Circumferential wound retraction with support and guidance structures

Abstract
Embodiments of a circumferential retractor having an attached supporting, manipulating or positioning tool are described. The retractor optionally includes a sealing member associated with an external member of the retractor and an external support structure that may be used with the retractor and positioning tool as needed.
Description
FIELD OF THE INVENTION

The present invention relates to retraction of surgical incisions and other orifices, and more specifically to shaping and positioning a surgical incision or orifice to provide optimum access to a surgical site.


BACKGROUND

Generally speaking, the considerations involved in providing a surgical incision include adequate access to a subject area within the anatomy, minimal blood loss, maximum closure and healing potential, and minimal scaring.


Several elegant surgical incision techniques have been developed to address the foregoing. For instance the “Phannenstiel” incision used in abdominal surgery was developed to minimize the development of surgical site herniations.


With the advent of laparoscopic surgery, it has become apparent that small incisions have certain advantages. However, some surgeries present challenges that are beyond standard laparoscopic or totally open techniques. One of these is human breast surgery. In these instances, access is very important. However, aesthetic outcome is almost equally important.


Typical human breast surgery generally comprises either a periareolar incision or an inframammary incision or both. Other, more complex incision types are also available for various specific needs. For instance a triangular incision may be used where mass reduction is provided. A vertical incision may be used where maximum access is desired. Alternatively, a “b-flap” incision may be employed where specific reconstruction is indicated. This is an incision that extends from the vertical incision site to a selected lateral position. In some cases an incision is made in the umbilicus and access to breast is provided beneath the skin level.


Generally, opposing mechanical retractors are used to spread, open or enlarge an incision for appropriate access. The mechanical retractors may be moved in tandem to position the incision to maximize access and visualization. This action requires complicated and orchestrated action, usually involving two operators. An additional complication may arise when metallic retractors are employed in an environment where electrosurgical devices are in use. The potential for unintended electrical discharge is clearly present. This could result in burns that are difficult to anticipate and manage.


In view of the foregoing, there remains a need to provide surgical access to the human breast and other areas of the human body that provides acceptable access and further provides exceptional cosmetic outcome but which avoids the complications and risks of mechanical retractors.


BRIEF DESCRIPTION OF THE INVENTION

The present invention provides surgical retractor for use in a surgical incision or at a natural orifice, comprising an external support member; an internal support member; a connecting member having a distal end, a proximal end, and a tissue contacting surface, the proximal end of the connecting member connected to the external support member and the distal end of the connecting member connected to the internal support member; and a first positioning element comprising a holding portion and a connecting portion, wherein the connecting portion is attached to the external support member. In some embodiments, the connecting portion comprises a recess configured to complement the external support member such that the connecting portion may be snap fit onto the external support member to thereby attach the positioning element to the external support member. In other embodiments, the positioning element comprises a connecting feature configured such that the connecting feature may be urged over and about the external support member to thereby attach the positioning element to the external support member. In still other embodiments, the positioning element comprises a cut-out area and defines an opening sized and configured to slide past the connecting member so that the cut-out area may engage the external support member to thereby attach the positioning element to the external support member.


Optionally, the surgical retractor further comprises a support structure, the support structure having a base and a pivot point, wherein the base is configured to attach to a surgical table and the pivot point is configured to attach to the holding portion of the positioning element.


In some embodiments, a second positioning element may attached to the external support member. Optionally, the surgical retractor may also comprise a first support structure and a second support structure, each support structure having a base and a pivot point, wherein the bases are configured to attach to a surgical table, the pivot point of the first support structure is attached to the first positioning element and the pivot point of the second support structure is attached to the second positioning element.


In some embodiments, the internal support member comprises an inflatable toroid, the inflatable toroid being connected to a transfer conduit configured to interact with a gas or fluid supply. In other embodiments, the internal support member comprises a memory foam, the internal support member configured to be deformed for insertion through an incision, returning to a predetermined shape once within the surgical field.


In other embodiments, the surgical retractor comprises an external support member; an internal support member; a connecting member having a distal end, a proximal end, and a tissue contacting surface, the proximal end of the connecting member connected to the external support member and the distal end of the connecting member connected to the internal support member; a seal cap, the seal cap comprising a cap ring and an elastomeric seal disposed within the cap ring, wherein the cap ring is configured to sealingly engage the external support member, the cap ring comprising an attachment feature; and a first positioning element comprising a holding portion and a connecting portion, wherein the connecting portion is configured to detachably engage with the attachment feature. Optionally, the attachment feature comprises a series of tabs and grooves configured to form a complementary fit with the connecting portion of the positioning element. In some embodiments, a second positioning element may be configured to detachably engage with the attachment feature.


In some embodiments, the elastomeric seal comprises at least one access port. In other embodiments, the elastomeric seal further comprises at least one receptacle and at least one insert configured to fit in the receptacle.


In some embodiments, a surgical retractor comprises an external support member; an internal support member; a connecting member having a distal end, a proximal end, and a tissue contacting surface, the proximal end of the connecting member connected to the external support member and the distal end of the connecting member connected to the internal support member; and an external support structure, wherein the external support structure comprises an adjustable neck attached to a table stand, the adjustable neck configured to detachably attach to the external support member. Optionally, the adjustable neck comprises a first arm segment, a second arm segment and a hinge, the hinge connecting the first arm segment and the second arm segment.


In one embodiment useful when insufflating cavities within the body, the retractor comprises an external support member; an internal support member; a connecting member having a distal end, a proximal end, and a tissue contacting surface, the proximal end of the connecting member connected to the external support member and the distal end of the connecting member connected to the internal support member; a pressure sensitive seal, the seal comprising a cylindrical body, a movable sealing member, a compression spring disposed within the cylindrical body, the compression spring configured to engage the movable sealing member, and a cap having at least one opening, the cylindrical body comprising a first open end configured to attach to the external support member, a second open end attached to the cap, a first portion positioned near the first open end, the first portion having a smooth interior surface, and a second portion positioned near the second open end, the second portion having a fenestrated interior surface, wherein the opening in the cap is aligned with at least one fenestration and the sealing member is configured to move within the cylindrical body in response to pressure changes, from a low pressure state in which the sealing member is positioned within the first portion to sealing engage the smooth interior surface to a high pressure state in which the sealing member is forced upward by insufflation gases against the compression spring into the second portion having a fenestrated interior surface, thereby allowing the insufflation gas to escape through the opening in the cap and returning the sealing member to the low pressure state. Optionally, the cap is axially or radially adjustable to modulate the pressure of the insufflation gas.


In still another embodiment of the present invention, the surgical retractor is illuminated, comprising an external support member; an internal support member; a connecting member having a distal end, a proximal end, and a tissue contacting surface, the proximal end of the connecting member connected to the external support member and the distal end of the connecting member connected to the internal support member; a positioning element comprising a holding portion and a connecting portion, wherein the connecting portion is attached to the external support member; and an illumination element attached to the internal support member. In some embodiments, the illumination element comprises a flexible fiber-optic bundle disposed within a tubular structure and connected to a light source by a fiber option cable. In other embodiments, the illumination element comprises light emitting diodes (“LEDs”) disposed with a tubular ring, the LEDs connected to an energy source by an electrical conduit.


Optionally, the illuminated element is attachable to and detachable from the interior support member. In some embodiments, the illuminated surgical retractor comprises a reflective surface on the illumination element, configured to reflect light into the surgical field.


These and other features of the invention will become more apparent with a discussion of the various embodiments in reference to the associated drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a first use of a circumferential retractor involving a human breast in a periareolar incision.



FIG. 2 is a lateral view of a transaxillary incision where a circumferential retractor is placed within said incision.



FIG. 3 is a perspective view of a circumferential retractor.



FIG. 4A is a top view of a circumferential retractor with an attached positioning or manipulating element, deployed in a periareolar incision.



FIG. 4B is a top view of a circumferential retractor with an attached positioning or manipulating element, deployed in a transaxillary incision.



FIG. 5A is a perspective view of a positioning element adapted to snap over an outer ring.



FIG. 5B is a perspective view of a connecting feature adapted to attach to an external support structure.



FIG. 5C is a perspective view of a positioning element with a cut-out area configured to engage an external support member.



FIG. 6A is a lateral view of a transaxillary incision where a circumferential retractor is placed within said incision and a positioning member is attached and maneuvered to first preferred position.



FIG. 6B is a lateral view of a transaxillary incision where a circumferential retractor is placed within said incision and a positioning member is attached and maneuvered to a second position.



FIG. 7 illustrates the circumferential retractor of FIG. 4A with a second attached positioning or manipulating element.



FIG. 8A is a perspective view of a retractor having a first and a second positioning element with the first positioning element placed under an external support structure.



FIG. 8B is a perspective view of a retractor having a first and a second positioning element, with the second positioning element comprising an engaging feature adapted to attach to the first positioning element.



FIG. 8C is a perspective view of a retractor having a first and a second positioning element, with the second positioning element configured to attach to an open connecting portion of the first positioning element.



FIG. 8D is a perspective view of a retractor having a first and a second positioning element, with the first and second positioning elements configured to slide past the cylindrical connecting member to upwardly engage an external support member.



FIG. 9 is a lateral view of a transaxillary incision illustrating the use of more than one positioning element.



FIG. 10 is a lateral view of a transaxillary incision illustrating the use of more than one positioning element and a stabilizing member.



FIG. 11 is a perspective top view of a circumferential retractor having two positioning members and a seal cap.



FIG. 12 is a side-section view of the circumferential retractor of FIG. 11.



FIG. 13 is an oblique side-section view of the circumferential retractor of FIG. 11, which the elastomeric seal portion removed.



FIG. 14 is a perspective top view of a circumferential retractor having two positioning members and a seal cap with dedicated instrument seals.



FIG. 15 is a perspective bottom view of a circumferential retractor having two positioning members and a seal cap with dedicated instrument seals.



FIG. 16 is an oblique top view of a seal cap according to one aspect of the present invention where flat instruments may be used.



FIG. 17A is a top-side detailed view of a seal cap having various individual access ports.



FIG. 17B is a bottom-side detailed view of the seal cap of FIG. 17A.



FIG. 18 illustrates a circumferential retractor having a seal-cap and a plurality of removable or exchangeable access port inserts.



FIG. 19 is an oblique view of an embodiment of a circumferential retractor having a tapered connecting member or sleeve.



FIG. 20 is a perspective view of a circumferential retractor having an inflatable inner support member, shown in a first, uninflated condition (solid) and a second, inflated condition (broken).



FIG. 21A illustrates a foldable inner support member of a circumferential retractor, having a disk-shaped inner support member shown in the folded position.



FIG. 21B illustrates the foldable inner support member of FIG. 21A, shown in an unfolded position.



FIG. 21C illustrates a ring-shaped inner support member.



FIG. 22A shows a lateral view of a support member associated with a circumferential retractor, before manipulating the support member to increase the surgical field.



FIG. 22B shows a lateral view of a support member associated with a circumferential retractor, after manipulating the support member to increase the surgical field.



FIG. 23 illustrates the use of a hinged, pivoted support element attached to a circumferential retractor.



FIG. 24 illustrates the use of a dissecting tool having a gas or fluid supply.



FIG. 25 is a side section view of a relief valve for use with a sealed circumferential retractor.



FIG. 26 is an oblique section view of a relief valve for use with a sealed circumferential retractor.



FIG. 27 illustrates the use of an illuminating instrument.



FIG. 28 illustrates a circumferential insufflating retractor having a seal-cap and an illuminating element.



FIG. 29 is an enlarged oblique bottom-side view of a circumferential retractor having an integrated illuminating element.



FIG. 30 is an exploded oblique bottom-side view of a circumferential retractor having a detachable illuminating element.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention describes a circumferential incision retractor or wound retractor and a supporting, manipulating or positioning tool that detachably attaches to the circumferential retractor. Optionally, a sealing member associated with an external member of the retractor and/or an external support structure may be used with the manipulating tool or member as needed. The disclosed embodiments are described with reference to their use in human breast surgery, although they may be used as appropriate in other surgical procedures, particularly where cosmetic outcome is important. It should also be appreciated that the described retractor may also be used in natural orifices where appropriate.



