The present invention relates to the field of wall construction. More particularly, the invention relates to a cladded wall system.
With respect to the current construction market in Israel and in other countries, there is a demand as well as a preference for stone cladded buildings by virtue of the esthetic appeal and durability of stone. Prior art stone cladding is attached by anchors or by adhesive to exterior walls constructed from poured concrete or insulated prefabricated construction blocks with labor intensive, costly and time consuming methods. Additionally, moisture is often trapped behind the cladding if poorly sealed, leading to its detachment from the wall.
The long duration of the prior art construction process is affected by the need to construct a conventional frame, and then to apply layers of extemal cement coatings to the frame by specialized skilled subcontractors that work on scaffoldings attached to the external walls. The need to cure each of the applied layers leads to unwanted delays at the building site. Recent studies have shown that a determining factor in establishing a timeline of a typical construction project is the delay involved in waiting for skilled workers to apply the exterior finish at the site. The finishing process is serial, usually being dependent upon different subcontractors that do not work simultaneously and therefore may be unavailable whenever a coordinating problem is found and are requested to retum to the construction site. Accordingly the prior art construction process leads to very limited responsibility and poor quality despite the high costs and time spent on the project.
It is an object of the present invention to provide a cladded wall system that reduces the installation time relative to prior art methods.
It is an additional object of the present invention to provide a cladded wall system of high quality whereby its esthetic appearance is considerably more long lasting than that of prior art methods.
It is an additional object of the present invention to provide a cladded wall system that enables architectural flexibility.
It is yet an additional object of the present invention to provide a cladded wall system that does not require dangerous external scaffolding to install the cladding.
It is yet an additional object of the present invention to provide a cladded wall system that facilitates a constant flow of construction without unwanted delays.
Other objects and advantages of the invention will become apparent as the description proceeds.
A cladded wall system for constructing cladded cast-in-place concrete walls that are each integrated with lost forms comprises a self-supporting structure made of a plurality of prefabricated cladded panels (PCPs) constituting an exterior lost form, at least one architectural element constituting an interior lost form, and a plurality of concrete integratable connecting units by which each of said PCPs is connected to said interior lost form.
Each of the PCPs comprises at least:
In one aspect, a first region of the insulating plate is configured with a tongue and a second region of the insulating plate is configured with a groove, to facilitate interlocking of adjacent PCPs by a tongue and groove arrangement. A sealant may fill the tongue and groove interlocking connection to retard or to completely prevent water infiltration.
The PCP is thus a factory made product that provides:
The use of PCPs dramatically reduces work stages at the construction site in that the dry assembly operations do not necessitate delays during transitional work stages from floor to floor.
In one aspect, each of the connecting units comprises an elongated metal mount in abutment with the interior support board and through an opening of which the fastener is introduced into the socket element, and a bracket connected to said metal mount which is connected to one of the architectural elements constituting an interior lost form. First and second metal mounts are fixated together to produce a reinforced member that both presses on one PCP and vertically extends along two PCPs to ensure that said two PCPs will be vertically aligned.
A PCP structure constituting a portion of an exterior lost form may comprise four metal mounts connected to the interior support board, including two short mounts and two long mounts; the mounts are arranged in such a way that they support every PCP by the one below it. The mounts constitute a metal chassis that are connected the PCP via hidden sockets that are arranged in a specific array.
Detailed fixation and sealed connections between the exterior elements that comprise the exterior form are made possible. It is to be said, that the failure of most prefabricated concrete prior art methods is the result of inadequate connections between the precast elements. In contrast, the cladded wall system incorporates unique integrated fixation means that aligns the elements during the connecting process.
The wall system comprising such PCP structures facilitates building in one phase a massive lost forming mold that incorporates most elements of a conventional wall, including structural elements, a complete external finish, and architectural details relating to wall openings.
The more complicated of material and form connections such as corners, lintels, window jambs and sills are advantageously standardized. The PCPs offer industrial precision that is 50 times more accurate than conventional construction standards. In anticipation of high structure precision, wall opening elements can be assembled in advance prior to being installed in the structure since such wall openings are known that they will meet construction standards.
In one aspect, the wall system further comprises a handle bar unit that is detachably connectable to two of the metal mounts, to facilitate safe transfer of the PCP at the construction site.
In one aspect, the bracket is configured with one or more grooves to receive and support a horizontal rebar element.
In one aspect, the bracket is configured with a perforated plate formed with a plurality of apertures and adapted to be in abutting relation with the concrete-based panel, through one of the apertures a drilling screw drilled through the concrete-based panel is able to be received in one of the apertures in order to fixate the interior and exterior lost forms together. All perforated plates corresponding to each of the connecting units are preferably coplanar.
In one aspect, one of the architectural elements constituting an interior lost form is a concrete-based panel, such as an autoclaved aerated concrete panel.
In one aspect, the architectural element constituting an interior lost form is an existing wall of a building that will undergo a retrofitting operation.
In one aspect, the wall system further comprises a leveling unit.
