2006 A1
20060111773 Rittgers et al. May 2006 A1
20060111774 Samkov et al. May 2006 A1
20060116572 Case Jun 2006 A1
20060116756 Solem et al. Jun 2006 A1
20060122686 Gilad et al. Jun 2006 A1
20060122692 Gilad et al. Jun 2006 A1
20060122693 Biadillah et al. Jun 2006 A1
20060127443 Helmus Jun 2006 A1
20060129235 Seguin et al. Jun 2006 A1
20060129236 McCarthy Jun 2006 A1
20060135476 Kutryk et al. Jun 2006 A1
20060135964 Vesely Jun 2006 A1
20060135967 Realyvasquez Jun 2006 A1
20060136044 Osborne Jun 2006 A1
20060136045 Flagle et al. Jun 2006 A1
20060136052 Vesely Jun 2006 A1
20060136054 Berg et al. Jun 2006 A1
20060142846 Pavcnik et al. Jun 2006 A1
20060142847 Shaknovich Jun 2006 A1
20060142848 Gabbay Jun 2006 A1
20060142854 Alferness et al. Jun 2006 A1
20060149358 Zilla et al. Jul 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060149367 Sieracki Jul 2006 A1
20060149368 Spence Jul 2006 A1
20060161133 Laird et al. Jul 2006 A1
20060161248 Case et al. Jul 2006 A1
20060161250 Shaw Jul 2006 A1
20060167468 Gabbay Jul 2006 A1
20060167541 Lattouf Jul 2006 A1
20060167542 Quintessenza Jul 2006 A1
20060167543 Bailey et al. Jul 2006 A1
Foreign Referenced Citations (170)
Number Date Country
197 28 337 Jan 1999 DE
0 380 666 Aug 1990 EP
0 466 518 Jan 1992 EP
1557138 Jul 2005 EP
2 728 457 Jun 1996 FR
WO 8800459 Jan 1988 WO
WO 9015582 Dec 1990 WO
WO 9501669 Jan 1995 WO
WO 9619159 Jun 1996 WO
WO 9803656 Jan 1998 WO
WO 9846115 Oct 1998 WO
WO 9901087 Jan 1999 WO
WO 9904724 Feb 1999 WO
WO 0067679 Nov 2000 WO
WO 0115650 Mar 2001 WO
WO 0117462 Mar 2001 WO
WO 03047468 Jun 2003 WO
WO 03084443 Oct 2003 WO
WO 2004019825 Mar 2004 WO
WO 2004021893 Mar 2004 WO
WO 2004023980 Mar 2004 WO
WO 2004030568 Apr 2004 WO
WO 2004030569 Apr 2004 WO
WO 2004030570 Apr 2004 WO
WO 2004032724 Apr 2004 WO
WO 2004032796 Apr 2004 WO
WO 2004037128 May 2004 WO
WO 2004037317 May 2004 WO
WO 2004039432 May 2004 WO
WO 2004043265 May 2004 WO
WO 2004043273 May 2004 WO
WO 2004043293 May 2004 WO
WO 2004045370 Jun 2004 WO
WO 2004045378 Jun 2004 WO
WO 2004045463 Jun 2004 WO
WO 2004047677 Jun 2004 WO
WO 2004060217 Jul 2004 WO
WO 2004060470 Jul 2004 WO
WO 2004062725 Jul 2004 WO
WO 2004066803 Aug 2004 WO
WO 2004066826 Aug 2004 WO
WO 2004069287 Aug 2004 WO
WO 2004075789 Sep 2004 WO
WO 2004080352 Sep 2004 WO
WO 2004082523 Sep 2004 WO
WO 2004082527 Sep 2004 WO
WO 2004082528 Sep 2004 WO
WO 2004082536 Sep 2004 WO
WO 2004082537 Sep 2004 WO
WO 2004082538 Sep 2004 WO
WO 2004082757 Sep 2004 WO
WO 2004084746 Oct 2004 WO
WO 2004084770 Oct 2004 WO
WO 2004089246 Oct 2004 WO
WO 2004089250 Oct 2004 WO
WO 2004089253 Oct 2004 WO
WO 2004091449 Oct 2004 WO
WO 2004091454 Oct 2004 WO
WO 2004093638 Nov 2004 WO
WO 2004093726 Nov 2004 WO
WO 2004093728 Nov 2004 WO
WO 2004093730 Nov 2004 WO
WO 2004093745 Nov 2004 WO
WO 2004093935 Nov 2004 WO
WO 2004096100 Nov 2004 WO
WO 2004103222 Dec 2004 WO
WO 2004103223 Dec 2004 WO
WO 2004105584 Dec 2004 WO