FIG. 1 shows a female human torso 10 in a supine position with a periareolar skin incision 31 made in the breast 11 to gain access to the interior tissue. A circumferential retractor 71 according to the present invention is placed within the incision 31 and deployed to reshape and shield the initial incision as desired. The circumferential retractor acts on the initial incision to produce an enlarged opening 39 through which surgical instruments may be inserted. Deployment of a circular retractor 71 in a transaxillary incision is shown in FIG. 2.


Surgical instruments may be inserted and used through the retractor 71 and the modified incision 31 as desired. In a preferred embodiment, shown in FIG. 3, the circumferential retractor 71 comprises a first, internal support member 155, a second, external support member 153 and a cylindrical connecting member 154. The connecting member 154 comprises an external tissue-contacting surface and an internal surface that, when deployed, lines an access opening into the body. The connecting member 154 is preferably sized and configured to present a circumferential outward force or pressure upon tissue through which it has been inserted as it is acted upon by activity associated with an external support member 153. More simply stated, as the external support member 153 is rotated upon itself, the attached connecting member 154 is shortened linearly. As the connecting member 154 is shortened, the tissue through which it has been inserted is forced away from the axis of the device 71. The result of the force upon the tissue is an enlarged opening 39 through which a surgical procedure may be performed.


It should be noted that the particular configuration of the internal and external support members may be varied depending on particular use. For example, the support members are shown as circular rings but may have other shapes, such as oval or semicircular. Also, the support members may occur singly or in some multiple as, for example, a double-ring external support member. The support members may be solid or hollow, flexible or rigid. Suitable circumferential retractors are described in U.S. Pat. Nos. 7,650,887, 7,727,146 and 7,704,207, the disclosures of which are incorporated by reference in their entireties.


In FIG. 4A, a female human torso 10 is shown with a periareolar incision 31 in the breast 11, into which a circumferential retractor 71 has been placed to create an enlarged opening 39. Once the circumferential retractor 71 is appropriately placed, a first positioning element 90 may be placed upon the external support member 153 and used to maneuver the retractor 71 as desired. The first positioning 90 may preferably comprise a connecting portion 92 and a holding portion 94. The connecting portion 92 may be sized and configured to attach to the external support member 153 in a way that it can be rotated about the central axis of the device 71. The positioning element 90 may additionally be configured to be held by a human hand 110. In FIG. 4B, a female human torso 10 is shown with a transaxillary incision 42 in the breast 11, into which a circumferential retractor 71 with a positioning element 90 has been placed to create an enlarged opening 39.


In a preferred embodiment, a positioning element 90 associated with the retractor 71 of the present invention may be rotated 360 degrees around the central axis of the circumferential retractor 71 without presenting rotational forces upon the associated tissue. The positioning element 90, once attached to the external support member 153, may be used to maneuver or position the retractor 71 to a preferred orientation or position.


With reference to FIGS. 5A-5C, one or more positioning elements 90, 91 may be attached to the external support member 153 in a variety of ways. A first positioning element 90 may be snapped over the outer ring or external support structure 153 so that the structure is contained within an undercut in the connecting portion 92 that allows axial rotation of the handle 90 about the axis of the circumferential retractor (FIG. 5A). An alternate embodiment, shown in FIG. 5B, makes use of at least one connecting feature 394 positioned on the connecting portion 92 that may be urged over and about the external support structure 153. An additional embodiment makes use of a positioner 90 having a connecting portion 393 with an opening 396 sized and configured to slide past the cylindrical connecting member 154 and then upward so that a cut-out area 395 of the connecting portion 393 may engage the external support member 153 (FIG. 5C).


With a positioning element attached to the circumferential retractor, an operator may manipulate the incision or wound from its initial position to a first preferred position or a second preferred position depending on the particular surgical needs. Performing such manipulation with the present invention reduces trauma to the incision site than conventional mechanical retractors and provides a more open operative space.



FIG. 6 shows a lateral view of a transaxillary incision 43 where a circumferential retractor 71 is placed within said incision and a positioning member 90 is attached and maneuvered to first preferred position (FIG. 6A, shown with broken lines) and to a second preferred position (FIG. 6B, shown with broken lines). A second operative hand 111 is free to deploy medical instruments (not shown) through the enlarged opening 39 at any of the positions.


In a further preferred embodiment, shown in FIG. 7, a second positioning element 91 may be attached to the external support member 153 in a similar manner as the first positioning element 90. The thusly attached positioning elements 90, 91 may be rotated independently about the central axis of the circumferential retractor 71.


Referring now to FIGS. 8A-8C, one embodiment of a scheme to attach two positioning elements to the external support structure 153 comprises a first positioning element 90 having an open connecting portion 393 placed under the external support structure 153 (FIG. 8A) and a second positioning element 91 that may be attached to the first positioning element 90 thereby capturing the external support structure 153 for maneuvering. A preferred embodiment of the second positioning element 91 comprises one or more engaging features associated with the underside 97 of the generally circular connecting portion 92 of the positioning element 91 (FIG. 8B), sized and configured to attach to the open connecting portion 393 of the first positioning element 90 (FIG. 8C). Engaging features may include, for example, tabs and detents, hooks and lattices, and the like.


Any combination of the embodiments shown in FIG. 5 may also be used to attach two positioning elements 90, 91 to the external support structure 153. For example, the first positioning element 90 may be snapped over the external support member 153 as in FIG. 5A, while the second positioning element 91 may include a connecting portion 393 configured to attach as shown in FIG. 5C. In FIG. 8D, both positioning elements attach by sliding past the cylindrical connecting member 154 and upward to engage the external support member and/or the other positioning element.


Referring to FIGS. 9 and 10, a preferred embodiment may comprise a first positioning element 90 that may be held with one hand 110 of a first operative individual and a second positioning element 91 that may be held with one hand 111 of a second operative individual. The cooperative action of the two associated positioning elements 90, 91 allows extreme manipulation of the retractor 71. In an alternate preferred embodiment, a first 90 or second 91 positioning element may attach to a support structure 93 associated with a surgical platform such as an operating table. In this instance, the attachment of a positioning element provides a pivot point 96 or fulcrum so that manipulation and positioning of the retractor 71 may be accomplished by a single hand. A second support structure may be employed to attach to either a first or second positioning element 90, 91 so that an associated retractor may be positioned and held in place as desired. It is important to note that while the present device is depicted for use in the axillary region 43, it may be used in other surgical site locations as well.


A preferred embodiment of the present invention, shown in FIGS. 11-15, may further comprise an external attachment member or seal cap 157 that is sized and configured to provide a gas-tight seal at the outer, external, proximal portion of the retractor 71. The gas-tight seal allows positive pressurization of an anatomical region associated with the distal or internal portion of the circumferential retractor 71. A preferred gas-tight seal cap 157 may comprise a cylindrical elastomeric member sized and configured to fit securely upon an external support member 153 associated with a circumferential retractor 71.


For example, as seen in FIGS. 11-12, an elastomeric seal member or cap 157 according to the present invention comprises a disk-shaped portion 161 having a diameter, a thickness, a first surface 158, a second surface 159 and cap ring 162 configured to hold the disk-shaped elastomeric seal portion. Preferably, the cap ring further comprises an attachment feature 156. Attachment feature 156 may be configured to detachably interact with the connecting portion 92 of one or more positioning elements 90, 91. For example, the attachment feature may be a series of alternating tabs and grooves which form a complementary fit with the connecting portion.



FIG. 13 shows the retractor plus seal cap of FIG. 12 in oblique view, with the disk-shaped portion removed to show a circumferential ledge 163, which supports the disk-shaped elastomeric seal member within the cap ring 162. As shown in FIG. 13, the cap ring attaches to the external support member 153 of the retractor.


In a preferred embodiment, the elastomeric seal member 157 is highly flexible or, at least, made from a soft, compliant material such as styrene-block-copolymer or silicone rubber. In a first embodiment, a surgical tool or instrument may be passed through the material and into a body cavity. In a second embodiment, a surgical tool or instrument may be passed through an access port 167 associated with the elastomeric seal member 157 and into a body cavity.


The elastomeric member or cap 157 may additionally be configured to accept the passage of surgical tools or instruments while preventing depressurization of an internal area, as shown in FIGS. 14-15. The elastomeric seal member 157 may further comprise one or more individual sealing access ports 167. Each of the individual access ports may further comprise a septum 168 and a check valve 169. The individual access ports 167 may be sized and configured to respond to surgical tools or instruments within a range of nominal sizes.


For purposes of construction, the individual access ports 167 associated with the elastomeric seal 157 member may be integrally formed. The present invention contemplates that the individual access ports 167 may be sized and configured for larger or smaller instruments according to the demands of a specific procedure. In addition, a specific procedure may call for an irregularly shaped instrument. Therefore, the elastomeric seal member 157 and individual access ports 167 may be adapted or manufactured to accommodate the tools, devices or instruments associated with a specific procedure. For instance, an elastomeric seal member 157 designed for use in breast surgery may comprise two or more access ports 167 sized and configured for surgical instruments having a five millimeter shaft-diameter. In addition, one port may accommodate a telescope having a shaft diameter of eight millimeters or more or less. In addition to the foregoing, an additional access port 160, 164 may be sized and configured to accommodate a generally flat-shaped instrument, such as a dissecting probe or otherwise spatulated instrument, as shown in FIGS. 16 and 17A,B.


Now referring to FIG. 18, an alternate construction according to the present invention comprises one or more individual access ports 167 that are exchangeable according to the procedural needs of a specific surgery. For instance, a small-bore insert 222 may be placed within the elastomeric seal cap 157 as needed. Next, an insert 223 having a larger bore may be placed as needed. An additional insert 221 having different characteristics than the first two inserts may be placed. In other words, the present invention contemplates a variety of individual seal inserts that may be selected as required and placed within receptacles 220 within the seal cap 157.


As discussed above, the present invention may be used in a variety of surgical scenarios, although it does have particular use in breast surgery. Some surgical procedures, including breast surgery, may require considerable lateral retraction while still keeping the incision as small as possible. Also, some surgical sites may have limited space in which to anchor the internal support structure, a situation very different from abdominal surgery, for example. In such instances, a preferred embodiment of the present invention further comprises an internal support structure that may be significantly smaller than the outer support structure, as seen in FIG. 19. In this embodiment, the connecting member 174 is frustoconical in shape, connecting a smaller internal support member 171 to a larger external support member 170.


Referring now to FIG. 20, an inflatable distal or inner support member 180 is shown comprising a hollow toroidal shaped distal or internal member. The distal retention member 180 is sized and configured to be insert-able through a small surgical incision and subsequently pressurized or inflated to achieve a preferred shape and size 180′ that may not otherwise be insertable through the incision. A preferred embodiment may include an inflatable toroidal retention member 180 that is pressurized by gas or fluid by means of a gas or fluid supply associated with a transfer conduit 181. The unpressurized internal support member 180 may be easily placed through a small surgical incision and subsequently expanded, pressurized or filled to achieve preferred size or rigidity. A preferred embodiment of the inflatable member comprises a toroidal support element having a supply conduit that may be further connected to a syringe 182 having a preferred volume for gas or fluid. The inflatable member may be deflated at anytime for easy retrieval from the surgical incision.


A further embodiment of an expandable inner support member may comprise a toroidal-shaped, disk-shaped 176 or ring-shaped 177 inner member constructed from “memory-foam”. A preferred embodiment of memory foam may include the use of “viscoelastic” polyurethane foam. The viscoelastic foam element may be deformed by hand or by packaging, inserted through a surgical incision and subsequently allowed to return to a predetermined shape and size once within the surgical site. Embodiments of this design are shown in FIG. 21.


Referring to FIGS. 4, 6, 7, 9, 10, 22 and 23, the present invention contemplates several methods for creating operative space within an anatomical region. Using, as an example, a human breast 11, a first method for creating operative space may comprise: placing a circumferential retractor 71 within an incision, attaching at least a first manipulating or positioning element 90 upon a placed retractor 71 and maneuvering said positioning element 90 so as to create a working environment.


A second method for creating operative space may comprise: placing a circumferential retractor 71 within an incision, attaching a proximal or external seal member or cap 157 and supplying an insufflation gas to the associated body cavity. An additional method for creating operative space may further comprise a combination of the two previously described methods.