In the drawings:
The cladded wall system facilitates the construction of a building with cast-in-place concrete walls that are each integrated with lost forms, including a self-supporting structure made of a plurality of prefabricated cladded panels constituting the exterior form. The cladded walls using the prefabricated cladded panels are able to be constructed considerably more accurately, quickly and with longer term visual appeal than those built according to prior art methods.
The PCP, which generally has a rectangular configuration, comprises a highly insulating and lightweight soft-material plate (1), preferably having a thickness of at least 1 cm, which may be a foam plate and made of a material such as phenol formaldehyde plastic, high-density polyethylene, polyvinylchloride, polystyrene, rock wool, or other insulating element. The large-area surface of plate (1) is perforated with an array of large through-openings (32) within each of which an insert (2), e.g. metallic and of an annular cross section, is fixatable. Plate (1) is supported at its interior and exterior sides by a corresponding support board (3), which may be a cement board, a fiber cement board, a high pressure laminate (HPL) board, or made of any other artificial or natural material. The support boards (3) have a similar array of openings (34) that are alignable with those of plate (1), such that, when an insert (2) which is longer than the thickness of board (3) is received in a corresponding opening (34), a through-opening is provided by each insert (2) that has a smaller diameter then the corresponding opening (32) of plate (1).
An angled metallic post (4) is positioned at the interior side of PCP (30), and has two through-openings that are alignable with the two through-openings (34) of the inner board (3). A mechanical metallic flat-head insert anchor known as a Tee Nut (T) is fixed through the exterior side of the exterior board (3). A bolt (6) is introduced through post (4), the two boards (3), insert (2), plate (1) and insert anchor (T) when aligned together. Each of the bolts (6) is threadedly coupled with a central fastener portion substantially perpendicular to the head of the corresponding insert anchor (T), so as to tighten the two boards (3) together while the head contacts the exterior board (3). Another angled metallic post (7), which may be shorter than post (4), is similarly connected. A thin cladding plate (5), which is generally a thin stone slab, but which may also be made of artificial, mineral or other natural materials, is adhesively affixed to the exterior board (3). Cladding plate (5) is adhesively affixed in a factory setting by means of controlled and adequate curing conditions in order to ensure accurate and effective adhesion.
Exemplary dimensions of PCP (30) are a length of 120 cm and a width of 30 cm, providing a panel weight that is suitable to be hand lifted.
PCP (30) and angled posts (4) and (7), e.g. metallic, together constitute a prefabricated construction unit (PCU) (35).
As shown in
PCP (30) comprises insulating plate (1) that is interposed between two support boards (3a) and (3b), insert anchor (T) received in a small through-opening formed in the exterior board (3a), adhesive layer (28) applied to the head of insert anchor (T) and to the entire exterior board (3), and cladding plate (5) affixed to adhesive layer (28). Adhesive layer (28) may be a C1TE-class cladding adhesive having a thickness of up to 1 cm that complies with building codes.
Insert (2), which may be made of a hard polymer such as POM or metal, is insertable within the large through-opening formed in insulating plate (1) and within the small through-opening formed in each of exterior board (3a) and interior board (3b), providing a socket cavity (36) through which bolt (6) shown in
The structurally strong insert (2) absorbs the applied compressive forces when fastener portion (44) of insert anchor (T) is threadely coupled with a bolt (6) that causes the two boards (3a) and (3b) to be tightened together, to prevent damage to the soft-material plate (1).
A PCP (30) may be configured with a plurality of interspersed sockets (Sac), as shown for example in
To facilitate the self-supporting capability of the PCP structure, an upper-tier PCP (30A) and a lower-tier PCP (30B) are interlocked by a tongue and groove interlocking connection (14) that is provided in vertically adjacent insulating plates (1). Likewise laterally adjacent PCPs are able to be interlocked by a tongue and groove interlocking connection (14). The tongue and groove interlocking connection (14) also serves to distribute the stress resulting from the attachment of bracket (11) to post (4) by screws (15) and the attachment of concrete-based panel (9) to bracket (11) by drilling screw (10). During assembly at the construction site, the tongue and groove interlocking connection (14) may be filled with a sealant such as expanding foam to retard or to completely prevent water infiltration.
A single RPM connected to PCPs (A) and (B) is shown in
Other architectural elements are likewise able to be connected to a PCP structure.
Alternatively, a PCP (31) shown in
Detachable handle bar unit (90) comprises tubular bar (98), and longitudinally spaced locking assemblies (95) fitted over bar (98). Each locking assembly (95) has first (91) and second (92) differently sized plates, each configured with an aperture to receive bar (98), and a spring loaded lever (94) movably connected therebetween. The second, larger sized plate (92) has two vertically spaced pegs (97) that longitudinally protrude therefrom. When lever (94) is actuated, the spring expands and separates plates (91) and (92) one from the other, causing the pegs (97) to be received and secured within corresponding large openings (37) of one of the two long posts (4). This procedure is reversed to detach handle bar unit (90) from PCU (45).
