The invention relates to gas turbine engines, and more particularly to a mount for stator components of gas turbine engines.
Gas turbine engines operate according to a continuous-flow, Brayton cycle. A compressor section pressurizes an ambient air stream, fuel is added and the mixture is burned in a central combustor section. The combustion products expand through a turbine section where bladed rotors convert thermal energy from the combustion products into mechanical energy for rotating one or more centrally mounted shafts. The shafts, in turn, drive the forward compressor section, thus continuing the cycle. Gas turbine engines are compact and powerful power plants, making them suitable for powering aircraft, heavy equipment, ships and electrical power generators. In power generating applications, the combustion products can also drive a separate power turbine attached to an electrical generator.
Turbine vane assemblies and other aircraft engine components may experience adverse modal response during engine operation. Some of these modes may be within the engine operation speed envelope and may cause excessive vibration that reduces the life of the components. Conventional ways to retain turbine hardware from such modal response includes the use of pins or hooks to dampen the parts. Oftentimes components must be retained at multiple locations to meet desired tolerances and for safety purposes. Multiple retention points with hooks or pins can create the risk of component over-constraint and binding.
An assembly for a gas turbine engine includes a frame, a mount, and a fairing. The mount is attached to the frame and the fairing is connected to the mount. The fairing and mount have mating anti-deflection features that engage to prevent circumferential movement of the fairing relative to the frame.
An assembly for a gas turbine engine includes a frame and a fairing. The fairing defines a gas flow path for the gas turbine engine and has a first fixed connection to the frame and a second connection to the frame. The second connection allows for both radial and axial movement of the fairing relative to the frame while preventing circumferential movement of the fairing relative to the frame.
A turbine section for a gas turbine engine includes a turbine frame, a fairing, and a mount. The turbine frame is disposed along an axial length the turbine section and the fairing is disposed within the turbine frame to form a gas path for the turbine section. The mount is attached between the fairing and the turbine frame. The mount and the fairing have mating features that constrain the fairing from movement in a circumferential direction with respect to the frame but the mating features allow for unconstrained movement of the fairing in both a radial and an axial direction relative to the frame.
The invention discloses a castellated mount such as a ring with slots therein. The slots mate with a series of lugs or teeth provided by a fairing. The mount is bolted or otherwise connected to a stator component such as a frame. The mating lug and slot configuration allows the fairing to grow radially and axially relative to the frame but constrains the fairing from circumferential movement relative to the frame.
An exemplary industrial gas turbine engine 10 is circumferentially disposed about a central, longitudinal axis or axial engine centerline axis 12 as illustrated in
As is well known in the art of gas turbines, incoming ambient air 30 becomes pressurized air 32 in the compressors 16 and 18. Fuel mixes with the pressurized air 32 in the combustor section 20, where it is burned to produce combustion gases 34 that expand as they flow through turbine sections 22, 24 and power turbine 26. Turbine sections 22 and 24 drive high and low pressure rotor shafts 36 and 38 respectively, which rotate in response to the combustion products and thus the attached compressor sections 18, 16. Free turbine section 26 may, for example, drive an electrical generator, pump, or gearbox (not shown).
It is understood that
Frame 42 comprises a stator component of gas turbine engine 10 (
As illustrated in
Mount 44 is adapted to be affixed to an axial end of outer radial platform 48. However, in other embodiments mount 44 can be affixed to inner radial platform 50 or to an intermediate portion of outer radial platform 48 that is not at or adjacent an axial end thereof.
Fairing 46 is adapted to be disposed within frame 42 between outer radial platform 48 and inner radial platform 50. Outer radial surface 54 of fairing 46 has a generally conical shape. Similarly, inner radial surface 56 has a generally conical shape. Inner radial surface 56 is spaced from outer radial surface 54 by vanes 58. Vanes 58 are adapted to be disposed around struts 52 of frame 42 when fairing 46 is assembled on frame 42. As discussed previously, outer radial surface 54, inner radial surface 56, and vanes 58, form the gas path for a portion of gas turbine engine 10 when assembled. In other sections or components within the engine, outer radial surface 54 and inner radial surface 56 may have generally cylindrical shapes as well.
In
Flange 64 extends from inner radial surface 56 of fairing 46 and engages a second axial end of inner radial platform 50. Flange 64 is connected thereto by second fastener 66. Second fastener 66 provides for axial, radial, and circumferential constraint of the axially forward portion of fairing 46 relative to frame 42. Thus, fairing 46 has a fixed connection (i.e., is radially, axially, and circumferentially constrained relative to the frame 42) to the frame 42 at a first location and has a second connection (via anti-deflection features 60) with axial and radial degrees of freedom at a second location. In other possible embodiments, the attachment at the first location may provide only axial constraints relative to the frame 42, and may exist at other locations on the frame 42.