A further method for developing and maintaining an operative space, shown in FIG. 22, may include the use of an adjustable external support structures 200. For example, an adjustable structure may comprise a semi-flexible “goose-neck” type element 202 that provides sufficient support to prevent collapse of the surgical field 250. The adjustable structure detachably connects to the external support member 153 of the circumferential retractor 71 at a proximal end; the distal end comprises a table stand 201 that may be affixed to the operative table. As shown in FIG. 22A, after the circumferential retractor 71 is placed at the desired surgical site, the support structure 200 is attached to the external support member 153. The adjustable neck portion 202 of the structure 200 may be positionable by hand to, for example, raise the circumferential retractor 71, and thus the breast, to thereby expand the surgical field 250 (FIG. 22B). While adjustable, the neck does have sufficient stiffness to remain as positioned as the surgery continues.


A more robust support structure, shown in FIG. 23, may comprise a hinged or pivoted arm 275. The pivot-points 274a-d may further comprise tensioning controls that maintain individual arm segments 275, 276, 277 as positioned. A preferred embodiment of the foregoing contemplates that the support structures 200, 275 may be attached to an operative table 273 or a stand. In FIG. 23, the breast 11 is shown in a first, unexpanded state 12, with the corresponding position of the hinged pivoted arm shown in broken lines, and in a second, expanded state 13, with the corresponding position of the hinged pivoted arm shown in solid lines.


Operative space is often increased using insufflation, wherein a gas, for example, is pumped into the operative field to thereby expand it. Insufflation is commonly used in abdominal procedures, where the relatively large abdominal chamber may safely accommodate, within a limited range, the accompanying changes in pressure. When operating in a smaller space, however, even small changes in pressure can pose risk when insufflating the operative field. Such an increase of internal pressure may occur when a gas or fluid dissection device is employed, such as the device shown in FIG. 24, in which gas or fluid is introduced into the surgical field 250 through the distal end 355 of an elongate laparoscopic instrument 350 attached to an insufflation gas or fluid conduit 360. Accordingly, the present invention optionally incorporates a safety check or pressure relief valve for use in insufflating smaller operative fields in regions like the breast.


Referring to FIGS. 25 and 26, a preferred embodiment of a seal-cap 380 according to the present invention further contemplates a pressure sensitive relief-valve 370 associated with the insufflation gas supply. A preferred insufflation pressure is maintained as dissection gas or fluid is introduced into the body cavity or operative work-space. A preferred relief-valve 370 may include an adjustable spring-loaded mechanism sized and configured to respond to low pressure and small changes in pressure that may not be recognizable to a conventional insufflation gas supply. A preferred valve protects the operative cavity from over inflation beyond the capabilities of the insufflators. The valve 370 allows gas to escape if a predetermined pressure is exceeded.


A preferred relief valve 370 may comprise a cylindrical body 371, an adjustable cap 375, a compression spring 377 and an elastomeric seal 372. A cylindrical body 371 may include a structure having a smooth sealing, first surface 373, and a fenestrated second surface 374. As the elastomeric seal member 372 is forced upward against the compression spring 377 by internal gas pressure, the fenestrated second surface 374 allows gas to escape through a plurality of openings 379 in the adjustable cap 375. When pressure is returned to an appropriate level, the compression spring 377 returns the seal member 372 to the smooth, first, sealing portion 373 of the cylindrical body 371.


A further preferred embodiment comprises a cap 375 that is axially and radially adjustable so that the preferred gas pressure may be selected or adjusted by restriction of the orifices 374 and further by compression or decompression of the internal spring 377.


With reference to FIG. 27, the present invention further comprises, in combination with circumferential retraction in a human breast, a method for illuminating a portion of tissue within a developing cavity or work-space 250. The illumination may be useful for directly visualizing the activity of a mechanical dissector. In addition to direct visualization, the illumination may be an external indicator 251 of the internal activity or the position of an illuminated instrument 300 connected to a light source 310. In a preferred embodiment, a substantially flat or spatulated dissecting instrument may be provided for use in an insufflated cavity 250. The distal end 306 of the device 300 may further comprise a plurality of lumens. A first lumen may deliver a flow of gas. A second lumen may deliver a flow of liquid or a vacuum. A third lumen may contain a fiber optic element, light emitting diode or other illuminating element.


Now referring to FIGS. 28-30, a circumferential wound retractor according to the present invention may further comprise a rigid or semi-rigid, first, circular external support member 153 connected to a cylindrical, second, connecting member 154 that is further connected to a semi-rigid, circular, third, internal support member 155. A preferred embodiment provides an illumination element or elements that are associated with the internal support member 155. A preferred illumination element may comprise a flexible fiber-optic structure, a tubular ring having a plurality of light emitting diodes, a plurality of incandescent or fluorescent light sources or the like.


In use, the internal support member 155 may be inserted through an incision in a body wall and into a body cavity 250. Once in place, the illumination elements on the internal support member 155 may be energized to produce visible light 304 to illuminate a subject field or area of interest 250. An insufflation tube 351 attached to an insufflation gas source 352 may be used to insufflate the surgical site, with the illuminating internal member provides exceptional visual presence.


A preferred embodiment of an illumination element associated with the internal support member 155 of a circumferential wound retractor may comprise a transparent or opaque flexible tubular ring 305 having a circumferential lumen. The lumen may be packed with illuminating elements. Individual Light Emitting Diodes (LEDs) 301 may comprise a preferred embodiment in a flexible or semi-flexible tubular structure 305. A flexible fiber-optic bundle may comprise an alternate embodiment. The illumination element is connected to an illumination source 303 (a light source for fiberoptic cables or an energy source for LEDs) via a connecting member 302 (a fiber optic cable or an electrical conduit for energizing LEDs). Optionally, the tubular ring includes at least a partial reflective surface configured to reflect light into the operative field 250, facilitating the use of lower intensity lights and reducing the risk of overheating.


A further embodiment of the present invention may comprise a circumferential retractor having a distal, internal support member 155 sized and configured to receive and hold an illuminating member 305. An illuminating member 305 according to this embodiment may be attachable to and removable from, the internal support member 155 associated with the circumferential retractor.


While certain embodiments have been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope thereof as defined by the following claims.

Claims
  • 1. A surgical retractor, comprising: an external support member;an internal support member;a connecting member having a distal end, a proximal end, and a tissue contacting surface, the proximal end of the connecting member connected to the external support member and the distal end of the connecting member connected to the internal support member;a first positioning element comprising a first holding portion and a first connecting portion, wherein the first connecting portion is releasably connected to the external support member; and a second positioning element, comprising a second holding portion and a second connecting portion, wherein the second connecting portion is releasably connected to the first connecting portion, wherein the first connecting portion defines a generally semicircular configuration adapted to slide under and engage the external support member, and wherein the first connecting portion further comprising a first engaging feature and the second connecting portion further comprising a second engaging feature, wherein the first engaging feature connects to the second engaging feature when the second connecting portion is disposed over the external support structure to thereby capture the external support structure between the first and second connecting portions.
  • 2. The surgical retractor of claim 1, further comprising a support structure, the support structure having a base and a pivot point, wherein the base is configured to attach to a surgical table and the pivot point is configured to attach to the holding portion of at least one of the positioning elements.
  • 3. The surgical retractor of claim 1, further comprising a first support structure and a second support structure, each support structure having a base and a pivot point, wherein the bases are configured to attach to a surgical table, the pivot point of the first support structure is attached to the first positioning element and the pivot point of the second support structure is attached to the second positioning element.
  • 4. The surgical retractor of claim 1, wherein the internal support member comprises an inflatable toroid, the inflatable toroid being connected to a transfer conduit configured to interact with a gas or fluid supply.
  • 5. The surgical retractor of claim 1, wherein the internal support member comprises a memory foam, the internal support member configured to be deformed for insertion through an incision, returning to a predetermined shape once within the surgical field.
  • 6. The surgical retractor of claim 1, wherein the first engaging feature comprises detent and the second engaging feature comprises a tab.
  • 7. The surgical retractor of claim 1, wherein the first engaging feature comprises lattice and the second engaging feature comprises a hook.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Ser. No. 62/084,435 entitled “CIRCUMFERENTIAL WOUND RETRACTION WITH SUPPORT AND GUIDANCE STRUCTURES,” filed Nov. 25, 2014.