Leveling unit (80) comprises a metal plate (81) formed with an aperture that is positioned on top of foundation (86) and is secured to the foundation by a drilled bolt (89) provided with a washer that passes through the aperture. A threaded rod (91) integrated with plate (81) extends upwardly therefrom from a plate region that is adapted to be adjacent to PCP (30). Footer (88), such as made of concrete, is applied to plate (81) to strengthen the rod-plate interface despite the load to be imposed by the PCPs (30).
An alignment plate (94) welded to a single leveling bar (87) extending throughout the length of the wall to be constructed is introduced over threaded rod (91) by a dedicated aperture and is secured between two axially spaced nuts (96) that are threadedly engaged with threaded rod (91). Leveling bar (87), which is adapted to support a PCP structure, may have a square cross section with a hollow interior. The height of leveling bar (87) can therefore be adjusted by correspondingly adjusting one of the nuts (96).
Since foundation (86) is not always level at certain regions thereof, leveling bar (87) which is secured by the foundation will therefore not always have a completely uniform height. To ensure that leveling bar (87) will have a completely uniform height, one or more of the leveling units (80) is adjusted so that the lower edge of a leveling bar region corresponding to the leveling unit will be either raised or lowered until the entire leveling bar (87) will have a completely uniform height.
The illustrated lowermost tier of the PCPs (30), including cladding plate (5), will therefore be completely vertically oriented when positioned in abutting relation on top of leveling bar (87). Leveling bar (87) is configured to protrude downwardly from support boards (3) when PCP (30) is positioned on top of the leveling bar, allowing alignment plate (94) to extend into the wall system interior without interference.
While PCP (30) is positioned on top of leveling bar (87) and is assured of being leveled, L-shaped bracket (11) is connected to post (4), and therefore plate (16) thereof is also assured of being vertically oriented. Mortar (76) interfacing between the lower-tier concrete-based panel (9) and foundation (86) is applied when the concrete-based panel is positioned in abutting relation with plate (16). Drilling screw (10) is then drilled through concrete-based panel (9) and connected to plate (16) to ensure that concrete-based panel (9) will not be separated from plate (16) due to the high hydrostatic pressure caused by the poured concrete, and therefore concrete-based panel (9) and PCP (30) will be assured of remaining mutually parallel.
It will be appreciated that leveling unit (80) may be employed in any embodiment described herein.
Additionally shown are AAC panel (9) spaced from PCP (30), L-shaped bracket (11), horizontal rebar element (12) supportable by bracket (11), angled bracket (26), and vertical rebar element (13) supportable by bracket (26). The two sides of angled bracket (26), which are preferably perpendicularly spaced, are each configured with grooves (29) and openings (27).
While a first side of angled bracket (26) is in abutment with the long side of L-shaped bracket (11) and an opening (27) of bracket (26) is connected with a corresponding opening of bracket (11), such as by a screwed fastener, the second side of bracket (26) protrudes from the long side of bracket (11), as shown in
The long side of L-shaped, horizontal rebar supporting bracket (11) is attached to long post (4), which is affixed to short post (7) by screws (15) to produce a RPM. The short side of bracket (11) is configured as a perforated, vertically oriented plate (16) that is parallel to, and adapted to be in abutment with, concrete-based panel (9). Perforated plate (16) is formed with a plurality of apertures (21), of at least three apertures or as many as tens of apertures, e.g. 40, to provide a matrix of apertures. Each aperture (21) is smaller sized than the diameter of drilling screw (10) drilled through concrete-based panel (9) and having a pointed end of a slightly smaller thickness than that of its cylindrical body. After the pointed end of a self-tapping or drilling screw (10) is received in one of the apertures (21), the aperture will be forced to expand after the bolt is penetrated deeper within concrete-based panel (9) and its cylindrical body spins through the interior of the aperture. By virtue of perforated plate (16), a construction worker does not have to carefully measure the location of drilling screw (10) since it will be assured of being able to penetrate one of the many apertures (21) provided with plate (16), to assist in fixating concrete-based panel (9) while being parallel to the PCPs (30). All perforated plates (16) of the wall system are coplanar in order to be abuttable with a concrete-based panel (9). The concrete-based panel (9) and perforated plate (16) shown in the foreground are associated with different tiers of wall system (75).
In this embodiment, angled vertical rebar supporting bracket (46) has a first side configured with two spaced tabs that are positioned in abutment with the long side of bracket (11) and a second rectangular side protruding from the long side of bracket (11). The first side of bracket (46) has two short and spaced teeth interposed between the tabs to engage a horizontal rebar element (12) introduced through an angled groove of bracket (11). The second side of bracket (46) is formed with a plurality of apertures (48) formed with radial projections to engage a vertical rebar element (13) received therein.
As shown in
While some embodiments of the invention have been described by way of illustration, it will be apparent that the invention can be carried out with many modifications, variations and adaptations, and with the use of numerous equivalents or alternative solutions that are within the scope of persons skilled in the art, without exceeding the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
272515 | Feb 2020 | IL | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IL2021/050144 | 2/7/2021 | WO |