Anti-deflection features 60 allow for thermal growth and vibration dampening as needed to achieve desired component life. Anti-deflection features 60 do not over-constrain fairing 46 since mount 44 protects only against circumferential movement of fairing 46 relative to frame 42. Additionally, mount 44 can be removed and replaced easily in the event of excessive wear, thus saving time and money. Anti-deflection features 60 also allow for simplicity of design compared to more complicated retention arrangements that require additional components or fabrication steps to manufacture.
As shown in
As previously discussed, lugs 72 and slots 74 are adapted to mate together but have a clearance to allow fairing 46 to grow radially and axially relative to outer radial platform 48 of frame 42 (
Stiffening rail 70 extends radially and axially away from flange 68 and the remainder of fairing 46 (
Although illustrated with lugs 72 extending from fairing 46 (
The invention discloses a castellated mount such as a ring with slots therein. The slots mate with a series of lugs or teeth provided by a fairing. The mount is bolted or otherwise connected to a stator component such as a frame. The mating lug and slot configuration allows the fairing to grow radially and axially relative to the frame but constrains the fairing from circumferential movement relative to the frame.
Discussion of Possible Embodiments
The following are non-exclusive descriptions of possible embodiments of the present invention.
An assembly for a gas turbine engine includes a frame, a mount, and a fairing. The mount is attached to the frame and the fairing is connected to the mount. The fairing and mount have mating anti-deflection features that engage to prevent circumferential movement of the fairing relative to the frame
The assembly of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
the mount is attached to a first axial end portion of the frame;
the mount is attached to the frame by a first fastener and the fairing is attached to a second axial end portion of the frame by a second fastener;
the mount is attached to an outer radial platform of the frame and the fairing is additionally attached to an inner radial platform of the frame;
the frame comprises a turbine frame;
the mount comprises a ring;
the ring has one or more slots therein, the fairing has one or more lugs extending therefrom, and the one or more lugs are received in the one or more slots when the fairing is disposed within the frame; and
the fairing is unconstrained from movement in both a radial and an axial direction relative to the frame but is constrained from movement in a circumferential direction with respect to the frame.
An assembly for a gas turbine engine includes a frame and a fairing. The fairing defines a gas flow path for the gas turbine engine and has a first fixed connection to the frame and a second connection to the frame. The second connection allows for both radial and axial movement of the fairing relative to the frame while preventing circumferential movement of the fairing relative to the frame.
The assembly of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
a mount attached to the frame;
the mount comprises a ring and the mating features comprise one or more slots in the ring and one or more lugs on the fairing;
the ring is mounted to a first axial end portion of the frame;
the ring is mounted to the frame by a first fastener and the fairing is mounted to a second axial end portion of the frame by a second fastener;
the ring is mounted to an outer radial platform of the frame and the fairing is mounted to an inner radial platform of the frame; and
the frame comprises a turbine frame.
A turbine section for a gas turbine engine includes a turbine frame, a fairing, and a mount. The turbine frame is disposed along an axial length the turbine section and the fairing is disposed within the turbine frame to form a gas path for the turbine section. The mount is attached between the fairing and the turbine frame. The mount and the fairing have mating features that constrain the fairing from movement in a circumferential direction with respect to the frame but the mating features allow for unconstrained movement of the fairing in both a radial and an axial direction relative to the frame.
The turbine section of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
the mount comprises a ring;
the mating features comprise one or more slots in the ring and one or more lugs on the fairing;
the fairing is attached at a first axial end portion to the frame by a fastener and is constrained from movement in a circumferential direction with respect to the frame at a second axial end portion of the fairing; and
the mount is attached to an outer radial platform of the frame.