WO 2004105651 Dec 2004 WO
WO 2004112582 Dec 2004 WO
WO 2004112585 Dec 2004 WO
WO 2004112643 Dec 2004 WO
WO 2004112652 Dec 2004 WO
WO 2004112657 Dec 2004 WO
WO 2004112658 Dec 2004 WO
WO 2005000152 Jan 2005 WO
WO 2005002424 Jan 2005 WO
WO 2005002466 Jan 2005 WO
WO 2005004753 Jan 2005 WO
WO 2005007017 Jan 2005 WO
WO 2005007018 Jan 2005 WO
WO 2005007036 Jan 2005 WO
WO 2005007037 Jan 2005 WO
WO 2005009285 Feb 2005 WO
WO 2005009286 Feb 2005 WO
WO 2005009505 Feb 2005 WO
WO 2005009506 Feb 2005 WO
WO 2005011473 Feb 2005 WO
WO 2005011534 Feb 2005 WO
WO 2005011535 Feb 2005 WO
WO 2005013860 Feb 2005 WO
WO 2005018507 Mar 2005 WO
WO 2005021063 Mar 2005 WO
WO 2005023155 Mar 2005 WO
WO 2005025644 Mar 2005 WO
WO 2005027790 Mar 2005 WO
WO 2005027797 Mar 2005 WO
WO 2005034812 Apr 2005 WO
WO 2005039428 May 2005 WO
WO 2005039452 May 2005 WO
WO 2005046488 May 2005 WO
WO 2005046528 May 2005 WO
WO 2005046529 May 2005 WO
WO 2005046530 May 2005 WO
WO 2005046531 May 2005 WO
WO 2005048883 Jun 2005 WO
WO 2005049103 Jun 2005 WO
WO 2005051226 Jun 2005 WO
WO 2005055811 Jun 2005 WO
WO 2005055883 Jun 2005 WO
WO 2005058206 Jun 2005 WO
WO 2005065585 Jul 2005 WO
WO 2005065593 Jul 2005 WO
WO 2005065594 Jul 2005 WO
WO 2005070342 Aug 2005 WO
WO 2005070343 Aug 2005 WO
WO 2005072654 Aug 2005 WO
WO 2005072655 Aug 2005 WO
WO 2005079706 Sep 2005 WO
WO 2005082288 Sep 2005 WO
WO 2005082289 Sep 2005 WO
WO 2005084595 Sep 2005 WO
WO 2005087139 Sep 2005 WO
WO 2005087140 Sep 2005 WO
WO 2006000763 Jan 2006 WO
WO 2006000776 Jan 2006 WO
WO 2006002492 Jan 2006 WO
WO 2006004679 Jan 2006 WO
WO 2006005015 Jan 2006 WO
WO 2006009690 Jan 2006 WO
WO 2006011127 Feb 2006 WO
WO 2006012011 Feb 2006 WO
WO 2006012013 Feb 2006 WO
WO 2006012038 Feb 2006 WO
WO 2006012068 Feb 2006 WO
WO 2006012322 Feb 2006 WO
WO 2006019498 Feb 2006 WO
WO 2006026371 Mar 2006 WO
WO 2006026377 Mar 2006 WO
WO 2006026912 Mar 2006 WO
WO 2006027499 Mar 2006 WO
WO 2006028821 Mar 2006 WO
WO 2006029062 Mar 2006 WO
WO 2006031436 Mar 2006 WO
WO 2006031469 Mar 2006 WO
WO 2006032051 Mar 2006 WO
WO 2006034245 Mar 2006 WO
WO 2006035415 Apr 2006 WO
WO 2006041505 Apr 2006 WO
WO 2006044679 Apr 2006 WO
WO 2006048664 May 2006 WO
WO 2006050459 May 2006 WO
WO 2006050460 May 2006 WO
WO 2006054107 May 2006 WO
WO 2006054930 May 2006 WO
WO 2006055982 May 2006 WO
WO 2006060546 May 2006 WO
WO 2006063108 Jun 2006 WO
WO 2006063181 Jun 2006 WO
WO 2006063199 Jun 2006 WO
WO 2006064490 Jun 2006 WO
WO 2006065212 Jun 2006 WO
WO 2006065930 Jun 2006 WO
WO 2006066148 Jun 2006 WO
WO 2006066150 Jun 2006 WO
WO 2006069094 Jun 2006 WO
WO 2006070372 Jul 2006 WO
WO 2006073628 Jul 2006 WO
WO 2006076890 Jul 2006 WO
WO 2006127765 Nov 2006 WO
Non-Patent Literature Citations (2)
Entry
International Search Report. Nov. 25, 2008. 16 pgs.
Extended European Search Report mailed Oct. 10, 2012, for EP Application No. 11178465.8.
Related Publications (1)
Number Date Country
20090030512 A1 Jan 2009 US