US Referenced Citations (890)
Number Name Date Kind
52014 Bartlett Jan 1866 A
202813 Hall Apr 1878 A
447761 Clough Mar 1891 A
558364 Doolittle Apr 1896 A
758535 Howden Apr 1904 A
929583 Gibbs Jul 1909 A
1056966 Belding Mar 1913 A
1157202 Bates et al. Oct 1915 A
1221123 Westhaver Apr 1917 A
1242972 Petit Oct 1917 A
1598284 Kinney Aug 1926 A
1690995 Pratt Nov 1928 A
1180466 Deutsch Jun 1931 A
1810466 Deutsch Jun 1931 A
2219564 Reyniers Oct 1940 A
2305289 Coburg Dec 1942 A
2313164 Wa Nelson Mar 1943 A
2478586 Krapp Aug 1949 A
2669991 Curutchet Feb 1954 A
2695608 Gibbon Nov 1954 A
2812758 Blumenschein Nov 1957 A
2835253 Borgeson May 1958 A
2853075 Hoffman et al. Sep 1958 A
3039468 Price Jun 1962 A
3057350 Cowley Oct 1962 A
3111943 Orndorff Nov 1963 A
3129706 Reynolds, Jr. Apr 1964 A
3195934 Parrish Jul 1965 A
3244169 Baxter Apr 1966 A
3253594 Matthews et al. May 1966 A
3313299 Spademan Apr 1967 A
3329390 Hulsey Jul 1967 A
3332417 Blanford et al. Jul 1967 A
3347226 Harrower Oct 1967 A
3347227 Harrower Oct 1967 A
3397692 Creager, Jr. et al. Aug 1968 A
3402710 Paleschuck Sep 1968 A
3416520 Creager, Jr. Dec 1968 A
3447533 Spicer Jun 1969 A
3522800 Lesser Aug 1970 A
3523534 Nolan Aug 1970 A
3553862 Hamu Jan 1971 A
3570475 Weinstein Mar 1971 A
3656485 Robertson Apr 1972 A
3685786 Woodson Aug 1972 A
3703896 Nuwayser Nov 1972 A
3717151 Collett Feb 1973 A
3717883 Mosher Feb 1973 A
3729006 Wilder et al. Apr 1973 A
3729027 Bare Apr 1973 A
3729045 MacDonald Apr 1973 A
3762080 Poole Oct 1973 A
3774596 Cook Nov 1973 A
3782370 McDonald Jan 1974 A
3788318 Kim et al. Jan 1974 A
3789852 Kim et al. Feb 1974 A
3797478 Walsh et al. Mar 1974 A
3799166 Marsan Mar 1974 A
3807393 McDonald Apr 1974 A
3828764 Jones Aug 1974 A
3831583 Edmunds et al. Aug 1974 A
3841332 Treacle Oct 1974 A
3850172 Cazalis Nov 1974 A
3853126 Schulte Dec 1974 A
3853127 Spademan Dec 1974 A
3856021 McIntosh Dec 1974 A
3860274 Ledstrom et al. Jan 1975 A
3861416 Wichterle Jan 1975 A
3863639 Kleaveland Feb 1975 A
3907389 Cox et al. Sep 1975 A
3915171 Shermeta Oct 1975 A
3965890 Gauthier Jun 1976 A
3970089 Saice Jul 1976 A
3996623 Kaster Dec 1976 A
4000739 Stevens Jan 1977 A
4016884 Kwan-Gett Apr 1977 A
4024872 Muldoon May 1977 A
4030500 Ronnquist Jun 1977 A
4043328 Cawood, Jr. et al. Aug 1977 A
4069913 Harrigan Jan 1978 A
4082005 Erdley Apr 1978 A
4083370 Taylor Apr 1978 A
4096853 Weigand Jun 1978 A
4112932 Chiulli Sep 1978 A
4117847 Clayton Oct 1978 A
4130113 Graham Dec 1978 A
4141364 Schultze Feb 1979 A
4177814 Knepshield et al. Dec 1979 A
4183357 Bentley et al. Jan 1980 A
4187849 Stim Feb 1980 A
4188945 Wenander Feb 1980 A
4189880 Ballin Feb 1980 A
4217664 Faso Aug 1980 A
4222126 Boretos et al. Sep 1980 A
4228792 Rhys-Davies Oct 1980 A
4239036 Krieger Dec 1980 A
4240411 Hosono Dec 1980 A
4253201 Ross et al. Mar 1981 A
4254973 Banjamin Mar 1981 A
4306562 Osborne Dec 1981 A
4321915 Leighton Mar 1982 A
4331138 Jessen May 1982 A
4338934 Spademan Jul 1982 A
4338937 Lerman Jul 1982 A
4367728 Mutke Jan 1983 A
4369284 Chen Jan 1983 A
4399816 Spangler Aug 1983 A
4402683 Kopman Sep 1983 A
4411659 Jensen et al. Oct 1983 A
4421296 Stephens Dec 1983 A
4424833 Spector et al. Jan 1984 A
4428364 Bartolo Jan 1984 A
4430081 Timmermans Feb 1984 A
4434791 Darnell Mar 1984 A
4436519 O'Neill Mar 1984 A
4454873 Laufenberg et al. Jun 1984 A
4473067 Schiff Sep 1984 A
4475548 Muto Oct 1984 A
4485490 Akers et al. Dec 1984 A
4488877 Klein Dec 1984 A
4508355 Ditcher Apr 1985 A
4543088 Bootman et al. Sep 1985 A
4550713 Hyman Nov 1985 A
4553537 Rosenberg Nov 1985 A
4555242 Saudagar Nov 1985 A
4556996 Wallace Dec 1985 A
4601710 Moll Jul 1986 A
4610665 Matsumoto et al. Sep 1986 A
4626245 Weinstein Dec 1986 A
4634424 O'Boyle Jan 1987 A
4634432 Kocak Jan 1987 A
4644951 Bays Feb 1987 A
4649904 Krauter Mar 1987 A
4653476 Bonnet Mar 1987 A
4654030 Moll et al. Mar 1987 A
4655752 Honkanen et al. Apr 1987 A
4673393 Suzuki et al. Jun 1987 A
4673394 Fenton Jun 1987 A
4691942 Ford Sep 1987 A
4714749 Hughes et al. Dec 1987 A
4738666 Fuqua Apr 1988 A
4755170 Golden Jul 1988 A
4760933 Christner et al. Aug 1988 A
4776843 Martinez et al. Oct 1988 A
4777943 Chvapil Oct 1988 A
4784646 Feingold Nov 1988 A
4796629 Grayzel Jan 1989 A
4798594 Hillstead Jan 1989 A
4802694 Vargo Feb 1989 A
4808168 Warring Feb 1989 A
4809679 Shimonaka et al. Mar 1989 A
4828554 Griffin May 1989 A
4842931 Zook Jun 1989 A
4848575 Nakamura et al. Jul 1989 A
4856502 Ersfeld et al. Aug 1989 A
4863430 Klyce et al. Sep 1989 A
4863438 Gauderer et al. Sep 1989 A
4889107 Kaufman Dec 1989 A
4895565 Hillstead Jan 1990 A
4897081 Poirier Jan 1990 A
4903710 Jessamine et al. Feb 1990 A
4911974 Shimizu et al. Mar 1990 A
4915132 Hodge et al. Apr 1990 A
4926882 Lawrence May 1990 A
4929235 Merry et al. May 1990 A
4944732 Russo Jul 1990 A
4950222 Scott et al. Aug 1990 A
4950223 Silvanov Aug 1990 A
4984564 Yuen Jan 1991 A
4991593 LeVahn Feb 1991 A
4998538 Charowsky et al. Mar 1991 A
5000745 Guest et al. Mar 1991 A
5009224 Cole Apr 1991 A
5015228 Columbus et al. May 1991 A
5019101 Purkait et al. May 1991 A
5026366 Leckrone Jun 1991 A
5037379 Clayman et al. Aug 1991 A
5041095 Littrell Aug 1991 A
5045070 Grodecki et al. Sep 1991 A
D320658 Quigley et al. Oct 1991 S
5071411 Hillstead Dec 1991 A
5073169 Raiken Dec 1991 A
5074878 Bark et al. Dec 1991 A
5082005 Kaldany Jan 1992 A
5086763 Hathman Feb 1992 A
5092846 Nishijima et al. Mar 1992 A
5104389 Deem Apr 1992 A
5108420 Marks Apr 1992 A
5125396 Ray Jun 1992 A
5125897 Quinn et al. Jun 1992 A
5127626 Hilal et al. Jul 1992 A
5129885 Green et al. Jul 1992 A
5141498 Christian Aug 1992 A
5149327 Oshiyama Sep 1992 A
5156617 Reid Oct 1992 A
5158553 Berry et al. Oct 1992 A
5159921 Hoover Nov 1992 A
5161773 Tower Nov 1992 A
5167636 Clement Dec 1992 A
5167637 Okada et al. Dec 1992 A
5176648 Holmes et al. Jan 1993 A
5176662 Bartholomew et al. Jan 1993 A
5176697 Hasson et al. Jan 1993 A
5178162 Bose Jan 1993 A
5180365 Ensminger et al. Jan 1993 A
5183471 Wilk Feb 1993 A
5188595 Jacobi Feb 1993 A
5188607 Wu Feb 1993 A
5192301 Kamiya et al. Mar 1993 A
5197955 Stephens et al. Mar 1993 A
5207656 Kranys May 1993 A
5209737 Rirchart et al. May 1993 A
5211370 Powers May 1993 A
5211633 Stouder, Jr. May 1993 A
5213114 Bailey, Jr. May 1993 A
5226890 Ianniruberto et al. Jul 1993 A
5234455 Mulhollan Aug 1993 A
5241968 Slater Sep 1993 A
5242400 Buelna Sep 1993 A
5242409 Buelna Sep 1993 A
5242412 Blake, III Sep 1993 A
5242415 Kantrowitz et al. Sep 1993 A
5248304 Vigdorchik et al. Sep 1993 A
5256150 Quiachon et al. Oct 1993 A
5257973 Villasuso Nov 1993 A
5257975 Foshee Nov 1993 A
5259366 Reydel et al. Nov 1993 A
5261883 Hood et al. Nov 1993 A
5262468 Chen Nov 1993 A
5263922 Soya et al. Nov 1993 A
5269763 Boehmer et al. Dec 1993 A
5269772 Wilk Dec 1993 A
5273449 Mattis et al. Dec 1993 A
5273545 Hunt et al. Dec 1993 A
D343236 Quigley et al. Jan 1994 S
5279575 Sugarbaker Jan 1994 A
5290310 Makower et al. Mar 1994 A
D346022 Quigley et al. Apr 1994 S
5299582 Potts Apr 1994 A
5300034 Behnke Apr 1994 A
5300035 Clement Apr 1994 A
5300036 Mueller et al. Apr 1994 A
5303486 Dell Apr 1994 A
5308336 Hart et al. May 1994 A
5309896 Moll et al. May 1994 A
5312391 Wilk May 1994 A
5314417 Stephens et al. May 1994 A
5316541 Fischer May 1994 A
5320611 Bonutti et al. Jun 1994 A
5330437 Durman Jul 1994 A
5330486 Wilk Jul 1994 A
5330497 Freitas et al. Jul 1994 A
5331975 Bonutti Jul 1994 A
5334143 Carroll Aug 1994 A
5334646 Chen Aug 1994 A
5336192 Palestrant Aug 1994 A
5336708 Chen Aug 1994 A
5338313 Mollenauer et al. Aug 1994 A
5342315 Rowe et al. Aug 1994 A
5342385 Norelli et al. Aug 1994 A
5350364 Stephens et al. Sep 1994 A
5353786 Wilk Oct 1994 A
5354280 Haber et al. Oct 1994 A
5360417 Gravener et al. Nov 1994 A
5364345 Lowery et al. Nov 1994 A
5364372 Danks et al. Nov 1994 A
5366446 Tal et al. Nov 1994 A
5366473 Winston et al. Nov 1994 A
5366478 Brinkerhoff et al. Nov 1994 A
5368545 Schaller et al. Nov 1994 A
5375588 Yoon Dec 1994 A
5380288 Hart et al. Jan 1995 A
5383861 Hempel et al. Jan 1995 A
5385552 Haber et al. Jan 1995 A
5385553 Hart et al. Jan 1995 A
5385560 Wulf Jan 1995 A
5389080 Yoon Feb 1995 A
5389081 Castro Feb 1995 A
5391153 Haber et al. Feb 1995 A
5391156 Hildwein et al. Feb 1995 A
5395367 Wilk Mar 1995 A
5400773 Zhu Mar 1995 A
5403264 Wohlers et al. Apr 1995 A
5403336 Kieturakis et al. Apr 1995 A
5407433 Loomas Apr 1995 A
5411483 Loomas May 1995 A
5413571 Katsaros et al. May 1995 A
5423848 Washizuka et al. Jun 1995 A
5429609 Yoon Jul 1995 A
5431676 Durdal et al. Jul 1995 A
5437683 Neumann et al. Aug 1995 A
5439455 Kieturakis et al. Aug 1995 A
5441486 Yoon Aug 1995 A
5443452 Hart et al. Aug 1995 A
5454365 Bonutti Oct 1995 A
5456284 Ryan et al. Oct 1995 A
5460170 Hammerslag Oct 1995 A
5460616 Weinstein et al. Oct 1995 A
5468248 Chin et al. Nov 1995 A
5476475 Gadberry Dec 1995 A
5480410 Cuschieri et al. Jan 1996 A
5486426 McGee et al. Jan 1996 A
5490843 Hildwein et al. Feb 1996 A
5492304 Smith et al. Feb 1996 A
5496280 Vandenbroek et al. Mar 1996 A
5503112 Luhman et al. Apr 1996 A
5507758 Thomason et al. Apr 1996 A
5508334 Chen Apr 1996 A
5511564 Wilk Apr 1996 A
5514109 Mollenauer et al. May 1996 A
5514133 Golub et al. May 1996 A
5514153 Bonutti May 1996 A
5518278 Sampson May 1996 A
5520632 Leveen May 1996 A
5522791 Leyva Jun 1996 A
5522824 Ashby Jun 1996 A
5524644 Crook Jun 1996 A
5526536 Cartmill Jun 1996 A
5531758 Uschold et al. Jul 1996 A
5538509 Dunlap et al. Jul 1996 A
5540648 Yoon Jul 1996 A
5540711 Kieturakis et al. Jul 1996 A
