The present disclosure is generally related to devices, systems, and associated methods for attaching cladding and/or other materials to building structures.
The construction and operation of buildings accounts for a significant portion of global energy-related carbon emissions. In recent years, there has been a focus on energy efficiency and the construction of better-insulated buildings. There are various ways of insulating the exterior walls of a building, and some of the most efficient methods include the use of “continuous” insulation with minimal thermal bridging across the building wall to limit thermal energy losses.
Cladding is typically applied to the exterior surfaces of buildings to provide a degree of thermal insulation and weather resistance, and often to improve the appearance of the building. Cladding can be made from a wide variety of materials in different forms including, for example, aluminum and other metals, wood, brick, vinyl, and composite materials that can include blends of cement and recycled polystyrene, etc.
Cladding can be applied over insulation with clips or other structures that are fastened to the building wall and extend through the insulation to support the cladding directly or via an arrangement of girts, rails, etc. The clips prevent wind load forces from detaching the cladding from the building during high winds.
The following disclosure describes various embodiments of devices, systems, and associated methods for attaching cladding components to a wall (e.g., a continuously or near-continuously insulated exterior wall) or other structure of a building. Unless the context clearly requires otherwise, the term “cladding component” is used herein for ease of reference to generally refer to any cladding support component and/or cladding material that may be attached to an exterior wall of a building. By way of non-limiting examples, such cladding components can include girts, rails, and/or other cladding support components, as well as cladding boards, panels, sheets, and other cladding materials. As described in greater detail below, various embodiments of the devices and systems described herein are modular devices and systems that can provide thermally insulated intermittent structural attachment solutions for attaching various types of cladding systems onto exterior wall assemblies having a relatively wide range of different insulation thicknesses.
For example, some cladding component attachment devices configured in accordance with embodiments of the present technology include a body comprised of a support member that is attached to a base which is in turn configured to be attached to a building wall structure. In some embodiments, the support member can be configured to operably carry both axial and bending loads imposed by the cladding component or components mounted to a distal end portion thereof. For example, in some embodiments such support members can be configured as a cantilevered beam comprised of a tube (e.g., a steel tube) having, e.g., a square, rectangular, circular, polygonal, and/or other cross-sectional shape. In other embodiments, such support members can be configured as beams having other configurations comprised of structures having non-tubular cross-sectional shapes. Cladding component attachment devices configured in accordance with further embodiments of the present technology can include support members configured to primarily carry axial loads imposed by the cladding component or components mounted to a distal end portion thereof. For example, in some embodiments such support members can be configured as a rod, (e.g., a fully or partially threaded elongate rod) or other thin straight bar configured to attach cladding components to the building wall structure. Such attachment devices can have a lower weight, cost, and thermal transmittance than attachment devices that are configured to carry both axial and bending loads, and as a result the use of such devices in areas where only axial load carrying capability is required can result in weight and cost savings and improved insulation. In various embodiments described herein, the bodies of the cladding component attachment devices can include features for adjusting the length of the device if needed to account for differences in insulation thickness and/or the wall or other substructure not being plumb.
Certain details are set forth in the following description and in
The terminology used below is to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain examples of embodiments of the present technology. Indeed, certain terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this Detailed Description section. Unless the context clearly requires otherwise, as used herein the terms “about,” “generally,” “substantially,” and “approximately” refer to values within 10% of the stated value. In instances in which relative terminology is used in reference to something that does not include a numerical value, the terms are given their ordinary meaning to one skilled in the art.
The accompanying Figures depict embodiments of the present technology and are not intended to be limiting of its scope. The sizes of various depicted elements are not necessarily drawn to scale, and these various elements may be arbitrarily enlarged to improve legibility. Component details may be abstracted in the Figures to exclude details such as position of components and certain precise connections between such components when such details are unnecessary for a complete understanding of how to make and use the invention. Many of the details, dimensions, angles, and other features shown in the Figures are merely illustrative of particular embodiments of the present technology. Accordingly, other embodiments can have other details, dimensions, angles, and features without departing from the present disclosure. In addition, those of ordinary skill in the art will appreciate that further embodiments of the present technology can be practiced without several of the details described below. In the Figures, identical reference numbers identify identical, or at least generally similar, elements.
