1. Field of the Invention
The invention relates to a cladding system, and in particular to a cladding system for mounting stone cladding panels on an exterior of a building to form the facade of the building.
2. Description of the Prior Art
It is well known to provide stone cladding systems for buildings, particularly relatively large buildings, office blocks and the like, comprising a plurality of store cladding panels secured to the building structure to form a wall by a mounting means engagable between the building structure and each panel. The cladding panels thus form the facade of the building. A known mounting means comprises an anchoring system which requires a brick or concrete wall to which mechanical anchors for each cladding panel are attached or embedded. The anchors fix the stone cladding panels in two load points at a bottom of each stone cladding panel and two restraint points at a top of the stone cladding panel. With this system, if the cladding panels need to be removed for replacement or access, for example, it is usually very difficult to do so and typically the mechanical anchors are damaged in the process. Further the stone cladding panels have to be installed in a desired sequence, usually building up from the base of the building and the panels have to be checked frequently to ensure they are plumb and level. As can be appreciated, this is somewhat tedious and time consuming. A further disadvantage of the sequential construction methods is that if during construction the next required cladding panels are not immediately available on site, the construction of the facade comes to a halt with consequent construction delays and added cost.
The present invention is directed towards overcoming these problems.
According to the invention there is provided a stone cladding system, including:
Advantageously, in the cladding system of the present invention, each cladding panel is independently demountably secured between a pair of support rails. The cladding panel can be readily, easily and quickly mounted on or removed from the support rails. This system also provides great flexibility in construction. The cladding panels can be mounted on the rails independently and out of any particular sequence so that there are no construction delays providing that there are some cladding panels available which can be mounted in any order on the rails. A further advantage is that the cladding panels can be mounted on the rails from the top of the building downwardly to the base of the building. This means that scaffolding required for are completed moving downwardly from the top, thus providing a cost saving as the scaffolding is usually hired as needed for use on a building site.
In a particularly preferred embodiment, the bottom of each cladding panel is supported along substantially all of its length up the lower rail. This provides good support for the cladding panel. Also, providing it is ensured that the lower rail is horizontal, all the cladding panels in a row can be dropped onto the rail and they will be level. This facilitates speedy construction.
In a preferred embodiment, the rails are mounted upon a plurality of spaced-apart vertical mullions having associated anchor means for supporting each mullion in an upright orientation on the building structure. Thus conveniently, once the mullions are in place, the cladding panel support rails may be mounted on the mullions with any desired spacing between each row of rails. Further, in many cases, it will be possible to mount the mullions directly to the floors of the building structure which may mean it is not necessary to build a brick or block wall between the floors, again providing a saving in both time and cost.
While in some cases, it may be possible to mount the mullions directly to the support structure by means of an anchor bolt, for ex(ample, it is preferred that an anchor bracket is provided which conveniently may be L-shaped having a wall fixing plate which can be secured to the building structure by means of a bolt or the like and an outwardly extending mullion support plate which can be secured to the mullion in any suitable fashion such as by means of a locking bolt secured between the anchor bracket and the mullion.
Conveniently, complementary interengagable formations are provided upon associated mating faces of each anchor bracket and mullion. This advantageously provides resistance to wind shear. Preferably, the complementary interengagable formations comprise mating serrations on the mullion and on the anchor bracket. Ideally, the serrations have ridges arranged in a vertical orientation.
In a further embodiment, each mullion has two mutually perpendicular side faces of panel from the building structure is provided. Each mullion is preferably of rectangular box section material.
In a further embodiment, a reentrant slot is provided along a face of the mullion for reception of a mounting bolt having a head and a shank, the head being slidably captured within the slot with the shank projecting outwardly of the slot for attachment to the mounting support for the mullion. This conveniently provides for ease of securing the mullions on the mounting support such as the anchor bracket as the mounting bolt can be slid along the slot for alignment with the anchor bracket. Typically, the anchor bracket has a slot for reception of the mounting bolt which may be open-ended to facilitate engagement of the bolt in the slot
In another embodiment, the lower rail has an outwardly projecting panel support arm with an upturned flange at an outer end of the arm which is engagable within a mounting slot extending along a bottom edge of the panel. Thus, the bottom of each panel is securely retained on the lower rail.
In a further embodiment, the retaining means comprises a panel retaining clip, an outer end of the clip having a retaining flap engagable within a slot extending along a top edge of the panel, and an inner end of the clip being adapted for snap engagement with the upper rail.
The invention will be more clearly understood by the following description of some embodiments thereof, given by way of example only, with reference to the accompanying drawings, in which:
Referring to the drawings, there is illustrated a cladding system according to the invention, indicated generally by the reference numeral 1. The cladding system 1 comprises a plurality of upright mullions 2 secured to an outside of a building by means of anchor brackets 3, shown in
Referring in particular to
Reentrant slots 16 are provided along each of the serrated anchor walls 11, 12 of the mullion 2 for reception of a mounting bolt 17 (see
Referring particularly to
Additional self-drilling, self-tapping dead load screws 27 can be installed, as required, through the mullion support plate 22 of the anchor bracket 3 and into the mating serrated side wall 11, 12 of the mullion 2 to resist gravity load of the stone and aluminium. It will be noted that the serrations 10 are arranged in a vertical orientation to give a firm engagement between the mullions 2 and anchor brackets 3 which provide positive resistance against wind load without introducing shear on the mounting bolts.