5545150 Danks et al. Aug 1996 A
5545179 Williamson, IV Aug 1996 A
5549563 Kronner Aug 1996 A
5549637 Crainich Aug 1996 A
5554124 Alvarado Sep 1996 A
5555653 Morgan Sep 1996 A
5562632 Davila et al. Oct 1996 A
5562677 Hildwein et al. Oct 1996 A
5562688 Riza Oct 1996 A
5571115 Nicholas Nov 1996 A
5571137 Marlow et al. Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5577993 Zhu et al. Nov 1996 A
5578048 Pasqualucci et al. Nov 1996 A
5580344 Hasson Dec 1996 A
5584850 Hart et al. Dec 1996 A
5601579 Semertzides Feb 1997 A
5601581 Fogarty et al. Feb 1997 A
5603702 Smith et al. Feb 1997 A
5607443 Kieturakis et al. Mar 1997 A
5620415 Lucey et al. Apr 1997 A
5620420 Kriesel Apr 1997 A
5628732 Antoon, Jr. et al. May 1997 A
5632284 Graether May 1997 A
5632979 Goldberg et al. May 1997 A
5634911 Hermann et al. Jun 1997 A
5634936 Linden et al. Jun 1997 A
5634937 Mollenauer et al. Jun 1997 A
5636645 Ou Jun 1997 A
5640977 Leahy et al. Jun 1997 A
5643301 Mollenauer Jul 1997 A
5649550 Crook Jul 1997 A
5651771 Tangherlini et al. Jul 1997 A
5653705 de la Torre et al. Aug 1997 A
5657963 Hinchliffe et al. Aug 1997 A
5658272 Hasson Aug 1997 A
5658306 Kieturakis Aug 1997 A
5662615 Blake, III Sep 1997 A
5672168 de la Torre et al. Sep 1997 A
5681341 Lunsford et al. Oct 1997 A
5683378 Christy Nov 1997 A
5685826 Bonutti Nov 1997 A
5685854 Green et al. Nov 1997 A
5685857 Negus et al. Nov 1997 A
5697914 Brimhall Dec 1997 A
5707703 Rothrum et al. Jan 1998 A
5709664 Vandenbroek et al. Jan 1998 A
5713858 Heruth et al. Feb 1998 A
5713869 Morejon Feb 1998 A
5715548 Weismiller Feb 1998 A
5720730 Blake, III Feb 1998 A
5725536 Oberlin et al. Mar 1998 A
5728103 Picha et al. Mar 1998 A
5730748 Fogarty et al. Mar 1998 A
5735791 Alexander et al. Apr 1998 A
5738628 Sierocuk et al. Apr 1998 A
5741234 Aboul-Hosn Apr 1998 A
5741298 MacLeod Apr 1998 A
5743884 Hasson et al. Apr 1998 A
5749882 Hart et al. May 1998 A
5753150 Martin et al. May 1998 A
5755660 Tyagi May 1998 A
5760117 Chen Jun 1998 A
5769783 Fowler Jun 1998 A
5782812 Hart et al. Jul 1998 A
5782817 Franzel et al. Jul 1998 A
5782859 Nicholas et al. Jul 1998 A
5788676 Yoon Aug 1998 A
5792119 Marx Aug 1998 A
5794528 Gronig et al. Aug 1998 A
5795290 Bridges Aug 1998 A
5803919 Hart et al. Sep 1998 A
5803921 Bonadio Sep 1998 A
5803923 Singh-Derewa et al. Sep 1998 A
5807350 Diaz Sep 1998 A
5810712 Dunn Sep 1998 A
5810721 Mueller et al. Sep 1998 A
5813409 Leahy et al. Sep 1998 A
5814026 Yoon Sep 1998 A
5817062 Flom et al. Oct 1998 A
5819375 Kastner Oct 1998 A
5820555 Watkins, III et al. Oct 1998 A
5820600 Carlson et al. Oct 1998 A
5830191 Hildwein et al. Nov 1998 A
5832925 Rothrum Nov 1998 A
5836871 Wallace et al. Nov 1998 A
5841298 Huang Nov 1998 A
5842971 Yoon Dec 1998 A
5848992 Hart et al. Dec 1998 A
5853395 Crook et al. Dec 1998 A
5853417 Fogarty et al. Dec 1998 A
5857461 Levitsky et al. Jan 1999 A
5860995 Berkelaar Jan 1999 A
5865728 Moll et al. Feb 1999 A
5865729 Meehan et al. Feb 1999 A
5865807 Blake, III Feb 1999 A
5865817 Moenning et al. Feb 1999 A
5871474 Hermann et al. Feb 1999 A
5876413 Fogarty et al. Mar 1999 A
5879368 Hoskin et al. Mar 1999 A
5882344 Strouder, Jr. Mar 1999 A
5884639 Chen Mar 1999 A
5894843 Benetti et al. Apr 1999 A
5895377 Smith et al. Apr 1999 A
5899208 Bonadio May 1999 A
5899913 Fogarty et al. May 1999 A
5904703 Gilson May 1999 A
5906577 Beane et al. May 1999 A
5913847 Yoon Jun 1999 A
5916198 Dillow Jun 1999 A
5916232 Hart Jun 1999 A
5919476 Fischer et al. Jul 1999 A
5931832 Jensen Aug 1999 A
5947922 MacLeod Sep 1999 A
5951467 Picha et al. Sep 1999 A
5951588 Moenning Sep 1999 A
5957888 Hinchiffe et al. Sep 1999 A
5957913 de la Torre et al. Sep 1999 A
5961539 Northrup, III et al. Oct 1999 A
5962572 Chen Oct 1999 A
5964781 Mollenauer et al. Oct 1999 A
5976174 Ruiz Nov 1999 A
5989232 Yoon Nov 1999 A
5989233 Yoon Nov 1999 A
5989266 Foster Nov 1999 A
5993471 Riza et al. Nov 1999 A
5993485 Beckers Nov 1999 A
5993839 Mixon Nov 1999 A
5994450 Pearce Nov 1999 A
5997515 de la Torre et al. Dec 1999 A
6004303 Peterson Dec 1999 A
6010494 Schafer et al. Jan 2000 A
6017355 Hessel et al. Jan 2000 A
6018094 Fox Jan 2000 A
6024736 de la Torre et al. Feb 2000 A
6025067 Fay Feb 2000 A
6033426 Kaji Mar 2000 A
6033428 Sardella Mar 2000 A
6035559 Freed et al. Mar 2000 A
6042573 Lucey Mar 2000 A
6045535 Ben Nun Apr 2000 A
6048309 Flom et al. Apr 2000 A
6050871 Chen Apr 2000 A
6053934 Andrews et al. Apr 2000 A
6059816 Moenning May 2000 A
6065166 Sharrock May 2000 A
6066117 Fox et al. May 2000 A
6068639 Fogarty et al. May 2000 A
6076560 Stähle et al. Jun 2000 A
6077288 Shimomura Jun 2000 A
6086603 Termin et al. Jul 2000 A
6090043 Austin et al. Jul 2000 A
6099506 Macoviak et al. Aug 2000 A
6110154 Shimomura et al. Aug 2000 A
6123689 To Sep 2000 A
6142935 Flom et al. Nov 2000 A
6142936 Beane et al. Nov 2000 A
6149642 Gerhart et al. Nov 2000 A
6150608 Wambeke et al. Nov 2000 A
6154991 Duncan et al. Dec 2000 A
6159182 Davis Dec 2000 A
6162172 Cosgrove et al. Dec 2000 A
6162196 Hart et al. Dec 2000 A
6162206 Bindokas Dec 2000 A
6163949 Neuenschwander Dec 2000 A
6164279 Tweedle Dec 2000 A
6171282 Ragsdale Jan 2001 B1
6183486 Snow et al. Feb 2001 B1
6197002 Peterson Mar 2001 B1
6217555 Hart et al. Apr 2001 B1
6217590 Levinson Apr 2001 B1
6224612 Bates et al. May 2001 B1
6228063 Aboul-Hosn May 2001 B1
6238373 de la Torre et al. May 2001 B1
6241768 Agarwal et al. Jun 2001 B1
6254533 Fadem et al. Jul 2001 B1
6254534 Butler et al. Jul 2001 B1
6258065 Dennis et al. Jul 2001 B1
6264604 Kieturakis et al. Jul 2001 B1
6267751 Mangosong Jul 2001 B1
6276661 Laird Aug 2001 B1
6287280 Lampropoulos et al. Sep 2001 B1
6315770 de la Torre et al. Nov 2001 B1
6319246 de la Torre et al. Nov 2001 B1
6322541 West Nov 2001 B2
6325384 Berry, Sr. et al. Dec 2001 B1
6346074 Roth Feb 2002 B1
6355052 Neuss et al. Mar 2002 B1
6358266 Bonutti Mar 2002 B1
6361543 Chin Mar 2002 B1
6371968 Kogasaka et al. Apr 2002 B1
6378944 Weisser Apr 2002 B1
6382211 Crook May 2002 B1
6383162 Sugarbaker May 2002 B1
6391043 Moll et al. May 2002 B1
6413244 Bestetti et al. Jul 2002 B1
6413458 Pearce Jul 2002 B1
6420475 Chen Jul 2002 B1
6423036 Van Huizen Jul 2002 B1
6440061 Wenner et al. Aug 2002 B1
6440063 Beane et al. Aug 2002 B1
6443957 Addis Sep 2002 B1
6447489 Peterson Sep 2002 B1
6450983 Rambo Sep 2002 B1
6454783 Piskun Sep 2002 B1
6461332 Mosel Oct 2002 B1
6464686 O'Hara et al. Oct 2002 B1
6468292 Mollenauer et al. Oct 2002 B1
6482181 Racenet et al. Nov 2002 B1
6482227 Solovay Nov 2002 B1
6485435 Bakal Nov 2002 B1
6485467 Crook et al. Nov 2002 B1
6488620 Segermark et al. Dec 2002 B1
6488692 Spence et al. Dec 2002 B1
6494893 Dubrul et al. Dec 2002 B2
6527787 Fogarty et al. Mar 2003 B1
6533734 Corley, III et al. Mar 2003 B1
6551270 Bimbo et al. Apr 2003 B1
6551276 Mann et al. Apr 2003 B1
6551344 Thill Apr 2003 B2
6552109 Chen Apr 2003 B1
6554793 Pauker et al. Apr 2003 B1
6558371 Dorn May 2003 B2
6560782 Hourihan et al. May 2003 B2
6569120 Green May 2003 B1
6578577 Bonadio et al. Jun 2003 B2
6579281 Palmer et al. Jun 2003 B2
6582364 Butler et al. Jun 2003 B2
6585773 Xie Jul 2003 B1
6589167 Shimomura et al. Jul 2003 B1
6589211 MacLeod Jul 2003 B1
6607504 Haarala et al. Aug 2003 B2
6613952 Rambo Sep 2003 B2
6623426 Bonadio et al. Sep 2003 B2
6627275 Chen Sep 2003 B1
6651670 Rapacki Nov 2003 B2
6663598 Carrillo et al. Dec 2003 B1
6669674 Macoviak et al. Dec 2003 B1
6676639 Ternström Jan 2004 B1
6702787 Racenet et al. Mar 2004 B2
6705989 Cuschieri et al. Mar 2004 B2
6706050 Giannadakis Mar 2004 B1
6714298 Ryer Mar 2004 B2
6716201 Blanco Apr 2004 B2
6723044 Pulford et al. Apr 2004 B2
6723088 Gaskill, III et al. Apr 2004 B2
6725080 Melkent et al. Apr 2004 B2
6793621 Butler et al. Sep 2004 B2
6794440 Chen Sep 2004 B2
6796940 Bonadio et al. Sep 2004 B2
6797765 Pearce Sep 2004 B2
6800084 Davison et al. Oct 2004 B2
6811546 Callas et al. Nov 2004 B1
6814078 Crook Nov 2004 B2
6814700 Mueller et al. Nov 2004 B1
6817974 Cooper et al. Nov 2004 B2
6830578 O'Heeron et al. Dec 2004 B2
6837893 Miller Jan 2005 B2
6840946 Fogarty et al. Jan 2005 B2
6840951 de la Torre et al. Jan 2005 B2
6846287 Bonadio et al. Jan 2005 B2
6860463 Hartley Mar 2005 B2
6863674 Kasahara et al. Mar 2005 B2
6866861 Luhman Mar 2005 B1
6867253 Chen Mar 2005 B1
6869393 Butler Mar 2005 B2
6878110 Yang et al. Apr 2005 B2
6884253 McFarlane Apr 2005 B1
6890295 Michels et al. May 2005 B2
6895965 Scarberry et al. May 2005 B2
6901870 Eklof et al. Jun 2005 B2
6902541 McNally et al. Jun 2005 B2
6902569 Parmer et al. Jun 2005 B2
6908430 Caldwell et al. Jun 2005 B2
6909220 Chen Jun 2005 B2
6913609 Yencho et al. Jul 2005 B2
6916310 Sommerich Jul 2005 B2
6916331 Mollenauer et al. Jul 2005 B2
6929637 Gonzalez et al. Aug 2005 B2
6936005 Poff et al. Aug 2005 B2
6936037 Bubb Aug 2005 B2
6939296 Ewers et al. Sep 2005 B2
6945932 Caldwell et al. Sep 2005 B1
6958037 Ewers et al. Oct 2005 B2
6958069 Shipp et al. Oct 2005 B2
6972026 Caldwell et al. Dec 2005 B1
6979324 Bybordi et al. Dec 2005 B2
6991602 Nakazawa et al. Jan 2006 B2
6997909 Goldberg Feb 2006 B2
7001397 Davison et al. Feb 2006 B2
7008377 Beane et al. Mar 2006 B2
7014628 Bousquet Mar 2006 B2
7033319 Pulford et al. Apr 2006 B2
7041056 Deslauriers et al. May 2006 B2
7052454 Taylor May 2006 B2
7056304 Bacher et al. Jun 2006 B2
7056321 Pagliuca et al. Jun 2006 B2
7067583 Chen Jun 2006 B2
7077852 Fogarty et al. Jul 2006 B2
7081089 Bonadio et al. Jul 2006 B2
7083626 Hart et al. Aug 2006 B2
7093599 Chen Aug 2006 B2