Embodiments of the cladding attachment system 102 can include a plurality of cladding component attachment devices, e.g., cladding component attachment devices 110 as described in greater detail below with reference to
The cladding component attachment devices 110 are configured to be attached to the exterior wall 104 and extend through the insulation 106 and structurally attach a plurality of cladding components 108a and 108b to the wall 104. In the illustrated embodiment, the cladding components 108a are generally arranged in a horizontal orientation and the cladding components 108b are generally arranged in a vertical orientation. In some embodiments, the cladding components 108a and 108b are elongate girts (e.g., galvanized steel girts having, e.g., “hat-shaped” cross-sections). In other embodiments, however, the cladding component attachment devices described herein can be used to attach a wide variety of different cladding support components to the building wall 104, including, for example, other types of girts, rails, and/or other types of structural members and/or secondary framing having various cross-sectional shapes (e.g., hat-shaped, Z-shaped, C-shaped, flat, etc.). In some embodiments, the cladding components 108a and 108b can have the same cross-sectional shape, and in other embodiments the cladding components 108a and 108b can have different cross-sectional shapes.
In some embodiments, the support member 116 can be configured as a cantilevered beam to carry axial and bending loads from the cladding components attached thereto, and can be comprised of, e.g., a tube (e.g., a tube having a square cross-sectional shape as illustrated, or a tube having a rectangular cross-sectional shape, a circular cross-sectional shape, a polygonal cross-sectional shape, etc.). In other embodiments, the support member 116 can be configured as other types of beams having other cross-sectional shapes, such as an I-beam, a T-bar, an L-angle, a C-channel, etc. In some embodiments, the base member 115 and the support member 116 are configured to carry at least an applied load in a direction parallel to the exterior wall (e.g., corresponding to the static mass, thermal expansion, dynamic vibration, and/or other loading based on the weight or movement of the cladding material operably coupled to the cladding components 108a and 108b). Various mounting configurations of the cladding attachment system 102 can require different lengths of the cladding component attachment device 110, e.g., to correspond to the thickness of the insulation 106 and/or to accommodate variation in the flatness of the exterior wall 104, etc.
In the illustrated embodiment, the support member 140 is configured as a rod having a round cross-sectional shape, and for ease of reference may be referred to herein as the “rod 140.” The base 131 (e.g., by the integral nut 132) can be configured to operably receive a threaded proximal end portion of the rod 140 to thereby secure the rod 140 to the base 131. A secondary jam nut 136 can secure the rotational position of the rod 140 with respect to the integral nut 132. Although the rod 140 is shown as a fully threaded rod, in other embodiments, the rod 140 can be only partially threaded at one or both ends of the rod and/or the rod 140 can be otherwise operably coupled to the base 131 (e.g., welded, bonded, fastened with screws, bolts, etc.). Various mounting configurations of the cladding attachment system 102 can require different lengths of the rod 140, e.g., to correspond to the length of the cladding component attachment devices 110, the thickness of the insulation 106 (not shown in
The cladding anchor 112a can further include first and second mounting nuts 144 and 146, respectively, at a distal end portion 142 of the rod 140 to adjustably attach, e.g., the cladding components 108a and/or 108b to the distal end portion 142 of the cladding anchor 112a. First and second washers 148 and 150 can be arranged between and adjacent to the first and second mounting nuts 144 and 146, respectively. As shown, the second washer 150 can be a locking-type split washer to resist loosening of the second nut 146 after installation of the cladding component 108a and/or 108b. In other embodiments, any suitable locking fastener configuration can be used (e.g., locking adhesive liquid, a locking nut, different types of locking washers, etc.). As described above, the distal end portion 142 of the rod 140 can have a threaded depth such that the first and second nuts 144 and 146 can be adjusted along the length of the rod 140 to accommodate variations in the distance between the exterior wall 104 and cladding 120 (see
