City water flushing and sludge prevention control method

Information

  • Patent Grant
  • 6467498
  • Patent Number
    6,467,498
  • Date Filed
    Monday, August 27, 2001
    23 years ago
  • Date Issued
    Tuesday, October 22, 2002
    22 years ago
  • Inventors
  • Examiners
    • Walton; George L.
    Agents
    • Helget; Gerald E.
    • Capes; Nelson R.
    • Briggs and Morgan, P.A.
Abstract
For use with a city water system having a plurality of street water mains interconnected by branch water mains and having hydrants connected to the branch water mains, a city water flushing and sludge prevention method consisting the steps of: inserting a sludge-prevention control valve into a branch water main between two street water mains and closer to one of the two street water mains; the sludge-prevention control valve in the closed position preventing water from flowing through the branch water main from the closer street water main during a flushing operations, whereby all water flows through the branch water main from the more distant street water main and thereby flushes the portion of the branch water main between the sludge-prevention control valve and the more distant street water main; and an optional control mechanism adapted to close and open the sludge-prevention control valve. The control mechanism can utilize any power source such as electric, pneumatic, hydraulic, etc. Alternatively, an existing manual shut-off valve can be used.
Description




BACKGROUND OF THE INVENTION




This invention relates to a city water flushing and sludge prevention control method for use in a city water system having a plurality of street water mains interconnected by branch water mains and having hydrants connected to the branch water mains.




Maintaining and monitoring water quality is becoming increasingly important to most water utilities. In the United States, for example, the Safe Drinking Water Act amendments of 1986 have caused many water utilities to pay very close attention to the quality of water they are providing to their customers. Also, these new regulations require more sampling of the water from points out in the distribution system. These samples are taken on a regular basis and then tested.




U.S. Pat. No. 5,201,338 (herein incorporated by reference) discloses a system and device for flushing water mains and for taking samples from hydrants attached to the water mains. Although the '338 patent can be used to flush water mains using the novel flushing hydrant described therein and to take water samples, there remains a very serious problem in flushing water mains using the flushing hydrant of the '338 patent, other flushing hydrants, or fire hydrants.




The problem is best described by reference to

FIG. 1

, which shows the usual layout of a city water system.




In a city water system, street water mains M generally run down city streets and have a number of branch water mains B which have manual shut-off valves V


1


and V


2


and which interconnect the street water mains M


1


and M


2


. In turn, buildings are connected to the branch water mains B. The branch water mains B also have fire hydrants H attached at various points.




It is known that sludge may accumulate in the branch water mains B unless they are periodically flushed. Flushing is typically done by opening hydrant H


1


attached to a branch water main B. However, because of the path of least resistance, water will generally only flow from the street water main M


1


closest to the branch water main B with the open hydrant H


1


, and not from the street water main M


2


more distant from the branch water main B with the open hydrant H


1


. Therefore, the segment B


1


of the branch water main B between street water main M


1


and the hydrant H will be flushed, but the segment B


2


between hydrant H


1


and street water main M


2


will not be flushed. Also, the attachment pipes between buildings and segment B


2


will not be flushed.




Applicant has found that the buildup of sludge in the unflushed segments of the branch water mains B and the attached buildings can cause damage to copper pipes in the buildings if the sludge contains erosive materials.




There is a need for a sludge prevention control method that allows the segments B


2


between the flushing hydrant H


1


and the more distant street water main M


2


to be completely flushed. There is also a need for a sampling apparatus that allows sludge to be detected and analyzed for erosive materials while the mains are being flushed.




SUMMARY OF THE INVENTION




For use with a city water system having a plurality of street water mains interconnected by branch water mains and having hydrants connected to the branch water mains, a city water flushing and sludge prevention method consisting of: inserting a sludge-prevention control valve into a branch water main between two street water mains and closer to one of the two street water mains; and closing the sludge prevention control valve, the sludge-prevention control valve in the closed position preventing water from flowing through the branch water main portion from the closer street water main during a flushing operation, whereby all water flows through the branch water main portion from the more distant street water main and thereby flushes the portion of the branch water main between the sludge-prevention control valve and the more distant street water main. The sludge prevention control valve can be opened and closed either manually or by an automatic control mechanism or any other way such as electrical, pneumatic, hydraulic, etc. Alternatively, an existing manual shut-off valve can be used instead of the sludge prevention control valve.