7100614 Stevens et al. Sep 2006 B2
7101353 Liu et al. Sep 2006 B2
7105009 Johnson Sep 2006 B2
7105607 Chen Sep 2006 B2
7112185 Hart et al. Sep 2006 B2
7118528 Piskun Oct 2006 B1
7134929 Chen Nov 2006 B2
7153261 Wenchell Dec 2006 B2
7163510 Kahle et al. Jan 2007 B2
7192436 Sing et al. Mar 2007 B2
7193002 Chen Mar 2007 B2
7195590 Butler et al. Mar 2007 B2
7214185 Rosney et al. May 2007 B1
7217277 Parihar et al. May 2007 B2
7222380 Chen May 2007 B2
7223257 Shubayev et al. May 2007 B2
7223278 Davison et al. May 2007 B2
7226484 Chen Jun 2007 B2
7235062 Brustad Jun 2007 B2
7235084 Skakoon et al. Jun 2007 B2
7238154 Ewers et al. Jul 2007 B2
7244244 Racenet et al. Jul 2007 B2
7276075 Callas et al. Oct 2007 B1
7290367 Chen Nov 2007 B2
7294103 Bertolero Nov 2007 B2
7297106 Yamada et al. Nov 2007 B2
7300399 Bonadio et al. Nov 2007 B2
7311661 Heinrich Dec 2007 B2
7316699 McFarlane Jan 2008 B2
7331940 Sommerich Feb 2008 B2
7338473 Campbell et al. Mar 2008 B2
7344547 Piskun Mar 2008 B2
7344568 Chen Mar 2008 B2
7377898 Ewers et al. May 2008 B2
7390317 Taylor et al. Jun 2008 B2
7393322 Wenchell Jul 2008 B2
7412977 Fields et al. Aug 2008 B2
7445597 Butler et al. Nov 2008 B2
7445598 Orban, III Nov 2008 B2
7473221 Ewers et al. Jan 2009 B2
7481765 Ewers et al. Jan 2009 B2
7537564 Bonadio et al. May 2009 B2
7540839 Butler et al. Jun 2009 B2
7559893 Bonadio et al. Jul 2009 B2
7578832 Johnson Aug 2009 B2
7645232 Shluzas Jan 2010 B2
7650887 Nguyen et al. Jan 2010 B2
7661164 Chen Feb 2010 B2
7704207 Albrecht et al. Apr 2010 B2
7717847 Smith May 2010 B2
7727146 Albrecht et al. Jun 2010 B2
7727255 Taylor et al. Jun 2010 B2
7736306 Brustad et al. Jun 2010 B2
7749415 Brustad et al. Jul 2010 B2
7753901 Piskun et al. Jul 2010 B2
7758500 Boyd et al. Jul 2010 B2
7766823 Moll Aug 2010 B2
7766824 Jensen et al. Aug 2010 B2
7811251 Wenchell et al. Oct 2010 B2
7815567 Albrecht et al. Oct 2010 B2
7837612 Gill et al. Nov 2010 B2
7841765 Keller Nov 2010 B2
7850667 Gresham Dec 2010 B2
7867164 Butler et al. Jan 2011 B2
7878974 Brustad et al. Feb 2011 B2
7896889 Mazzocchi et al. Mar 2011 B2
7909760 Albrecht et al. Mar 2011 B2
7930782 Chen Apr 2011 B2
8033995 Cropper Oct 2011 B2
8641758 Anderson Feb 2014 B1
20010037053 Bonadio et al. Nov 2001 A1
20010047188 Bonadio et al. Nov 2001 A1
20020002324 McManus Jan 2002 A1
20020010389 Butler et al. Jan 2002 A1
20020013542 Bonadio et al. Jan 2002 A1
20020016607 Bonadio et al. Feb 2002 A1
20020026230 Moll et al. Feb 2002 A1
20020038077 de la Torre et al. Mar 2002 A1
20020072762 Bonadio Jun 2002 A1
20020111536 Cuschieri et al. Aug 2002 A1
20020156432 Racenet Oct 2002 A1
20020162559 Crook Nov 2002 A1
20020014076 Mollenauer Jan 2003 A1
20030004253 Chen Jan 2003 A1
20030028179 Piskun Feb 2003 A1
20030040711 Racenet et al. Feb 2003 A1
20030059865 Nelson Mar 2003 A1
20030078476 Hill Apr 2003 A1
20030078478 Bonadio et al. Apr 2003 A1
20030139756 Brustad Jul 2003 A1
20030167040 Bacher et al. Sep 2003 A1
20030187376 Rambo Oct 2003 A1
20030191371 Smith et al. Oct 2003 A1
20030192553 Rambo Oct 2003 A1
20030225392 McMichael et al. Dec 2003 A1
20030236505 Bonadio et al. Dec 2003 A1
20030236549 Bonadio et al. Dec 2003 A1
20040015185 Ewers et al. Jan 2004 A1
20040024363 Goldberg Feb 2004 A1
20040049099 Ewers et al. Mar 2004 A1
20040049100 Butler Mar 2004 A1
20040054353 Taylor Mar 2004 A1
20040106942 Taylor Mar 2004 A1
20040063833 Chen Apr 2004 A1
20040068232 Hart et al. Apr 2004 A1
20040070187 Chen Apr 2004 A1
20040072942 Chen Apr 2004 A1
20040073090 Butler Apr 2004 A1
20040092795 Bonadio et al. May 2004 A1
20040092796 Butler et al. May 2004 A1
20040093018 Johnson May 2004 A1
20040097793 Butler et al. May 2004 A1
20040111061 Curran Jun 2004 A1
20040127772 Ewers et al. Jul 2004 A1
20040138529 Wiltshire et al. Jul 2004 A1
20040143158 Hart et al. Jul 2004 A1
20040154624 Bonadio et al. Aug 2004 A1
20040167559 Taylor et al. Aug 2004 A1
20040173218 Yamada et al. Sep 2004 A1
20040215063 Bonadio et al. Oct 2004 A1
20040230161 Zeiner Nov 2004 A1
20040243144 Bonadio et al. Dec 2004 A1
20040249248 Bonadio et al. Dec 2004 A1
20040254426 Wenchell Dec 2004 A1
20040260244 Piechowicz et al. Dec 2004 A1
20040267096 Caldwell et al. Dec 2004 A1
20050020884 Hart et al. Jan 2005 A1
20050033246 Ahlbert et al. Feb 2005 A1
20050033327 Gainor et al. Feb 2005 A1
20050059865 Kahle et al. Mar 2005 A1
20050065475 Hart et al. Mar 2005 A1
20050065543 Kahle et al. Mar 2005 A1
20050080319 Dinkier, II et al. Apr 2005 A1
20050090713 Gozales et al. Apr 2005 A1
20050090716 Bonadio et al. Apr 2005 A1
20050090717 Bonadio et al. Apr 2005 A1
20050096695 Olich May 2005 A1
20050131349 Albrecht et al. Jun 2005 A1
20050148823 Vaugh et al. Jul 2005 A1
20050155611 Vaugh et al. Jul 2005 A1
20050159647 Hart et al. Jul 2005 A1
20050159650 Raymond et al. Jul 2005 A1
20050165281 Ravikumar et al. Jul 2005 A1
20050192483 Bonadio et al. Sep 2005 A1
20050192598 Johnson et al. Sep 2005 A1
20050197537 Bonadio et al. Sep 2005 A1
20050203346 Bonadio et al. Sep 2005 A1
20050209510 Bonadio et al. Sep 2005 A1
20050215863 Ravikumar et al. Sep 2005 A1
20050222582 Wenchell Oct 2005 A1
20050228447 Rambo Oct 2005 A1
20050240082 Bonadio et al. Oct 2005 A1
20050241647 Nguyen Nov 2005 A1
20050251124 Zvuloni et al. Nov 2005 A1
20050261720 Caldwell et al. Nov 2005 A1
20050267419 Smith Dec 2005 A1
20050277946 Greenhalgh Dec 2005 A1
20050283050 Gundlapalli et al. Dec 2005 A1
20050288558 Ewers et al. Dec 2005 A1
20050288634 O'Heeron et al. Dec 2005 A1
20060019137 Fukuda Jan 2006 A1
20060020164 Butler et al. Jan 2006 A1
20060020241 Piskun et al. Jan 2006 A1
20060030755 Ewers et al. Feb 2006 A1
20060041270 Lenker Feb 2006 A1
20060047284 Gresham Mar 2006 A1
20060047293 Haberland et al. Mar 2006 A1
20060052669 Hart Mar 2006 A1
20060084842 Hart et al. Apr 2006 A1
20060106402 McLucas May 2006 A1
20060129165 Edoga et al. Jun 2006 A1
20060149137 Pingleton et al. Jul 2006 A1
20060149306 Hart et al. Jul 2006 A1
20060161049 Beane et al. Jul 2006 A1
20060161050 Butler et al. Jul 2006 A1
20060241651 Wilk Oct 2006 A1
20060247498 Bonadio et al. Nov 2006 A1
20060247499 Butler et al. Nov 2006 A1
20060247500 Voegele et al. Nov 2006 A1
20060247516 Hess et al. Nov 2006 A1
20060247586 Voegele et al. Nov 2006 A1
20060247673 Voegele et al. Nov 2006 A1
20060247678 Weisenburgh, II et al. Nov 2006 A1
20060258899 Gill et al. Nov 2006 A1
20060264706 Piskun Nov 2006 A1
20060270911 Voegele et al. Nov 2006 A1
20070004968 Bonadio et al. Jan 2007 A1
20070049966 Bonadio et al. Mar 2007 A1
20070088202 Albrecht et al. Apr 2007 A1
20070088204 Albrecht Apr 2007 A1
20070093695 Bonadio et al. Apr 2007 A1
20070118175 Butler et al. May 2007 A1
20070142780 Van Lue Jun 2007 A1
20070149859 Albrecht et al. Jun 2007 A1
20070151566 Kahle et al. Jul 2007 A1
20070156023 Frasier et al. Jul 2007 A1
20070156024 Frasier et al. Jul 2007 A1
20070185387 Albrecht et al. Aug 2007 A1
20070203398 Bonadio et al. Aug 2007 A1
20070208312 Norton et al. Sep 2007 A1
20070255219 Vaugh et al. Nov 2007 A1
20070270654 Pignato et al. Nov 2007 A1
20070270752 LaBombard Nov 2007 A1
20070299387 Williams et al. Dec 2007 A1
20080027476 Piskun Jan 2008 A1
20080048011 Weller Feb 2008 A1
20080097162 Bonadio et al. Apr 2008 A1
20080097163 Butler et al. Apr 2008 A1
20080103366 Banchieri et al. May 2008 A1
20080200767 Ewers et al. Aug 2008 A1
20080255519 Piskun et al. Oct 2008 A1
20080281161 Albrecht et al. Nov 2008 A1
20080281162 Albrecht et al. Nov 2008 A1
20090012477 Norton et al. Jan 2009 A1
20090036745 Bonadio et al. Feb 2009 A1
20090069627 Haindl Mar 2009 A1
20090069837 Bonadio et al. Mar 2009 A1
20090093683 Richard et al. Apr 2009 A1
20090093752 Richard et al. Apr 2009 A1
20090131754 Ewers et al. May 2009 A1
20090137879 Ewers et al. May 2009 A1
20090149714 Bonadio Jun 2009 A1
20090182279 Wenchell et al. Jul 2009 A1
20090182282 Okihisa et al. Jul 2009 A1
20090187079 Albrecht et al. Jul 2009 A1
20090227843 Smith et al. Sep 2009 A1
20090292176 Bonadio et al. Nov 2009 A1
20090326330 Bonadio et al. Dec 2009 A1
20100063362 Bonadio et al. Mar 2010 A1
20100063364 Bonadio et al. Mar 2010 A1
20100063452 Edelman et al. Mar 2010 A1
20100081880 Widenhouse et al. Apr 2010 A1
20100081881 Murray et al. Apr 2010 A1
20100081995 Widenhouse et al. Apr 2010 A1
20100094227 Albrecht et al. Apr 2010 A1
20100100043 Racenet Apr 2010 A1
20100113882 Widenhouse et al. May 2010 A1
20100217087 Bonadio et al. Aug 2010 A1
20100228091 Widenhouse et al. Sep 2010 A1
20100228092 Ortiz et al. Sep 2010 A1
20100228094 Ortiz et al. Sep 2010 A1
20100240960 Richard Sep 2010 A1
20100249523 Spiegel et al. Sep 2010 A1
20100249524 Ransden et al. Sep 2010 A1
20100249525 Shelton, IV et al. Sep 2010 A1
20100249694 Choi et al. Sep 2010 A1
20100261972 Widenhouse et al. Oct 2010 A1
20100261975 Huey et al. Oct 2010 A1
20100286484 Stellon et al. Nov 2010 A1
20100298646 Stellon et al. Nov 2010 A1
20100305407 Farley Dec 2010 A1
20110021877 Fortier et al. Jan 2011 A1
20110028891 Okoniewski Feb 2011 A1
20110034935 Kleyman Feb 2011 A1
20110034946 Kleyman Feb 2011 A1
20110034947 Kleyman Feb 2011 A1
20110054260 Albrecht et al. Mar 2011 A1
20110071462 Ewers et al. Mar 2011 A1
20110071463 Ewers et al. Mar 2011 A1
20110144443 Shelton, IV et al. Jun 2011 A1
20110160820 Jackson et al. Jun 2011 A1
20120095297 Dang et al. Apr 2012 A1
20130072759 Li et al. Mar 2013 A1
20130245381 Dang et al. Sep 2013 A1
20130296655 Hart et al. Nov 2013 A1
20150164552 Chen et al. Jun 2015 A1
Foreign Referenced Citations (149)
Number Date Country