The cladding anchor 112b can further include the first and second mounting nuts 144 and 146, respectively, at the distal end portion 142 of the rod 140 to adjustably attach, e.g., the cladding components 108a and/or 108b to the distal end portion 142 of the cladding anchor 112b as described above for the cladding anchor 112a. First and second washers 148 and 150 can be arranged adjacent to the first and second mounting nuts 144 and 146, respectively. As shown, the second washer 150 can be a locking-type split washer to resist loosening of the second nut 146 after installation. In other embodiments, any suitable locking fastener configuration can be used (e.g., locking adhesive fluid, a locking nut, a different type of locking washer, etc.). As described above, the distal end portion 142 of the rod 140 can have a threaded depth such that the first and second nuts 144 and 146 can be adjusted along the length of the rod 140 to accommodate variations in the distance between the exterior wall 104 and the cladding 120. The cladding anchor 112b can be configured to carry an applied load in a direction perpendicular to the exterior wall (e.g., corresponding to a wind load). The cladding anchor 112b can have a comparatively lighter weight, lower thermal transmittance, and reduced cost than the cladding component attachment device 110. As will be explained in greater detail below, in some configurations the cladding anchor 112b can be installed in place of some of the cladding component attachment devices 110 to carry axial loads (e.g., wind loads) in those locations where the bending load carrying capacity of the attachment devices 110 is not required. The components of the cladding anchors 112a and 112b (e.g., the base 131, the support 140, etc.) can be formed from any suitable material, such as steel, stainless steel, aluminum, brass, bronze, zinc plated steel, nickel, titanium, etc., and can have any combination of treatment, hardening, and/or coating. In some embodiments, the components of the cladding anchors 112a and 112b can be formed from stainless steel to reduce thermal transmittance through the cladding anchors 112a and 112b.
Referring initially to
The cladding attachment system 202 can further include a second row 203b having a plurality of the cladding component attachment devices 110 operably coupling the cladding components 108a to the building wall 104 in a horizontal orientation and vertically spaced apart from the cladding components 108a and the plurality of cladding component attachment devices 110 in the first row 203a. The plurality of cladding component attachment devices 110 in the second row 203b can be arranged along the wall 104, e.g., at various lateral positions vertically aligned with some of the plurality of cladding component attachment devices 110 in the first row 203a. In one aspect of this embodiment, the second row 203b can further include a plurally of the cladding anchors 112a (or the cladding anchors 112b for concrete walls, not shown in
In some embodiments, the cladding attachment system 202 can further include a third row 203c having a plurality of the cladding component attachment devices 110 operably coupling the cladding components 108a to the building wall 104 in a horizontal orientation be vertically aligned with the cladding component attachment devices 110 in the first row 203a, e.g., without interspersed cladding anchors 112a positioned in either the first row 203a or the third row 203c. However, in other embodiments the plurality of cladding component attachment devices 110 in the third row 203c can be arranged in any suitable sequence with any suitable number of cladding anchors 112a interspersed between the cladding component attachment devices 110 to suit the particular loading requirements. Further rows of the cladding components 108a, the cladding component attachment devices 110, and/or the cladding anchors 112a can be operably coupled to the exterior wall 104 in virtually any suitable arrangement as needed to cover a desired portion of the exterior wall 104 with the cladding 120 and/or other cladding components and carry the applied loads (e.g., wind loads, deadloads, etc.).
The vertical and horizontal spacing of the cladding components 108a and 108b and the lateral spacing and sequence of the cladding component attachment devices 110 and cladding anchors 112a in each of the rows 203a, 203b, and 203c can be determined based on various factors, including the loading forces related to the cladding, e.g., component mass, wind loading, vibration loading, thermal expansion/contraction loading, seismic loading, etc. Wind loading on the cladding 120 is generally the highest loading force experienced by the cladding attachment system 202, and the wind loading can be especially high at the corners of the exterior wall assembly 100 and at the roof transition areas of a building structure. The wind loading on the cladding 120 is greatest, or is typically greatest, in suction, which tends to exert a pulling force on the cladding 120 in a direction away from the exterior wall 104 (e.g., outwardly from the wall 104 and perpendicular, or approximately perpendicular, to the wall 104). The cladding anchors 112a and 112b have the greatest loading capacity in tension to correspond to the wind suction load direction, which allows the cladding anchors 112a and 112b to carry the suction wind forces in conjunction with the cladding component attachment devices 110. Although the cladding anchors 112a and 112b can carry some of the wind compression load forces, the cladding component attachment devices 110 are intended to carry most of the compression loading.