A principal object and advantage of the present invention is that it permits a segment of a branch water main that is not flushed by standard flushing operations to be flushed.




Another principal object and advantage of the present invention is that it thereby allows sludge to be removed from the normally unflushed segment and buildings attached to this segment.




Another principal object and advantage of the present invention is that this sludge removal helps to prevent damage to copper pipes caused by erosive materials in the sludge.




Another object and advantage of the present invention is that it may include a remote actuator attached to a fire hydrant which operates the sludge prevention control valve when the fire hydrant is opened for flushing the branch water mains.




Another object and advantage of the present invention is that it may include a fire department stop valve which prevents activation of the sludge prevention control valve by the remote actuator when high water pressure is desired, so that water to the hydrant comes from the street water main closest to the hydrant.











These and other objects of the present invention will become readily apparent upon further review of the following specification and drawings.




BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic of the city water flushing and sludge prevention apparatus in place in a city water system.





FIG. 2

is a cross-section of the sludge prevention control valve of the present invention and a control mechanism for closing and opening the sludge prevention control valve.





FIG. 3

is a top plan view of the sludge prevention control valve of the present invention.





FIG. 4

is a cross-section of a remote actuator for activating the control mechanism.





FIG. 5

is a top plan view of a sludge filter bag of the present invention connected to a hydrant.





FIG. 6

is a side elevational view of a sludge filter bag of the present invention connected to a hydrant.











Similar reference characters denote corresponding features consistently throughout the attached drawings.




DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




The city water flushing and sludge prevention control method of the present invention is generally shown in the Figures as reference numeral


10


.




Referring to

FIG. 1

, the city water flushing and sludge prevention control method


10


further comprises inserting a sludge-prevention control valve


12


into a branch water main B between two street water mains M


1


, M


2


and closer to street water main M


1.






When the sludge-prevention control valve


12


is in the closed position, it will prevent water from flowing through the branch water main B from street water main M


1


during a flushing operation, so that all water flows through the branch water main B from street water main M


2


, the more distant street water main, and thereby flushes the portion B


2


of the branch water main B between the sludge-prevention control valve


12


and the more distant street water main M


2


.




An optional control mechanism


14


may be attached to the sludge prevention control valve to close and open the sludge-prevention control valve


12


.




Alternatively, the sludge can be removed from the branch water main B


1


by closing the existing manual shut-off valve V


1


, and likewise sludge can be removed from branch water main B


2


by closing the existing manual shut-off valve V


2


.





FIG. 2

shows the details of a preferred embodiment of the sludge-prevention control valve


12


. As can be seen, the sludge-prevention control valve


12


comprises a valve closure


16


and this valve closure


16


is preferably a butterfly valve


18


. Alternatively, any standard type of valve closure such as a poppet could be used.





FIG. 2

shows the butterfly valve


18


in the open position in which the butterfly valve


18


is parallel to the direction of water flow. As is well known, the butterfly valve


18


is closed by moving it so that it is perpendicular to the direction of water flow. Other standard valve parts such as seats and gaskets are not shown.





FIG. 2

also shows details of a preferred embodiment of the control mechanism


14


. As can be seen, the control mechanism


14


preferably comprises a valve hydraulic cylinder


20


, a valve hydraulic cylinder piston


22


reciprocating in said valve hydraulic cylinder


20


, and a linkage


24


between said valve hydraulic cylinder piston


22


and said valve closure


16


. The linkage


24


may preferably be a rack and pinion


26


, of which more detail is shown in FIG.


3


.




The control mechanism


14


is activated to close the valve closure


16


by applying hydraulic fluid pressure to the valve hydraulic cylinder


20


at input port


28


. Such hydraulic fluid pressure will cause the valve hydraulic cylinder piston


22


to move the linkage


24


in such a manner as to close the valve closure


16


. In the preferred embodiment shown, the piston


22


causes the rack


26




a


to rotate the pinion


26




b


, as seen in FIG.