202751416 Feb 2013 CN
26 05 148 Aug 1977 DE
33 36 279 Jan 1986 DE
37 39 532 Dec 1988 DE
37 37 121 May 1989 DE
296 00 939 Jun 1996 DE
19828009 Dec 1999 DE
0 113 520 Jul 1984 EP
0 142 262 May 1985 EP
0 517 248 Dec 1992 EP
0 537 768 Apr 1993 EP
0 807 416 Nov 1997 EP
0 849 517 Jun 1998 EP
0 950 376 Oct 1999 EP
1 118 657 Jul 2001 EP
1 125 552 Aug 2001 EP
1 312 318 May 2003 EP
1 407 715 Apr 2004 EP
1 609 429 Dec 2005 EP
1 609 429 Dec 2005 EP
2 044 889 Apr 2009 EP
2 260 777 Dec 2010 EP
2 272 450 Jan 2011 EP
2 340 792 Jul 2011 EP
2 486 882 Aug 2012 EP
2 589 443 May 2013 EP
2 609 880 Jul 2013 EP
2 617 373 Jul 2013 EP
1 456 623 Sep 1966 FR
1 151 993 May 1969 GB
1 355 611 Jun 1974 GB
1 372 491 Oct 1974 GB
1 379 772 Jan 1975 GB
1 400 808 Jul 1975 GB
1 407 023 Sep 1975 GB
1 482 857 Aug 1977 GB
1 496 696 Dec 1977 GB
2 071 502 Sep 1981 GB
2 255 019 Oct 1992 GB
2 275 420 Aug 1994 GB
2 298 906 Sep 1996 GB
930649 Sep 1993 IE
930650 Sep 1993 IE
S940150 Feb 1994 IE
S940613 Aug 1994 IE
S940960 Dec 1994 IE
S950055 Jan 1995 IE
S950266 Apr 1995 IE
S71634 Feb 1997 IE
S75368 Aug 1997 IE
S960196 Aug 1997 IE
S970810 Nov 1997 IE
991010 Jul 2000 IE
990218 Nov 2000 IE
990219 Nov 2000 IE
990220 Nov 2000 IE
990660 Feb 2001 IE
990795 Mar 2001 IE
10-108868 Apr 1998 JP
11-290327 Oct 1999 JP
2001-61850 Mar 2001 JP
2002-28163 Jan 2002 JP
2003-235879 Aug 2003 JP
2004-195037 Jul 2004 JP
2007-44395 Feb 2007 JP
20140074622 Jun 2014 KR
1342485 Jan 1997 SU
WO 8606272 Nov 1986 WO
WO 8606316 Nov 1986 WO
WO 9211880 Jul 1992 WO
WO 9221292 Dec 1992 WO
WO 9305740 Apr 1993 WO
WO 9314801 Aug 1993 WO
WO 9404067 Mar 1994 WO
WO 9422357 Oct 1994 WO
WO 9505207 Feb 1995 WO
WO 9507056 Mar 1995 WO
WO 9522289 Aug 1995 WO
WO 9524864 Sep 1995 WO
WO 9527445 Oct 1995 WO
WO 9527468 Oct 1995 WO
WO 9636283 Nov 1996 WO
WO 9711642 Apr 1997 WO
WO 9732514 Sep 1997 WO
WO 9732515 Sep 1997 WO
WO 9742889 Nov 1997 WO
WO 9819853 May 1998 WO
WO 9835614 Aug 1998 WO
WO 9848724 Nov 1998 WO
WO 9903416 Jan 1999 WO
WO 9915068 Apr 1999 WO
WO 9916368 Apr 1999 WO
WO 9922804 May 1999 WO
WO 9925268 May 1999 WO
WO 9929250 Jun 1999 WO
WO 0032116 Jun 2000 WO
WO 0032117 Jun 2000 WO
WO 0032119 Jun 2000 WO
WO 0032120 Jun 2000 WO
WO 0035356 Jun 2000 WO
WO 0047117 Aug 2000 WO
WO 0054675 Sep 2000 WO
WO 0054676 Sep 2000 WO
WO 0054677 Sep 2000 WO
WO 0108563 Feb 2001 WO
WO 0108581 Feb 2001 WO
WO 0126558 Apr 2001 WO
WO 0126559 Apr 2001 WO
WO 01045568 Jun 2001 WO
WO 0149363 Jul 2001 WO
WO 0191652 Dec 2001 WO
WO 0207611 Jan 2002 WO
WO 0217800 Mar 2002 WO
WO 0234108 May 2002 WO
WO 03011153 Feb 2003 WO
WO 03011551 Feb 2003 WO
WO 03026512 Apr 2003 WO
WO 03032819 Apr 2003 WO
WO 03034908 May 2003 WO
WO 03034908 May 2003 WO
WO 03061480 Jul 2003 WO
WO 03077726 Sep 2003 WO
WO 03103548 Dec 2003 WO
WO 2004026153 Apr 2004 WO
WO 2004030547 Apr 2004 WO
WO 2004075730 Sep 2004 WO
WO 2004075741 Sep 2004 WO
WO 2004075930 Sep 2004 WO
WO 2005009257 Feb 2005 WO
WO 2005034766 Apr 2005 WO
WO 2005089661 Sep 2005 WO
WO 2006057982 Jan 2006 WO
WO 2006040748 Apr 2006 WO
WO 2006059318 Jun 2006 WO
WO 2006100658 Sep 2006 WO
WO 2007044849 Apr 2007 WO
WO 2008011358 Jan 2008 WO
WO 2008015566 Feb 2008 WO
WO 2008045935 Apr 2008 WO
WO 2008093313 Aug 2008 WO
WO 2008121294 Oct 2008 WO
WO 2009117435 Sep 2009 WO
WO 2010045253 Apr 2010 WO
WO 2010082722 Jul 2010 WO
WO 2010104259 Sep 2010 WO
WO 2010141673 Dec 2010 WO
WO 2012154845 Nov 2012 WO
WO 2013106569 Jul 2013 WO
WO 2014174031 Oct 2014 WO
Non-Patent Literature Citations (128)
Entry
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2015/062326, titled “Circumferential Wound Retraction with Support and Guidance Structures,” dated Jun. 8, 2017, 16 pgs.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2011/054266, titled “Natural Orifice Surgery System,” dated Feb. 9, 2012, 13 pages.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2012/037111, “Wound Retractor,” dated Aug. 30, 2012, 21 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2011/054266, titled “Natural Orifice Surgery System”, dated Apr. 2, 2013, 8 pgs.
European Patent Office, The International Written Opinion for International Application No. PCT/US2013/037213, titled “Natural Orifice Surgery System,” dated Jul. 3, 2013, 6 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2013/037213, titled “Natural Orifice Surgery System,” dated Oct. 21, 2014, 8 pgs.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2012/060997, titled “Simulated Tissue Structure for Surgical Training,” dated Mar. 7, 2013 8 pgs.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2015/045201, titled “Natural Orifice Surgery System,” dated Sep. 25, 2015, 11 pgs.
European Patent Office, The International Search Report for International Application No. PCT/US2013/0037213, titled “Natural Orifice Surgery System,” dated Jul. 3, 2013, 3 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2015/045201, titled “Natural Orifice Surgery System”, dated Mar. 2, 2017, 9 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/049079, titled “Wound Retractors with Non-Circular, Non-Coplanar or Non-Parallel Inner Rings,” dated Apr. 5, 2017, 21 pgs.
The International Searching Authority, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2015/062326, dated Jun. 21, 2016, 22 pgs.
U.S. Appl. No. 10/381,220, filed Mar. 20, 2003; Title: Surgical Access Apparatus and Method, now U.S. Pat. No. 7,473,221 issued Jan. 6, 2009.
U.S. Appl. No. 10/436,522, filed May 13, 2003; Title: Laparoscopic Illumination Apparatus and Method, now U.S. Pat. No. 6,939,296 issued Sep. 6, 2005.
U.S. Appl. No. 10/399,209, filed Aug. 22, 2003; Title: Wound Retraction Apparatus and Method, now U.S. Pat. No. 6,958,037 issued Oct. 25, 2005.
U.S. Appl. No. 11/218,412, filed Sep. 1, 2005; Title: Wound Retraction Apparatus and Method, now U.S. Pat. No. 7,238,154 issued Jul. 3, 2007.
U.S. Appl. No. 10/399,057, filed Apr. 11, 2003; Title: Sealed Surgical Access Device, now U.S. Pat. No. 7,052,454 issued May 30, 2006.
U.S. Appl. No. 10/666,579, filed Sep. 17, 2003; Title: Surgical Instrument Access Device, now U.S. Pat. No. 7,163,510 issued Jan. 16, 2007.
U.S. Appl. No. 10/052,297, filed Jan. 18, 2002; Title: Hand Access Port Device, now U.S. Pat. No. 6,908,430 issued Jun. 21, 2005.
U.S. Appl. No. 08/015,765, filed Feb. 10, 1993; Title: Gas-Tight Seal Accomodating Surgical Instruments With a Wide Range of Diameters, now U.S. Pat. No. 5,407,433 issued Apr. 18, 1995.
U.S. Appl. No. 08/040,373, filed Mar. 30, 1993; Title: Gas-Tight Seal Accomodating Surgical Instruments With a Wide Range of Diameters, now U.S. Pat. No. 5,411,483 issued May 2, 1995.
U.S. Appl. No. 10/902,756, filed Jul. 29, 2004; Title: Hand Access Port Device, now abandoned.
U.S. Appl. No. 10/802,125, filed Mar. 15, 2004; Title: Surgical Guide Valve, now abandoned.
U.S. Appl. No. 10/516,198, filed Nov. 30, 2004; Title: Wound Retractor, now U.S. Appl. No. 7,650,887 issued Jan. 26, 2010.
U.S. Appl. No. 10/927,551, filed Aug. 25, 2004; Title: Surgical Access System, now abandoned.
U.S. Appl. No. 11/244,647, filed Oct. 5, 2005; Title: Surgical Access Apparatus and Method, now U.S. Pat. No. 7,481,765 issued Jan. 27, 2009.
U.S. Appl. No. 11/548,746, filed Oct. 12, 2006; Title: Method of Making a Hand Access Laparoscopic Device, now U.S. Appl. No. 7,749,415 issued Jul. 6, 2010.
U.S. Appl. No. 11/548,765, filed Oct. 12, 2006; Title: Split Hoop Wound Retractor, now U.S. Appl. No. 7,815,567 issued Oct. 26, 2010.
U.S. Appl. No. 11/548,767, filed Oct. 12, 2006; Title: Circular Surgical Retractor now U.S. Appl. No. 7,704,207 issued Apr. 27, 2010.
U.S. Appl. No. 11/548,781, filed Oct. 12, 2006; Title: Wound Retractor With Gel Cap, now U.S. Appl. No. 7,727,146 issued Jun. 1, 2010.
U.S. Appl. No. 11/548,955, filed Oct. 12, 2006; Title: Hand Access Laparoscopic Device, now U.S. Pat. No. 7,736,306 issued Jun. 15, 2010.
U.S. Appl. No. 11/755,305, filed May 30, 2007; Title: Wound Retraction Apparatus and Method, now U.S. Pat. No. 7,377,898 issued May 27, 2008.
U.S. Appl. No. 11/548,758, filed Oct. 12, 2006; Title: Split Hoop Wound Retractor With Gel Pad, now U.S. Pat. No. 7,909,760 issued Mar. 22, 2011.
U.S. Appl. No. 12/693,242, filed Jan. 1, 2010; Title: Wound Retractor, now U.S. Pat. No. 7,913,697 issued Mar. 29, 2011.
U.S. Appl. No. 12/768,328, filed Apr. 27, 2010; Title: Circular Surgical Retractor, now U.S. Pat. No. 7,892,172 issued Feb. 22, 2011.
U.S. Appl. No. 12/791,666, filed Jun. 1, 2010; Title: Wound Retractor With Gel CAP, now U.S. Pat. No. 7,883,461 issued Feb. 8, 2011.
U.S. Appl. No. 12/815,986, filed Jun. 15, 2010; Title: Hand Access Laparoscopic Device, now U.S. Pat. No. 7,878,974 issued Feb. 1, 2011.
U.S. Appl. No. 10/695,295, filed Oct. 28, 2003; Title: Surgical Gel Seal.
U.S. Appl. No. 11/132,741, filed May 18, 2005; Title: Gas-Tight Seal Accomodating Surgical Instruments With a Wide Range of Diameters.
U.S. Appl. No. 11/245,709, filed Oct. 7, 2005; Title: Surgical Access System.
U.S. Appl. No. 11/330,661, filed Jan. 12, 2006; Title: Sealed Surgical Access Device.
U.S. Appl. No. 11/564,409, filed Nov. 29, 2006; Title: Surgical Instrument Access Device.
U.S. Appl. No. 12/108,400, filed Apr. 23, 2008; Title: Wound Retraction Apparatus and Method.
U.S. Appl. No. 12/119,371, filed May 12, 2008; Title: Surgical Retractor With Gel Pad.
U.S. Appl. No. 12/119,414, filed May 12, 2008; Title: Surgical Retractor.
U.S. Appl. No. 12/358,080, filed Jan. 22, 2009; Title: Surgical Instrument Access Device.