In some embodiments, the cladding anchors 112a and 112b (referred to hereafter as “cladding anchors 112”) can be arranged in place of some of the cladding component attachment devices 110, and together with the cladding component attachment devices 110 can absorb the wind loading of the cladding 120, while the cladding component attachment devices 110 additionally provide bending load support related to the mass loading, vibration loading, thermal expansion/contraction loading, seismic loading, etc. of the cladding components 108a and 108b, the cladding 120, and any other cladding components attached to the exterior wall assembly 100 by the cladding attachment system 202. Such mass loading, vibration loading, etc. may be applied in directions parallel, or approximately parallel, to the outer surface of the exterior wall 104. In this regard, by including cladding anchors 112 interspersed at certain positions along the rows of cladding components 108a, the cladding attachment system 202 can carry the relatively high wind loads with fewer of the cladding component attachment devices 110 than a cladding attachment system that uses only one type of attachment device (e.g., a heavy-duty device that carries bending loads). For example, in some embodiments, the cladding component attachment devices 110 are configured to carry a design load in a direction parallel to the exterior wall 104 (e.g., downward) that is ten times greater than the design load parallel to the exterior wall 104 that the cladding anchors 112 are configured to carry. The position, sequence, etc. of the cladding anchors 112 can be dictated or otherwise arranged based on the loading requirements. In these embodiments, fewer cladding component attachment devices 110 can satisfy the loading requirements (mass, vibration, thermal, seismic, etc.) of the components of the exterior wall assembly 100 (e.g., the cladding 120 and the cladding components 108a and 108b, etc.) and the cladding anchors 112 can be installed at certain positions to satisfy the relatively high wind loading requirements.
The cladding component attachment devices 110 and cladding anchors 112 can extend from the exterior wall 104 through the insulation 106 and operably couple to the cladding 120 through the cladding components 108a and 108b. In these configurations, the cladding component attachment devices 110 and cladding anchors 112 form thermal conductive pathways (e.g., thermal bridges) between the exterior wall 104 and the cladding 120, and can therefore reduce the heating and cooling efficiency of the building by way of thermal transmittance (e.g., transmitting heat inward during cooling of the interior of the building and/or conducting heat outward during heating of the building). As described above, in some embodiments the cross-sectional area of the cladding component attachment devices 110 is greater than the cross-sectional area of the cladding anchors 112 which, for similar materials having the same or similar thermal transmittance, corresponds to the component attachment devices 110 having a greater thermal bridging effect. By way of example only, in some embodiments the thermal energy transfer rate through the cladding anchors 112 is between 10% and 50%, between 15% and 35%, or 25% of the thermal energy transfer rate through the cladding component attachment devices 110. Accordingly, the thermal performance of the cladding attachment system 202 increases by installing some of the cladding anchors 112 in place of the cladding component attachment devices 110 while still satisfying the loading requirements of the cladding attachment system 202. In one aspect of some embodiments of the present technology, the cladding component attachment devices 110 can be positioned at relatively large spacing because of their relatively high structural load capacity (e.g., for mass loading, vibration loading, thermal loading, seismic loading, etc.), and the cladding anchors 112 can be positioned as necessary to satisfy the wind loading requirements, thereby reducing the overall number of cladding component attachment devices 110 required for a particular application, reducing the thermal bridging effect of the cladding attachment system 202.
