Not applicable.
This invention relates to housings or cabinets for pumps such as compressors or vacuum pumps. In particular, this invention concerns such a pump in which clam shell halves of the housing form seals at their abutting edges to define pressure or vacuum chambers or passageways within the housing.
In many applications, a compressor or vacuum pump is housed inside a cabinet (a.k.a., housing), which may be of molded plastic. In the case of a compressor, the compressor needs intake air, which must be drawn in from outside of the housing and directed to the intake port of the pump, the pump compresses it, and delivers it to a pressurized exhaust port. Typically, tubing Is used to direct the output of the exhaust port to a port which is accessible by the user from outside of the housing. The intake air delivered to the pump usually must be filtered, so that only filtered air is delivered to the intake port, and tubing or passageways are required to communicate the filtered air to the intake port.
The invention provides an improvement to a pump having clam shell housing sections in which each said housing section has one or more walls which seal against one or more walls of the other housing section to define a sealed pressure or vacuum chamber within the walls when the housing sections are brought together. The walls come together to provide a seal all the way around the chamber, which may be an inlet chamber, an outlet chamber, or a pressurized (including depressurized) passageway, so that a pressure difference can be contained in the chamber, either positive or negative. Thereby, additional tubing or passageways in addition to the housing for routing the intake and outlet of the pump are obviated.
In a preferred form, the walls are overmolded with an elastomeric sealing material. The walls may seal against one another in end to end contact, or a wall may seal against the side surface of another wall. In the latter case, it is preferred that the sealing edge of the elastomeric sealing material be tapered to make a good seal, and the underlying edge of the wall may also be tapered to help reinforce the sealing material. Edge to side sealing is done with the exposed side of the sealing material facing the high pressure side, so that the pressure helps establish the seal.
The chamber may be in communication with either the intake or outlet port of the pump. At least one of the walls in each housing section may be formed with a half-circular recess in an edge of the wall so that the half circular recesses come together to seal around a circular intake or outlet port of the pump when the housing sections are brought together. A hole or tubular port may also be formed in one or more of the walls to create a means for entry of ambient air to the chamber, mainly for an intake chamber, or a port to which a tube could be connected, mainly for an outlet chamber.
The foregoing and other objects and advantages of the invention will appear in the detailed description which follows. In the description, reference is made to the accompanying drawings which illustrate a preferred embodiment of the invention.
Part of each chamber 22 and 24 is formed by the clam shell half 12 and the other part of each chamber 22 and 24 is formed by the clam shell half 14. Together, walls of the clam shell halves 12 and 14 create the chambers 22 and 24, and the chambers 22 and 24 are sealed against the respective ports 18 and 20 so that the chambers 22 and 24 are sealed except at the respective ports 18, 26, and 20, 30.
The walls of the clam shell halves 12 and 14 which make up the chambers 22, 24 are thin walled molded plastic sections which in each half are integrally molded with the other walls of the half. The clam shell halves 12 and 14 would typically be made of a relatively hard and stiff plastic material such as high impact polystyrene. The walls which make up the chambers 22 and 24 would have a typical thickness of 0.090 inches. The edges of the walls that make up the chambers 22, 24, where they abut all the way around the respective chamber 22, 24, come together to seal the interiors of the chambers 22, 24 against a pressure difference. However, for the exhaust chamber 24, along wall 34, the edges do not abut, although a wall 36 of the clam shell half 14 abuts the side surface of wall 34.
So that the abutments of the walls of the clam shell half 14 with the walls of the clam shell half 12 may be sufficient so as to create a seal against a pressure difference between the chambers 22 and 24 and atmospheric pressure, at each interface between the walls of the halves 12 and 14, the interfacing surfaces are coated with a relatively soft, e.g. 50 to 60 durometer, thermoplastic elastomer or thermoplastic rubber (TPR) such as Santoprene. This is preferably overmolded onto the edges of the walls that create the seals for the chambers 22, 24. This can be done in a two-shot injection molding process, either in which the harder plastic which makes up the majority of the halves 12 and 14 is first molded in one mold, and then the halves 12 and 14 are put in separate molds to overmold the relatively softer elastomeric material, or in which the harder plastic is molded in one mold in one shot and then cores of the mold are retracted to make room for a shot of the relatively softer material over the edges of the walls that form the chambers 22 and 24.
As shown in
The two cabinet halves 12, 14 are held together by any suitable means, such as snap fits, fasteners through holes 80, a combination of snap fits and fasteners, or any other suitable means.
Many modifications and variations to the preferred embodiment described will be apparent to those skilled in the art which will still embody the invention. For example, a sealed passageway incorporating the invention could be made in any shape. Therefore the invention should not be limited to the preferred embodiment described.
This claims the benefit of U.S. Provisional Patent Application No. 60/175,183 filed Jan. 10, 2000.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US01/00540 | 1/8/2001 | WO | 00 | 7/2/2002 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO01/51812 | 7/19/2001 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3573405 | Skinner et al. | Apr 1971 | A |
3640254 | Manfredi | Feb 1972 | A |
3692335 | Vickers et al. | Sep 1972 | A |
3932069 | Giardini et al. | Jan 1976 | A |
5040950 | Dalquist, III et al. | Aug 1991 | A |
5071069 | Stirm | Dec 1991 | A |
5137434 | Wheeler et al. | Aug 1992 | A |
5718571 | Rozek | Feb 1998 | A |
5833437 | Kurth et al. | Nov 1998 | A |
6164932 | Tominaga et al. | Dec 2000 | A |
6309364 | Cathaud et al. | Oct 2001 | B1 |
Number | Date | Country |
---|---|---|
298 15 572 | Nov 1998 | DE |
199 26 186 | Dec 2000 | DE |
0 438 243 | Jul 1991 | EP |
Number | Date | Country | |
---|---|---|---|
20030003003 A1 | Jan 2003 | US |
Number | Date | Country | |
---|---|---|---|
60175183 | Jan 2000 | US |