3


. The pinion


26




b


is in turn connected to valve closure


16


by any suitable means such as a rod


26




c


rotating in a bushing


26




d


. Such rotation causes the valve closure


16


to rotate into a closed position.




When hydraulic fluid pressure is removed from the input port


28


, the spring return


30


will force the piston


22


towards its rest position, thereby causing the rack and pinion


26


to rotate the valve closure


16


to the open position. Water pressure in the branch water main B will assist in opening the valve closure


16


.




The city water flushing and sludge prevention control method


10


also preferably comprises attaching a remote actuator


40


connected to the control mechanism


14


, to cause remote operation of the control mechanism


14


and thus the sludge-prevention control valve


12


.




The remote actuator


40


can be any apparatus that applies hydraulic fluid pressure to the control mechanism


14


through a hydraulic line


42


. Preferably, however, the remote actuator


40


is activated by water pressure from a hydrant H


1


when the hydrant H


1


is opened to flush the branch street water main B. In this manner, flushing and activation of the sludge-prevention control valve


12


can be accomplished in a single step.




As seen in

FIGS. 1 and 4

, to implement this preferred embodiment, the remote actuator


40


preferably comprises an input water pressure port


44


connected to the hydrant H through connecting pipe


46


(FIG.


1


). It will be seen that water pressure from the hydrant H will be exerted against input water pressure port


44


when the hydrant H is opened for flushing. Standard construction of a hydrant H includes hydrant valve V which is typically below the frost line, so that no water pressure will be exerted against input water pressure port


44


when the hydrant valve V is closed.




An actuator cylinder


48


and actuator piston


50


are connected to the input water pressure port


44


as shown in FIG.


4


. When water pressure from the hydrant H is exerted against actuator piston


50


, the actuator piston


50


in turn asserts pressure against the hydraulic fluid


52


within the actuator cylinder


48


. This hydraulic fluid in turn is connected to fluid in the hydraulic line


42


at hydraulic output port


54


, which is in turn connected to the control mechanism


14


as described above. Hydraulic pressure is thus transferred to the control mechanism, causing the valve closure


16


to close.




The actuator


40


also preferably includes a spring return


56


which forces the actuator piston


50


back to its rest position when water pressure is removed from the input port water pressure port


44


when the hydrant valve V is closed. In turn, hydraulic pressure will be removed from the hydraulic line


42


, allowing the control mechanism


14


to open the sludge-prevention control valve


12


. The actuator


40


may also include a piston rod


58


and piston rod guide plate


60


, as shown.




A fire department stop valve


70


may be included to prevent activation of the sludge-prevention control valve when the hydrant H


1


is opened. This may be important to provide maximum water pressure at the hydrant H


1


, from the street water main M


1


closest to the hydrant H


1


. The fire department stop valve


70


may be inserted in the hydraulic line


42


.




The city water flushing and sludge prevention control method


10


may also include attaching a sludge filter bag


80


to the hydrant H as shown in

FIGS. 5 and 6

, for collecting sludge for testing. The filter bag


80


can be constructed or fabric or other materials with openings in the range of 5 microns to 200 microns. The filter bag


80


is generally a minimum of 20 feet long with a diameter of about 3 feet, thus providing a filter area of 60 square feet. However, any other size could be used to provide greater filter surface area. The filter bag


80


has a throat


82


of size appropriate to attachment to the hydrant H. Standard size is 12 inches. The filter bag


80


can be connected to the hydrant H by any suitable means, one being a tie rope


84


.




To test for the presence of erosive materials in the branch street water main B, the filter bag


80


is attached to the hydrant H and the sludge-prevention control valve


12


is closed to cause water to flow through the portion B


2


of the branch street water main B. The hydrant valve V (not shown) in hydrant H is then opened very slowly to 100%, and water is permitted to run out of the hydrant H into the filter bag


80


for 10 minutes or more. If the water comes out dirty, the water is permitted to run until clear water starts to appear.




This can also be done for initial testing of city water without having the sludge-prevention control valve by simply closing the main shut off valve V


1


or V


2


.