While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2124108 | Grece | Jul 1938 | A |
2836959 | McDowall et al. | Jun 1958 | A |
3576328 | Vose | Apr 1971 | A |
3970319 | Carroll et al. | Jul 1976 | A |
4088422 | Martin | May 1978 | A |
4114248 | Smith et al. | Sep 1978 | A |
4478551 | Honeycutt, Jr. et al. | Oct 1984 | A |
4645217 | Honeycutt, Jr. et al. | Feb 1987 | A |
4678113 | Bridges et al. | Jul 1987 | A |
4738453 | Ide | Apr 1988 | A |
4756536 | Belcher | Jul 1988 | A |
4920742 | Nash et al. | May 1990 | A |
4987736 | Ciokajlo et al. | Jan 1991 | A |
4993918 | Myers et al. | Feb 1991 | A |
5031922 | Heydrich | Jul 1991 | A |
5042823 | Mackay et al. | Aug 1991 | A |
5071138 | Mackay et al. | Dec 1991 | A |
5100158 | Gardner | Mar 1992 | A |
5108116 | Johnson et al. | Apr 1992 | A |
5169159 | Pope et al. | Dec 1992 | A |
5174584 | Lahrman | Dec 1992 | A |
5188507 | Sweeney | Feb 1993 | A |
5211541 | Fledderjohn et al. | May 1993 | A |
5236302 | Weisgerber et al. | Aug 1993 | A |
5246295 | Ide | Sep 1993 | A |
5273397 | Czachor et al. | Dec 1993 | A |
5338154 | Meade et al. | Aug 1994 | A |
5370402 | Gardner et al. | Dec 1994 | A |
5385409 | Ide | Jan 1995 | A |
5401036 | Basu | Mar 1995 | A |
5474305 | Flower | Dec 1995 | A |
5558341 | McNickle et al. | Sep 1996 | A |
5632493 | Gardner | May 1997 | A |
5634767 | Dawson | Jun 1997 | A |
5755445 | Arora | May 1998 | A |
5911400 | Niethammer et al. | Jun 1999 | A |
5961279 | Ingistov | Oct 1999 | A |
6196550 | Arora et al. | Mar 2001 | B1 |
6343912 | Manteiga et al. | Feb 2002 | B1 |
6364316 | Arora | Apr 2002 | B1 |
6439841 | Bosel | Aug 2002 | B1 |
6601853 | Inoue | Aug 2003 | B2 |
6619030 | Seda et al. | Sep 2003 | B1 |
6637751 | Aksit et al. | Oct 2003 | B2 |
6638013 | Nguyen et al. | Oct 2003 | B2 |
6652229 | Lu | Nov 2003 | B2 |
6672833 | MacLean et al. | Jan 2004 | B2 |
6736401 | Chung et al. | May 2004 | B2 |
6805356 | Inoue | Oct 2004 | B2 |
6811154 | Proctor et al. | Nov 2004 | B2 |
6935631 | Inoue | Aug 2005 | B2 |
6983608 | Allen, Jr. et al. | Jan 2006 | B2 |
7094026 | Coign et al. | Aug 2006 | B2 |
7238008 | Bobo et al. | Jul 2007 | B2 |
7367567 | Farah et al. | May 2008 | B2 |
7371044 | Nereim | May 2008 | B2 |
7631879 | Diantonio | Dec 2009 | B2 |
7735833 | Braun et al. | Jun 2010 | B2 |
7798768 | Strain et al. | Sep 2010 | B2 |
8069648 | Snyder et al. | Dec 2011 | B2 |
8083465 | Herbst et al. | Dec 2011 | B2 |
8152451 | Manteiga et al. | Apr 2012 | B2 |
8221071 | Wojno et al. | Jul 2012 | B2 |
8245518 | Durocher et al. | Aug 2012 | B2 |
20030025274 | Allan et al. | Feb 2003 | A1 |
20030042682 | Inoue | Mar 2003 | A1 |
20030062684 | Inoue | Apr 2003 | A1 |
20030062685 | Inoue | Apr 2003 | A1 |
20050046113 | Inoue | Mar 2005 | A1 |
20050135928 | Servadio et al. | Jun 2005 | A1 |
20100132371 | Durocher et al. | Jun 2010 | A1 |
20100132373 | Durocher et al. | Jun 2010 | A1 |
20100132374 | Manteiga et al. | Jun 2010 | A1 |
20100132377 | Durocher et al. | Jun 2010 | A1 |
20100135770 | Durocher et al. | Jun 2010 | A1 |
20100307165 | Wong et al. | Dec 2010 | A1 |
20110000223 | Russberg | Jan 2011 | A1 |
20110214433 | Feindel et al. | Sep 2011 | A1 |
20110262277 | Sjoqvist et al. | Oct 2011 | A1 |
20120111023 | Sjoqvist et al. | May 2012 | A1 |
20120308367 | Luczak | Dec 2012 | A1 |
Entry |
---|
International Searching Authority, PCT Notification of Transmittal of the International Search Report and the Written Opinion, Sep. 24, 2014, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20140245750 A1 | Sep 2014 | US |