In the illustrated embodiments, the cladding anchors 112 operably couple the cladding component 108a to the building wall 104 in positions along the rows 203a, 203b, and 203c by installing the cladding anchors 112 in certain positions instead of the cladding component attachment devices 110. By way of example only, in some embodiments the cladding component 108a can be operably coupled to the building wall 104 by alternating pairs of laterally adjacent cladding anchors 112 and laterally adjacent cladding component attachment devices 110 (e.g., the sequence shown in the second row 203b). In this regard, the sequence of attachment devices along the length of the cladding component 108a can include two adjacent cladding anchors 112, two adjacent cladding component attachment devices 110, two adjacent cladding anchors 112, two adjacent cladding component attachment devices 110, and so on. In other embodiments, the cladding anchors 112 and the cladding attachment devices 110 can be arranged in virtually any combination, sequence, pattern, and/or arrangement, etc. as necessary to carry the applicable design load requirements dictated by the various loading forces related to the cladding 120.
As will be appreciated by those of ordinary skill in the art, the cladding anchors 112 can alternate or otherwise be placed in any suitable sequence, pattern, arrangement, etc. with the cladding attachment devices 110 along the rows of the cladding components 108a, e.g., one anchor 112 between each pair of attachment devices 110, two anchors 112 between each pair of attachment devices 110, three anchors 112 between each pair of attachment devices 110, etc., and/or can change these sequences or patterns at any position along the length of the cladding component 108a. Similarly, each row can have the same or a different sequence than the other rows, e.g., adjacent rows of cladding components 108a (e.g., the first row 203a and the second row 203b) can have the cladding anchors 112 positioned at different lateral positions such that the vertical spacing of the cladding component attachment devices 110 is suitable for the loading requirements. By way of example only, if the studs of the exterior wall 104 are arranged at 16-inch spacing, two cladding component attachment devices 110 can be positioned 32-inches apart with one cladding anchor 112 therebetween, or two cladding component attachment devices 110 can be positioned 48-inches apart with two cladding anchors 112 therebetween, etc. Likewise, if the studs are arranged at 24-inch spacing, two cladding component attachment devices 110 can be positioned 48-inches apart with one cladding anchor 112 therebetween, or at any other suitable spacing arrangement to carry the loading requirements. In some embodiments, the spacing between two cladding component attachment devices 110 in the vertical direction (e.g., along a stud of the exterior wall 104) can be from 96-inches, or about 96 inches, to 120-inches, or about 120 inches, or greater, with one, two, etc. cladding anchors 112 therebetween. It will be appreciated that any other horizontal or vertical spacing of the cladding component attachment devices 110 and the cladding anchors 112 is also within the scope of the present technology.
Although portions of the present disclosure describe the cladding component attachment devices 110 and the cladding anchors 112 for use in attaching girts (e.g., the cladding components 108a and 108b) to an exterior portion of building walls, it will be understood that the cladding component attachment devices 110, the cladding anchors 112, and various embodiments thereof can be used to attach a wide variety of cladding and/or cladding support components, and/or other materials, to building walls and/or other portions of buildings or other structures, in accordance with the present technology. Although referred to herein as “cladding component attachment devices 110” or “cladding anchors 112” in some embodiments, the cladding component attachment devices 110 and/or the cladding anchors 112 can also be referred to as “clips,” “brackets,” “wind load anchors,” “sliding point anchors,” and the like. Similarly, in some embodiments, the cladding attachment system 202 can be referred to as a “clip/anchor and rail” attachment system, a “panel” attachment system, an “exterior finish” attachment system, and the like.
Those of ordinary skill in the art will understand that the cladding components 108a and 108b can support a wide variety of different types of cladding 120 including, for example, LONGBOARD® cladding (which is extruded, architectural-grade aluminum cladding provided by Longboard Architectural Products of 1777 Clearbrook Road, Abbotsford, BC, V2T 5X5, Canada), other types of metal (e.g., aluminum) cladding and panels, fiber cement panels, phenolic panels, aluminum composite material (ACM) panels, etc. Accordingly, the cladding component attachment devices and cladding attachment systems described herein are not limited to use with any particular type of cladding support component or arrangement, any particular type of cladding or other exterior finish material, and/or other material or component, unless the context clearly requires otherwise.