U.S. Appl. No. 12/360,634, filed Jan. 27, 2009; Title: Surgical Access Apparatus and Method.
U.S. Appl. No. 12/360,710, filed Jan. 27, 2009; Title: Surgical Access Apparatus and Method.
U.S. Appl. No. 12/578,422, filed Oct. 13, 2009; Title: Single Port Access System.
U.S. Appl. No. 12/905,932, filed Oct. 15, 2010; Title: Split Hoop Wound Retractor.
U.S. Appl. No. 12/960,449, filed Dec. 3, 2010; Title: Surgical Access Apparatus and Method.
U.S. Appl. No. 12/960,458, filed Dec. 3, 2010; Title: Surgical Access Apparatus and Method.
U.S. Appl. No. 13/006,727, filed Jan. 14, 2011.
U.S. Appl. No. 13/008,728, filed Jan. 18, 2011.
U.S. Appl. No. 13/023,334, filed Feb. 8, 2011.
U.S. Appl. No. 13/031,892, filed Feb. 22, 2011.
U.S. Appl. No. 13/050,042, filed Mar. 17, 2011.
U.S. Appl. No. 10/446,365, filed May 28, 2003; Title: Screw-Type Seal With Inflatable Membrane.
U.S. Appl. No. 12/004,439, filed Dec. 20, 2007; Title: Skin Seal.
U.S. Appl. No. 12/004,441, filed Dec. 20, 2007; Title: Screw-Type Skin Seal With Inflatable Membrane.
U.S. Appl. No. 12/607,667, filed Oct. 28, 2009; Title: Screw-Type Skin Seal With Inflatable Membrane.
U.S. Appl. No. 10/965,217, filed Oct. 15, 2004; Title: Surgical Sealing Device.
U.S. Appl. No. 10/981,730, filed Nov. 5, 2004; Title: Surgical Sealing Device.
U.S. Appl. No. 11/246,909, filed Oct. 11, 2005; Title: Instrument Access Device.
U.S. Appl. No. 11/291,089, filed Dec. 1, 2005; Title: A Surgical Sealing Device.
U.S. Appl. No. 11/486,383, filed Jul. 14, 2006; Title: Wound Retractor.
U.S. Appl. No. 11/785,752, filed Apr. 19, 2007; Title: Instrument Access Device.
U.S. Appl. No. 12/244,024, filed Oct. 2, 2008; Title: Seal Anchor for Use in Surgical Procedures.
U.S. Appl. No. 12/578,832, filed Oct. 14, 2009; Title: Flexible Access Device for Use in Surgical Procedure.
U.S. Appl. No. 12/706,043, filed Feb. 16, 2010; Title: Flexible Port Seal.
U.S. Appl. No. 12/719,341, filed Mar. 8, 2010; Title: Foam Port and Introducer Assembly.
U.S. Appl. No. 10/895,546, filed Jul. 21, 2004; Title: Laparoscopic Instrument and Cannula Assembly and Related Surgical Method.
U.S. Appl. No. 10/913,565, filed Aug. 5, 2004; Title: Surgical Device With Tack-Free Gel and Method of Manufacture.
Declaration of John R. Brustad dated Dec. 10, 2009, submitted in U.S. Appl. No. 11/548,955, including Appendices A-D regarding product sales brochures and production drawings from 2001 and 2005.
Dexterity Protractor Instruction Manual by Dexterity Surgical, Inc.
European Patent Office, European Search Report for European Application No. EP 10 18 4681, dated Nov. 22, 2010, entitled “Wound Retraction Apparatus and Method”.
European Patent Office, European Search Report for European Application No. EP 10 18 4608, dated Nov. 22, 2010, entitled “Wound Retraction Apparatus and Method”.
European Patent Office, European Search Report for European Application No. EP 10 18 4648, dated Nov. 22, 2010, entitled “Wound Retraction Apparatus and Method”.
European Patent Office, European Search Report for European Application No. EP 10 18 4731, dated Nov. 22, 2010, entitled “Wound Retraction Apparatus and Method”.
European Patent Office, European Search Report for European Application No. EP 10 18 4661, dated Nov. 22, 2010, entitled “Wound Retraction Apparatus and Method”.
European Patent Office, European Search Report for European Application No. EP 10 18 4677, dated Nov. 22, 2010, entitled “Wound Retraction Apparatus and Method”.
European Patent Office, European Search Report for European Application No. EP 10 18 9325, dated Dec. 14, 2010, entitled “Split Hoop Wound Retractor”.
European Patent Office, European Search Report for European Application No. EP 10 18 9328, dated Dec. 15, 2010, entitled “Split Hoop Wound Retractor”.
European Patent Office, European Search Report for European Application No. EP 04 00 2888, dated Sep. 10, 2004, entitled “Hand Access Port Device”.
European Patent Office, European Search Report for European Application No. EP 04 00 2889, dated Sep. 13, 2004, entitled “Hand Access Port Device”.
European Patent Office, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2006/040154, dated Jan. 30, 2007.
European Patent Office, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2006/040073, dated Jan. 26, 2007.
European Patent Office, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2006/039905, dated Jan. 17, 2007.
European Patent Office, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2006/039883, dated Jan. 31, 2007.
European Patent Office, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2006/039800, dated Apr. 16, 2007.
European Patent Office, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2006/039799, dated Mar. 27, 2007.
European Patent Office, European Search Report for European Patent No. 11172709.5, dated Aug. 16, 2011.
European Patent Office, European Search Report for European Patent No. 11172706.1, dated Aug. 16, 2011.
European Patent Office, European Search Report for European Application No. 15173370.6, dated Aug. 7, 2015, entitled “Wound Retractor,” (3 pgs.).
European Search Report for corresponding EP 08253236 dated Feb. 10, 2009 (6 pages).
Harold W. Harrower, M.D. Isolation of Incisions into Body Cavities, The American Journal of Surgery, p. 824-826.
Horigame, et al., Silicone Rumen Cannula with a Soft Cylindrical Part and a Hard Flange, Journal of Dairy Science, Nov. 1989, vol. 72, No. 11, pp. 3230-3232.
Horigame, et al., Technical Note: Development of Duodoenal Cannula for Sheep, Journal of Animal Science, Apr. 1992, vol. 70, Issue 4, pp. 1216-1219.
International Searching Authority/US, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/USO4/05484.
International Searching Authority/US, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US01/29682.
Kagaya, Laparascopic cholecystecomy via two ports, using the “Twin-Port” system, J. Hepatobiliary Pancreat Surg (2001) 8:76-80.
McSweeney, Cannulation of the Rumen in Cattle and Buffaloes, Australian Veterniary Journal, Aug. 1989, vol. 66, No. 8, pp. 266-268.
Neil Sheehan, Supplemental Expert Report of Neil Sheehan, Re: U.S. Pat. No. 5,741,298, United States District Court for the Central District of California, Civil Action No. SACV 03-1322 JVS, Aug. 9, 2005.
Office Action in co-pending patent U.S. Appl. No. 12/360,634, dated Jan. 24, 2011 in 12 pages.
Office Action in co-pending patent U.S. Appl. No. 12/360,710, dated Jan. 24, 2011 in 12 pages.
Technical Note: Development of Duodenal Cannula for Sheep, Faculty of Agriculture and School of Medicine Tohokju University, Sendai 981, Japan.
The International Bureau of WIPO, International Preliminary Report on Patentability, dated Aug. 29, 2006, for International Application No. PCT/US2004/028250.
The International Bureau of WIPO, International Preliminary Report on Patentability, dated Apr. 16, 2008, for International Application No. PCT/US2006/039799.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2006/039800 dated Apr. 16, 2008.
Yamazaki, et al., Diurnal Changes in the Composition of Abomasal Digesta in Fasted and Fed Sheep, The Tohoki Journal of Agricultural Research, Mar. 1987, vol. 37, No. 3-4, pp. 49-58.
International Search Report and Written Opinion in PCT/IE2005/000113 dated Feb. 22, 2006.
International Search Report and Written Opinion in PCT/IE2007/000050 dated Aug. 13, 2007.
The International Searching Authority, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US08/63445, dated Sep. 29, 2008.
The International Searching Authority, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US08/063463 dated Sep. 10, 2008.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2008/063463, dated Nov. 17, 2009, entitled “Surgical Retractor.”.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US08/63445, dated Nov. 17, 2009, entitled “Surgical Retractor with Gel Pad”.
International Searching Authority-US, International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US04/25511, dated Nov. 7, 2007.
The International Bureau of WIPO, International Report on Patentability for International Application No. PCT/US04/25511, dated Dec. 6, 2007.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2012/037111, titled “Wound Retractor” dated Nov. 12, 2013.
International Search Report and Written Opinion of the International Searching Authority for PCT application No. PCT/US01/29682.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2015/045058, titled “Wound Retractor,” dated Nov. 12, 2015.
European Patent Office, European Search Report for European Application No. EP 10 18 9327, entitled “Split Hoop Wound Retractor,” dated Dec. 14, 2010, 3 pgs.
European Patent Office, European Search Report for European Patent No. 12151288, dated Feb. 10, 2012, 8 pgs.
European Patent Office, Supplementary European Search Report for European Patent Application No. 08755322, dated Apr. 18, 2012, 3 pgs.
European Patent Office, Supplementary European Search Report for European Patent Application No. 08755336, dated Jun. 15, 2012, 2 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/056109, titled “Wound Retractor with Multi-Segment Outer Ring,” dated Jul. 10, 2017, 36 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2015/045058, dated Feb. 23, 2017, 12 pgs.
European Patent Office, European Search Report for European Patent No. 16167739.8, dated Aug. 10, 2016, 4 pgs.
Related Publications (1)
Number Date Country
20160220240 A1 Aug 2016 US
Provisional Applications (1)
Number Date Country
62084435 Nov 2014 US