Referring in particular to
Referring in particular to
Referring in particular to
Referring to
Referring to
Referring now to
At an inner end of each mullion 72 at each side of the mullion 72 there is provided a re-entrant slot 80 within which is slideably received a complementary mullion nut bar 81. An associated anchor nut bar 82 co-operates with the anchor bracket 73 which is clamped between the nut bars 81, 82 by a lock nut 83 which engages with associated bar 81 is threaded for engagement by the lock nut 83 when a shank of the lock nut 83 passes through the hole 85 in the anchor nut bar 82 and the open ended slot 24 in the anchor bracket 73. It will be noted that the anchor nut bar 82 has a serrated engagement face 86 for complementary engagement with a serrated engagement face 87 on the anchor bracket 73. Fastening screws 88 are engageable through associated holes 89 in the mullion nut bar 81 with an inner wall of the slot 80 for locking the mullion nut bar 81 at any desired position on the mullion 72.
Each mullion 72 has a pair of fins 90 which project outwardly at opposite sides of the mullion 72. These fins 90 are mounted intermediate a front outer end 93 and a rear inner end 94 of the mullion 72 and extend between a top and a bottom of the mullion 72. Ribs 96 project outwardly of each side 97, 98 of the mullion 72 spaced-apart from each fin 90, forwardly of the fin 90, to define with an inner end of the fin 90 a seal retaining channel 99 on the mullion 72.
It will be appreciated that the fins 90 on the mullions 72 facilitate the integration of insulation and water seals with the stone cladding support system. This is particularly advantageous from a construction point of view in providing a rain screen insulation and stone system all in one.
In use, the anchor bracket 73 is positioned at the correct location along the slot 76 and secured in position by the anchor bolt 75 which engages a halfen insert (not shown). Next the mullion 72 is positioned at the correct in/out location using the nut bars 81, 82 and associated lock nut 83, the serrations on the anchor nut bar 82 and anchor bracket 73 giving the correct in/out location. The mullion 72 can be positioned at the correct elevation by sliding it up and down on the mullion nut bar 81 and when at the correct elevation the fasteners 88 are engaged through the mullion nut bar 81 with the then be mounted between the mullions. Rails are attached to the mullions 72 and cladding panels 8 mounted on the rails as previously described.
It will be noted that each stone cladding panel is independently fixed on the support frame formed by the rails and mullions. Also, each stone cladding panel is supported continuously along a bottom of the cladding panel to provide an even load distribution. In many cases, no brick or block wall is required to support the frame formed by the mullions and rails. The system according to the invention provides great flexibility in that the stone cladding panels can be mounted on the rails in any order. Damaged or defective stone cladding panels can be easily replaced.
The invention is riot limited to the embodiments hereinbefore described which may be varied in both construction and detail within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1991550 | Duffy | Feb 1935 | A |
3248838 | Stark | May 1966 | A |
3342005 | Rickards et al. | Sep 1967 | A |
3350830 | Smith, Jr. et al. | Nov 1967 | A |
3561182 | Madl, Jr. | Feb 1971 | A |
3786605 | Winfrey | Jan 1974 | A |
4307551 | Crandell | Dec 1981 | A |
4483122 | Crandell | Nov 1984 | A |
4570401 | Uebel et al. | Feb 1986 | A |
4625481 | Crandell | Dec 1986 | A |
4768321 | Crandell | Sep 1988 | A |
5265396 | Amimoto | Nov 1993 | A |
5347779 | Jordan | Sep 1994 | A |
5501050 | Ruel | Mar 1996 | A |
5544461 | Sommerstein | Aug 1996 | A |
5956910 | Sommerstein et al. | Sep 1999 | A |
6098364 | Liu | Aug 2000 | A |
6170213 | Zarrelli et al. | Jan 2001 | B1 |
6170214 | Treister et al. | Jan 2001 | B1 |
6598361 | Ting | Jul 2003 | B1 |
20020144476 | Mastelli | Oct 2002 | A1 |
Number | Date | Country |
---|---|---|
2 222 815 | Nov 1973 | DE |
2924108 | Jun 1979 | DE |
3024764 | Jun 1980 | DE |
43 27 512 | Feb 1995 | DE |
0 080 088 | Jun 1983 | EP |
1 172 500 | Jan 2002 | EP |
2156525 | Jan 1999 | ES |
2 544 765 | Oct 1984 | FR |
2678662 | Jul 1991 | FR |
Number | Date | Country | |
---|---|---|---|
20030150179 A1 | Aug 2003 | US |