References throughout the foregoing description to features, advantages, benefits, or similar language do not imply that all of the features and advantages that may be realized with the present technology should be or are in any single embodiment of the present technology. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present technology. Thus, discussion of the features and advantages, and similar language, throughout this specification may, but do not necessarily, refer to the same embodiment. Furthermore, the described features, advantages, and characteristics of the present technology may be combined in any suitable manner in one or more embodiments. One skilled in the relevant art will recognize that the present technology can be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and advantages may be recognized in certain embodiments that may not be present in all embodiments of the present technology.
Any patents and applications and other references noted above, including any that may be listed in accompanying filing papers, are incorporated herein by reference in the entirety, except for any subject matter disclaimers or disavowals, and except to the extent that the incorporated material is inconsistent with the express disclosure herein, in which case the language in this disclosure controls. Aspects of the present technology can be modified, if necessary, to employ the systems, functions, and concepts of the various references described above to provide yet further implementations of the present technology.
The above Detailed Description of examples and embodiments of the present technology is not intended to be exhaustive or to limit the present technology to the precise form disclosed above. While specific examples for the present technology are described above for illustrative purposes, various equivalent modifications are possible within the scope of the present technology, as those skilled in the relevant art will recognize. The teachings of the present technology provided herein can be applied to other systems, not necessarily the system described above. The elements and acts of the various examples described above can be combined to provide further implementations of the present technology. Some alternative implementations of the present technology may include not only additional elements to those implementations noted above, but also may include fewer elements. Further any specific numbers noted herein are only examples: alternative implementations may employ differing values or ranges.
From the foregoing, it will be appreciated that specific embodiments of the present technology have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the various embodiments of the present technology. Further, while various advantages associated with certain embodiments of the present technology have been described above in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the present technology. Accordingly, the present technology is not limited, except as by the appended claims.
Although certain aspects of the present technology are presented below in certain claim forms, the applicant contemplates the various aspects of the present technology in any number of claim forms. Accordingly, the applicant reserves the right to pursue additional claims after filing this application to pursue such additional claim forms, in either this application or in a continuing application.
Number | Name | Date | Kind |
---|---|---|---|
336414 | Kerr | Feb 1886 | A |
3251168 | Waring | May 1966 | A |
3308588 | Von Wedel | Mar 1967 | A |
3453795 | Heirich | Jul 1969 | A |
3467418 | Sep 1969 | A | |
3507082 | Heirich | Apr 1970 | A |
3513613 | Reid | May 1970 | A |
3626650 | Lickliter et al. | Dec 1971 | A |
3667183 | Heirich | Jun 1972 | A |
3972168 | Allen | Aug 1976 | A |
4111096 | Fasth | Sep 1978 | A |
4438611 | Bryant | Mar 1984 | A |
4553366 | Guerin | Nov 1985 | A |
4765108 | Lapish | Aug 1988 | A |
4844648 | Fentiman | Jul 1989 | A |