The filter bag


80


is then dried by any suitable means, such as rolling it up and putting it in a clothes dryer. The sludge is then vacuumed off the bag


80


and weighed and tested for erosive materials. One way of testing for erosive materials is to drop some super glue on a piece of fabric and then drop some sludge on the glue and let it dry. The fabric is then run over a copper pipe, and if scratches appear in the surface of the pipe, the sludge has erosive materials which could damage the copper pipes in buildings.




The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof, and it is therefore desired that the present embodiment be considered in all respects as illustrative and not restrictive, reference being made to the appended claims rather than to the foregoing description to indicate the scope of the invention.



Claims
  • 1. For use with a city water system having a plurality of street water mains interconnected by branch water mains and having hydrants connected to the branch water mains, each branch water main having a manual shut-off valve adjacent each connected street water main, a city water flushing and sludge prevention method comprising the steps of:a) closing the manual shut-off valve adjacent an interconnected street water main; and b) permitting water to flow through the branch water main from the more distant street water main, thereby flushing the portion of the branch water main between the closed manual shut-off valve and the more distant street water main, the sludge exiting the branch water main through an open hydrant.
  • 2. The method of claim 1, further comprising the step of attaching a sludge filter bag to a hydrant for collecting sludge for testing.
  • 3. For use with a city water system having a plurality of street water mains interconnected by branch water mains and having hydrants connected to the branch water mains, a city water flushing and sludge prevention method comprising the steps of:a) inserting a sludge-prevention control valve into a branch water main between two street water mains and closer to one of the two street water mains; and b) closing said sludge prevention control valve, said sludge-prevention control valve in the closed position preventing water from flowing through the branch water main from the closer street water main during a flushing operation, whereby all water flows through the branch water main from the more distant street water main and thereby flushes the portion of the branch water main between said sludge-prevention control valve and the more distant street water main, the sludge exiting the branch water main through an open hydrant.
  • 4. The method of claim 3, further comprising the step of connecting a control mechanism to the sludge prevention control valve and using the control mechanism to open and close the sludge prevention control valve.
  • 5. The method of claim 4, further comprising the step of connecting a remote actuator to the control mechanism, wherein the remote actuator is activated by water pressure at a hydrant when the hydrant is opened to flush the branch street water main.
  • 6. The method of claim 5, wherein said remote actuator further comprises an input water pressure port responsive to water pressure from water flowing in the open hydrant, an actuator piston reciprocating in an actuator cylinder, said actuator piston being in fluid communication with water flowing in the hydrant through said input water pressure port, a piston rod guide plate connected to said actuator piston by a piston rod, a spring return between said piston rod guide plate and said actuator piston, hydraulic oil in said cylinder sealed from said input water pressure port, and a hydraulic output port in fluid communication with said hydraulic oil and said hydraulic line.
  • 7. The method of claim 3, wherein said sludge prevention control valve further comprises a valve closure, and said control system further comprises a valve hydraulic cylinder connected to said hydraulic line, a valve hydraulic cylinder piston reciprocating in said valve hydraulic cylinder, and a linkage between said valve hydraulic cylinder piston and said valve closure.
  • 8. The method of claim 7, wherein said valve closure is a butterfly valve.
  • 9. The method of claim 7, wherein said linkage further comprises a rack and pinion.
  • 10. The method of claim 6, further comprising a fire department stop valve adapted to prevent activation of said remote actuator when the hydrant is opened.
  • 11. The method of claim 3, further comprising the step of attaching a sludge filter bag to a hydrant for collecting sludge for testing.
US Referenced Citations (12)
Number Name Date Kind
659643 Bonzagni Oct 1900 A
2269382 Schmidt Jan 1942 A
2910266 Condello et al. Oct 1959 A
3023768 Niemi Mar 1962 A
3650506 Bruton Mar 1972 A
3737142 Boswell Jun 1973 A
3982725 Clark Sep 1976 A
4087074 Massey et al. May 1978 A
4260128 Tito Apr 1981 A
4597556 Sandling Jul 1986 A
4756479 Lazenby, III Jul 1988 A
5201338 McKeague Apr 1993 A