5118069 | Muhlethaler | Jun 1992 | A |
5144780 | Gieling et al. | Sep 1992 | A |
5347781 | Hanlon | Sep 1994 | A |
5590974 | Yang | Jan 1997 | A |
5605410 | Pantev | Feb 1997 | A |
5820289 | Kern et al. | Oct 1998 | A |
5997117 | Krietzman | Dec 1999 | A |
6029954 | Murdaca | Feb 2000 | A |
6398193 | Desouza | Jun 2002 | B1 |
6886790 | Soyris | May 2005 | B2 |
6948704 | Forbis et al. | Sep 2005 | B2 |
7427055 | Platt | Sep 2008 | B2 |
7562504 | Herbst | Jul 2009 | B2 |
8429866 | Knight et al. | Apr 2013 | B2 |
8726583 | Verdecia et al. | May 2014 | B2 |
8739483 | Bilge | Jun 2014 | B1 |
8875467 | Anastasi | Nov 2014 | B2 |
9366055 | Wright | Jun 2016 | B1 |
9499974 | Bombino | Nov 2016 | B2 |
9605425 | Hendry | Mar 2017 | B1 |
9783992 | Bombino | Oct 2017 | B2 |
10206506 | Lai et al. | Feb 2019 | B1 |
10316508 | Hendry | Jun 2019 | B1 |
D939106 | Styrc | Dec 2021 | S |
20030205009 | Herbst | Nov 2003 | A1 |
20050193680 | Wang | Sep 2005 | A1 |
20050241250 | Tarr | Nov 2005 | A1 |
20060179762 | Thome | Aug 2006 | A1 |
20070022683 | McGee | Feb 2007 | A1 |
20080017780 | Downey | Jan 2008 | A1 |
20090145071 | Radford | Jun 2009 | A1 |
20100031597 | Baek | Feb 2010 | A1 |
20100325997 | Scully | Dec 2010 | A1 |
20110000160 | Sarayli | Jan 2011 | A1 |
20110185659 | Lorenz | Aug 2011 | A1 |
20120137610 | Knight et al. | Jun 2012 | A1 |
20120174516 | Mann | Jul 2012 | A1 |
20120297725 | Anastasi | Nov 2012 | A1 |
20130074431 | Croasdale | Mar 2013 | A1 |
20130174506 | Bombino | Jul 2013 | A1 |
20130291465 | Resso | Nov 2013 | A1 |
20130306808 | Huang | Nov 2013 | A1 |
20130312352 | Gale | Nov 2013 | A1 |
20140075855 | Hohmann, Jr. | Mar 2014 | A1 |
20140083042 | Hiragaki | Mar 2014 | A1 |
20140305063 | Kim | Oct 2014 | A1 |
20150128518 | Knight et al. | May 2015 | A1 |
20160289977 | Lucchese | Oct 2016 | A1 |
20170233996 | Abernathy et al. | Aug 2017 | A1 |
20180094426 | Winter | Apr 2018 | A1 |
20180187411 | Shang | Jul 2018 | A1 |
20180202143 | Vanker | Jul 2018 | A1 |
20180223526 | Schillinger | Aug 2018 | A1 |
20180320362 | Wheatley | Nov 2018 | A1 |
20230069389 | Jansen van Vuuren et al. | Mar 2023 | A1 |
Number | Date | Country |
---|---|---|
2918746 | Sep 2015 | EP |
2918746 | Jan 2017 | EP |
2008101319 | Aug 2008 | WO |
Entry |
---|
RDH Building Engineering Ltd., RDH Building Sciences Inc., and Rockwool Inc., “Cladding Attachment Solutions for Exterior Insulated Commercial Walls,” Graham et al., Dec. 2015, 20 pages. |
Rockwool Group, “Cladding Attachment Solutions For Exterior Insulated Commercial Walls, ” RDH Building Engineering Ltd. and RDH Building Sciences Inc., Graham et al., Dec. 2017, 16 pages. |
Armatherm Z Girt Structural Thermal Break Cladding Attachment (https://www.armatherm.com/thermal-break-materials/armatherm-z-girt/), last accessed Jun. 17, 2022, 6 pages. |
Eco Cladding, Cladding Systems, (https://www.ecocladding.com/systems), last accessed Jan. 18, 2022, 7 pages. |
ISO Clip, Thermal Clip For Exterior Wall Assemblies (https://isoclips.com/), May 4, 2021, 12 pages. |
TCLIP™ Building Envelope System (https://www.engineeredassemblies.com/en/systems/tclip%E2%84%A2-thermally-broken-facade-structure), Engineered Assemblies Inc., last accessed Jan. 18, 2022, 2 pages. |
Nvelope, NH2 System Horizontal Cladding Attachment, (https://www.nvelope.com/cladding-systems-NH2-horizontal-cladding.php), last accessed Jan. 18, 2022, 4 pages. |
ACS Composite Systems, Inc., Thermal Break Wall Systems, (http://acscompositesystems.com/thermal-wall-break-systems/), last accessed Jan. 18, 2022. |
SMARTci Systems, SMARTci GreenGirt Clip, (https://smartcisystems.com/products/smartci-greengirt-clips/), last accessed Jan. 18, 2022, 3 pages. |
International Search Report and Written Opinion received for counterpart International Application No. PCT/CA2023/050369 dated May 26, 2023 (7 pages). |
International Search Report and Written Opinion for PCT International Patent Application No. PCT/CA2022/051191, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20230304295 A1 | Sep 2023 | US |